1	
2	
3	
4	Tolerability of Long-acting Diquafosol Ophthalmic Solution
5	as per Tear Film and Meibomian Glands Findings
6	
7	Reiko Arita ^{1,2*} , Shima Fukuoka ^{2,3} , Minako Kaido ^{2,4}
8	
9	¹ Itoh Clinic, Saitama, Japan
10	² Lid and Meibomian Gland Working Group, Saitama, Japan
11	³ Omiya Hamada Eye Clinic, Saitama, Japan
12	⁴ Wada Eye Clinic, Chiba, Japan
13	
14	*Corresponding author
15	Email: ritoh@za2.so-net.ne.jp (RA)
16	
17	Short Title: Tolerability of DQS-LX
18	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

19 Abstract

20 Long-acting diquafosol (DQS) ophthalmic solution (DQS-LX) has significant advantages regarding patient adherence owing to the reduced frequency of required eye drops; 21 22 however, some patients prefer conventional DQS over DQS-LX. Herein, to clarify the 23 characteristics of patients according to their preference for ophthalmic solutions, dry eve 24 (DE) and meibomian gland (MG) findings were retrospectively investigated. This study 25 enrolled 341 patients with DE (mean age, 62.1 ± 11.7 years) treated at the Itoh Clinic between November 8, 2022, and July 31, 2023, who switched from DQS to DQS-LX. 26 27 Patients were divided into two groups: those who continued DQS-LX administration 28 (DQS-LX group) and those who wished to revert to conventional DQS (DQS group). Data regarding subjective symptoms assessed using the Standard Patient Evaluation of 29 Eve Dryness (SPEED) questionnaire, tear film breakup time (BUT), tear meniscus height 30 conjunctival fluorescein 31 (TMH), corneal and staining (CFS), conjunctival 32 hyperemia/papilla, meiboscore, plugging, vascularity, meibum grade, and Schirmer's score at the time of DQS-LX switch were evaluated. Of the 341 patients, 31 (9.1%) 33 wished to revert to conventional DQS. In total, 32 eyes of 16 patients in the DQS group 34 35 and 64 eyes of 32 patients in the DQS-LX group-for whom complete data were available—were included in the analysis. Compared with the DOS group, the DOS-LX 36

3

37	group had significantly higher SPEED scores, shorter BUTs, lower TMHs, greater CFS
38	findings, larger meibum grades (all $P < 0.001$), lower Schirmer scores ($P = 0.008$), and
39	more pluggings ($P = 0.001$) than the DQS group. More allergic conjunctivitis-related
40	complications were observed in the DQS group ($P = 0.034$). In conclusion, patients with
41	low tear film volume and DE complicated by moderate or severe MG dysfunction
42	preferred DQS-LX, while those with allergic findings preferred conventional DQS.
43	

44 Introduction

45 Tear film instability, in which an imbalance in the ocular surface tear film 46 deteriorates its stability and regularity, is an important cause of dry eye (DE). The P2Y₂ 47 receptor agonist diquafosol tetrasodium (DQS) was developed as an eye drop to improve tear film stability by stimulating tear and mucin secretion [1, 2]. The introduction of this 48 49 ophthalmic solution has led to significant changes in treatment strategies for patients with 50 DE. Many reports have shown the efficacy of DQS ophthalmic solutions in improving corneal staining, stabilizing tear fluid film, and relieving DE symptoms [3-6]. As P2Y₂ 51 52 receptors are also present in meibomian glands, a DQS-induced increase in the lipid layer 53 has been reported in several studies [7-12]. DQS comprehensively targets the aqueous, mucin, and lipid layers. However, DQS ophthalmic solutions must be applied six times 54

per day to keep the ocular surface moist, which reduces patient compliance. Uchino et al.
reported that only 10.2% of participants applied eye drops at the frequency described in
the package insert [13].

58 Recently, a new long-acting formulation of DQS ophthalmic solution (DQS-LX) 59 was developed [14] through the addition of polyvinylpyrrolidone (PVP), which reduced 60 the required frequency of eye drops to three times a day. While several patients who were prescribed DQS switched to DQS-LX, some preferred DQS [15, 16]. Previous studies 61 have reported changes in subjective symptoms, fluorescein tear film breakup time 62 63 (FBUT), and fluorescein staining findings after switching from DQS to DQS-LX [15, 16]. 64 However, no comprehensive studies have investigated ocular surface parameters, including meibomian gland-related parameters and allergic conjunctivitis-related 65 66 complications.

Herein, we compared ocular surface parameters, including the meibomian gland findings, related to the parameters and condition of the tarsal conjunctiva, to identify differences between patients who were on conventional DQS and switched to DQS-LX, those who were satisfied with DQS-LX and wished to continue DQS-LX, and those who wished to revert to DQS.

72

5

73 Materials and Methods

74	This retrospective cohort study was approved by the Institutional Review Board
75	of the Itoh Clinic and adhered to the tenets of the Declaration of Helsinki (Registration
76	ID: IRIN2023-0909). Informed consent was obtained from all the participants. This
77	study was registered with the University Hospital Medical Information Network
78	(Registration ID: UMIN000054378). There was no contact with patients or legal
79	guardians as all data was obtained by study investigators through patient identification
80	numbers on the electronic health system and subsequently fully anonymized to ensure
81	patient confidentiality.

82

83 **Participants**

This study included 341 DE patients (62.1 ± 11.7 years) treated at the Itoh Clinic between November 8, 2022, and July 31, 2023 who switched from DQS to DQS-LX. Data of those who continued DQS-LX for at least 1 month (DQS-LX group) and those who wished to revert to conventional DQS within 3 months (DQS group) were retrospectively compared. Patients using eye drops or oral medications other than DQS were included in the current study, and other treatments remained unchanged, except for the switchover from DQS to DQS-LX. Both eyes of patients were included in this study.

ſ	1	1
r		1
۲		è

91	Patients who had used DQS for less than 3 months, used DQS-LX for less than 1 month,
92	had punctal plugs, wore contact lenses, used anti-glaucoma eye drops, undergone eye
93	surgery within 3 months, and could not provide consent were excluded.
94	
95	Clinical Assessment
96	Clinical assessment items were measured at the time of the DQS-LX
97	switchover. Symptoms were assessed using the Standard Patient Evaluation of Eye
98	Dryness (SPEED) validated questionnaire (scale, 0–28) [17,18]. Tear meniscus height
99	(TMH) was quantitatively measured using an IDRA (SBM Sistemi, Torino, Italy) [17,
100	18]. Lid margin abnormalities (plugging of the meibomian gland orifices and
101	vascularity of lid margins) [19], FBUT, corneal and conjunctival fluorescein staining
102	(CFS) [20], and meibum grade (0-3) [21] were evaluated using slit-lamp microscopy.
103	FBUT was measured after instilling 1 μ l of preservative-free 1% sodium fluorescein
104	into the conjunctival sac using a micropipette. CFS was scored on a scale of 0-9 points
105	as previously described [20]. Conjunctival hyperemia and papillae were observed.
106	Morphological changes in the meibomian glands were assessed based on the
107	meiboscore (0-6) [22] as determined by noninvasive meibography. Tear fluid
108	production was measured using Schirmer's test without anesthesia [23].

109

110 Statistical Analysis

111	Data are presented as means \pm standard deviation (SD). The Shapiro–Wilk test
112	revealed the non-normal distribution of the data ($P < 0.05$); thus, nonparametric tests were
113	used. The Fisher's exact test was used to compare categorical variables between the DQS
114	and DQS-LX groups. The Mann-Whitney U test was used to compare continuous
115	variables between the two groups. We performed a post-hoc power analysis for the
116	SPEED score, TMH, and FBUT. For the SPEED score, the mean difference between the
117	two groups was 3.8, with a corresponding SD of 6.2; for the TMH, the mean difference
118	was 0.04 with an SD of 0.05; and for the FBUT, the mean difference was 0.49 with an
119	SD of 1.23. These changes were calculated using the data from 96 eyes of 48 patients.
120	The power $(1 - \beta)$ was > 0.95 at the level of $\alpha = 0.05$ for the SPEED score, TMH, and
121	FBUT, and the sample size of this study was sufficient. Statistical analyses were
122	performed using JMP Pro version 17 software (SAS, Cary, NC, USA). All statistical tests
123	were two-sided, and a P -value < 0.05 was considered statistically significant.
124	

125 **Results**

126 **Demographics of the Study Population**

8

127	Of 341 patients, 31 (9.1%) wished to revert to conventional DQS. In total 48
128	(14.1%) out of 341 patients had adequate records and were eligible for further analyses.
129	The DQS group included 32 eyes of 16 patients (64.1 ± 12.6 years) and the DQS-LX
130	group included 64 eyes of 32 patients (61.1 ± 11.2 years) (Table 1). The concomitant
131	therapies and comorbidities at the time of the switchover to DQS-LX are shown in Tables
132	1 and 2. Regarding complications, allergic conjunctivitis was significantly more common
133	in the DQS group ($P = 0.034$) (Table 1), and significantly more patients in the DQS group
134	used anti-allergic eye drops ($P = 0.034$) (Table 2). Significantly more patients in the DQS-
135	LX group used 0.1% fluorometholone eye drops ($P = 0.012$) (Table 2). Significantly more
136	patients in the DQS-LX group used azithromycin eye drops ($P = 0.002$) and had a
137	significantly higher history of intense pulsed light treatment ($P = 0.013$) (Table 2).
138	

139 Table 1. Baseline characteristics of patients in the DQS and the DQS-LX groups.

Characteristic	DQS group	DQS-LX group	Р
	(<i>n</i> = 16)	(n = 32)	
Age (years), mean ± SD (range)	64.1 ± 12.6	61.1 ± 11.2	0.36
	(35-87)	(39-83)	
Sex (male/female)	3 (19%)/13 (81%)	6 (19%)/26 (81%)	1

Allergic conjunctivitis	11 (69%)	11 (34%)	0.034*
Collagen disease	2 (13%)	8 (25%)	0.46
Sjögren syndrome	2 (13%)	5 (16%)	1
Rheumatoid arthritis	0 (0%)	3 (9%)	0.54
SLK	0 (0%)	3 (9%)	0.54
History of cataract surgery	3 (19%)	4 (13%)	0.67

140 *P*-values were obtained using the Mann–Whitney *U* test or Fisher's exact test. *P < 0.05

141 (Fisher's exact test).

142 SLK, superior limbic keratoconjunctivitis; SD, standard deviation.

143

144 **Table 2. Concomitant therapies at the switchover from DQS to DQS-LX in the DQS**

Therapy	DQS group	DQS-LX group	Р
	(<i>n</i> = 16)	(n = 32)	
Eye drops for dry eye	2 (13%)	10 (31%)	0.29
Rebamipide UD	2 (13%)	7 (22%)	0.70
Sodium hyaluronate 0.1%	0 (0%)	3 (9%)	0.54
Sodium hyaluronate Mini 0.3%	0 (0%)	1 (3%)	1.0

Anti-allergic eye drops	11 (69%)	11 (34%)	0.034*
Epinastine 0.05%	1 (6%)	0 (0%)	0.33
Epinastine 0.1%	9 (56%)	10 (31%)	0.12
Olopatadine	1 (6%)	1 (3%)	1.0
Azithromycin	0 (0%)	14 (44%)	0.002*
Fluorometholone 0.1%	5 (31%)	23 (72%)	0.012*
IPL	3 (19%)	19 (59%)	0.013*

146 *P < 0.05. *P*-values were obtained using the Fisher's exact test.

147Rebamipide UD, rebamipide (Mucosta®) ophthalmic suspension UD2% (unit dose); 148 Sodium hyaluronate 0.1%, purified sodium hyaluronate (Hyalein®) ophthalmic solution 149 0.1%; Sodium hyaluronate Mini 0.3%, purified sodium hyaluronate single-dose unit (Hyalein® Mini) ophthalmic solution 0.3%; Epinastine 0.05%, epinastine hydrochloride 150 151 (Alesion®) ophthalmic solution 0.05%; Epinastine 0.1%, epinastine hydrochloride 152 (Alesion® LX) ophthalmic solution 0.1%; Azithromycin, azithromycin hydrate (Azimycin®) ophthalmic solution 1%; Fluorometholone 0.1%, fluorometholone 153 154 (Flumetholon®) ophthalmic suspension 0.1%; IPL, intense pulsed light therapy. 155

156 Subjective Symptoms and Ocular Surface Parameters at the

- 157 **Time of the Switchover**
- 158 Subjective symptoms and tear film parameters at the time of the switchover are
- 159 shown in Table 3. Compared with the DQS group, the DQS-LX group had higher SPEED
- 160 scores, lower TMHs, shorter FBUTs, greater CFS findings, larger meibum grades (all P
- 161 < 0.001), lower Schirmer scores (P = 0.008), and more pluggings (P = 0.001).
- 162 Meiboscores and vascularity did not differ significantly between the two groups (P = 0.26
- 163 and 0.21, respectively) (Table 3).
- 164

165 **Table 3. Comparison of subjective symptoms and ocular surface parameters at the**

Characteristic	DQS group	DQS-LX group	Р
SPEED (0-28)	8.1 ± 4.2	16.1 ± 6.9	<0.001**
TMH (mm)	0.24 ± 0.05	0.15 ± 0.04	<0.001**
Plugging (0-3)	2.1 ± 0.9	2.6 ± 0.7	0.001*
Vascularity (0-3)	1.3 ± 1.1	1.6 ± 1.0	0.21
FBUT (sec)	3.3 ± 1.1	2.3 ± 1.3	<0.001**
CFS (0-9)	0.3 ± 0.4	1.9 ± 2.3	<0.001**

166 switchover from DQS to DQS-LX in the DQS and DQS-LX groups.

Presence of conjunctival hyperemia	11 (69%)	11 (34%)	0.034†
and papillae (n (%))			
Meibum grade (0-3)	1.3 ± 0.7	2.0 ± 0.6	<0.001**
Meiboscore (0-6)	2.5 ± 1.3	2.9 ± 1.2	0.26
Schirmer's test (mm)	5.9 ± 4.8	3.9 ± 3.6	0.008*

167 DQS group (n = 16) and DQS- LX group (n = 32) for SPEED score; DQS group (n = 32

168 eyes) and DQS- LX group (n = 64 eyes) for the other parameters. Data are presented as

169 means \pm SD unless noted otherwise. *P < 0.05 and **P < 0.001 (the Mann–Whitney U

170 test). $\dagger P < 0.05$ (the Fisher's exact test).

171 SPEED, Standardized Patient Evaluation of Eye Dryness; TMH, tear meniscus height;

- FBUT, breakup time of the tear film with fluorescein; CFS, corneal and conjunctival
- 173 fluorescein staining; SD, standard deviation.

174

175	The reasons for reverting to DQS after switching to DQS-LX were stickiness in
176	the eye in the morning ($n = 13, 3.8\%$), increased eye discharge ($n = 12, 3.5\%$), itchiness
177	after eye drops ($n = 8, 2.3\%$), wanting to eye drops use more than three times per day (n
178	= 4, 1.2%), and eye irritation ($n = 3, 0.8\%$).

179

13

180 **Discussion**

181	The study demonstrated that approximately 90% of patients who were
182	prescribed DQS could tolerate the change to DQS-LX. Furthermore, patients with more
183	severe DE and those with DE complicated by MG dysfunction could tolerate DQS-LX,
184	whereas those with DE complicated by allergic conjunctivitis could not.
185	The actions of DQS-LX include the following: (i) temporary coating of the
186	ocular surface due to the increased viscosity of the ophthalmic solution caused by PVP,
187	(ii) improved adherence due to the reduced frequency of required eye drops, (iii) mucin
188	and aqueous layer secretion effects of DQS, (iv) an increased lipid layer due to lipid
189	secretion effects, and (v) reduced friction. As DQS and DQS-LX both influence
190	aqueous, mucin, and lipid layers, the efficacy of the eye drops in patients with severe
191	DE may particularly be influenced by the other aforementioned factors. An increase in
192	the lipid layer was observed for DQS in previous reports [7, 8, 11, 24]; however, DQS-
193	LX is considered to facilitate the contact between the liquid layer and the lipid reservoir,
194	increasing the amount of lipids in the tear film. Moreover, the improved adherence may
195	likely lead to better results regarding mucin and water secretion effects and the lipid
196	layer for DQS-LX than for DQS.

197	Herein, the tolerability for DQS-LX was very good (> 90%). The group with
198	better tolerability to DQS-LX had worse tear films, meibomian gland parameters, and
199	subjective symptoms at the time of the switchover than the group with lesser tolerability
200	to DQS-LX. Patients with moderate-to-severe DE and DE complicated by MG
201	dysfunction tended to tolerate DQS-LX well. We speculated that the increased viscosity
202	of DQS-LX due to the addition of the PVP resulted in a better coating of the ocular
203	surface, reduction in ocular surface irritation, improvement in tear fluid stability, and
204	improvements in corneal and conjunctival epithelial damage. It has also been suggested
205	that DQS-LX may be longer-lasting in patients with DE with concomitant MG
206	dysfunction because of its lipid-increasing effect on the tear film, which decreases
207	friction between the eyelid and cornea, facilitates eyelid opening, and decreases the
208	evaporation of tear fluid.
209	It has been suggested that patients with DE and allergic conjunctivitis may
210	have difficulty tolerating DQS-LX because PVP, which is added to DQS-LX as a
211	viscosifying agent, increases the residence time of allergens on the ocular surface and
212	exacerbates the symptoms (itching).
213	Ishikawa et al.[15] reported that 94.4% (51/54) of patients preferred DQS-LX.
214	However, therein[15], only patients with relatively mild disease who used DQS and

215	DQS-LX as a single therapy were included. To represent patients with DE in a real
216	clinical scenario, we included patients who were receiving concomitant DE
217	medications, such as rebamipide or sodium hyaluronate eye drops, as well as patients
218	with a history of intense pulsed light treatment. Although there were differences in
219	disease severity among participants, the results were similar. In a report by Kaido and
220	Arita [16], 84.8% (46/56) of patients had an FBUT of 2.9 ± 1.9 s and a similar DE
221	severity; however, the mean age of the cohort was 74.0 ± 10.4 years, which was older
222	than that in our study cohort. With aging, tear fluid clearance is expected to decrease
223	owing to increased complications of conjunctival chalasis [25] and reduced blinking
224	ability [26]. When these complications occur in older patients, the high viscosity of
225	DQS-LX may result in ineffective diffusion on the ocular surface and excessive
226	retention of ophthalmic fluid in the lower eyelid. The stability of the tear film and
227	improvement of corneal flaws may be affected, making eye drops more difficult to
228	apply and less successful in covering the ocular surface.
229	The reasons for not tolerating the DQS-LX were as follows: dislike of sticky eyelids upon
230	waking, concern regarding large amounts of eye discharge, itchy eyes, desire for frequent
231	application, and eye irritation. These results are similar to those of previous reports [14,
232	15]. However, these percentages were similar to the results of Ishikawa et al.[15], but less

233	than those reported by Kaido and Arita.[16] The difference in the proportion of side
234	effects may be related to age differences among the subjects[16]. The Dry Eye
235	Assessment and Management (DREAM) study[27] reported that as age increased, corneal
236	and conjunctival staining findings increased, BUT shortened, symptoms worsened, and
237	tear osmolarity increased; the older age of the previous study's cohort [16] likely
238	contributed to the higher rate of complaints regarding ocular symptom [28].
239	The retrospective nature of this study presents a limitation because it examined
240	the tolerability of DQS-LX in patients who were already prescribed DQS. Future
241	prospective studies are required to determine the characteristics of patients who prefer
242	DQS over DQS-LX and vice versa.
243	
244	Conclusion
245	High-viscosity DQS-LX ophthalmic solution is well-tolerated in patients with

246 DE. Patients with moderate or severe DE and MG dysfunction tended to prefer DQS-LX,

247 whereas those with DE and allergic findings preferred conventional DQS.

248

249

250 **References**

251

252	1. Lau OC, Samarawickrama C, Skalicky SE. P2Y2 receptor agonists for the
253	treatment of dry eye disease: a review. Clin Ophthalmol. 2014;8:327-34. Epub
254	2014/02/11. doi: 10.2147/OPTH.S39699. PubMed PMID: 24511227; PubMed Central
255	PMCID: PMCPMC3915022.
256	2. Keating GM. Diquafosol ophthalmic solution 3 %: a review of its use in dry eye.
257	Drugs. 2015;75(8):911-22. Epub 2015/05/15. doi: 10.1007/s40265-015-0409-7. PubMed
258	PMID: 25968930.
259	3. Tauber J, Davitt WF, Bokosky JE, Nichols KK, Yerxa BR, Schaberg AE, et al.
260	Double-masked, placebo-controlled safety and efficacy trial of diquafosol tetrasodium
261	(INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23(8):784-92.
262	Epub 2004/10/27. doi: 10.1097/01.ico.0000133993.14768.a9. PubMed PMID: 15502479.
263	4. Bremond-Gignac D, Gicquel JJ, Chiambaretta F. Pharmacokinetic evaluation of
264	diquafosol tetrasodium for the treatment of Sjogren's syndrome. Expert Opin Drug Metab
265	Toxicol. 2014;10(6):905-13. Epub 2014/05/07. doi: 10.1517/17425255.2014.915026.
266	PubMed PMID: 24797483.

	-
1	0
- L	C
-	-

267	5. Shigeyasu C, Yamada M, Akune Y, Fukui M. Diquafosol for Soft Contact Lens
268	Dryness: Clinical Evaluation and Tear Analysis. Optometry and vision science : official
269	publication of the American Academy of Optometry. 2016;93(8):973-8. Epub 2016/04/27.
270	doi: 10.1097/OPX.0000000000000877. PubMed PMID: 27115327.
271	6. Jeon HS, Hyon JY. The Efficacy of Diquafosol Ophthalmic Solution in Non-
272	Sjogren and Sjogren Syndrome Dry Eye Patients Unresponsive to Artificial Tear. J Ocul
273	Pharmacol Ther. 2016;32(7):463-8. Epub 2016/06/14. doi: 10.1089/jop.2015.0081.
274	PubMed PMID: 27294831.
275	7. Fukuoka S, Arita R. Increase in tear film lipid layer thickness after instillation of
276	3% diquafosol ophthalmic solution in healthy human eyes. The ocular surface.
277	2017;15(4):730-5. Epub 2017/04/02. doi: 10.1016/j.jtos.2017.03.005. PubMed PMID:
278	28363586.
279	8. Fukuoka S, Arita R. Tear film lipid layer increase after diquafosol instillation in
280	dry eye patients with meibomian gland dysfunction: a randomized clinical study. Sci Rep.
281	2019;9(1):9091. Epub 2019/06/27. doi: 10.1038/s41598-019-45475-7. PubMed PMID:
282	31235821; PubMed Central PMCID: PMCPMC6591396 Japan). S.F. has received
283	financial support from Santen Pharmaceutical Co. Ltd. R.A. is a consultant for Kowa Co.
284	Ltd. (Aichi, Japan), has received financial support from Santen Pharmaceutical Co. Ltd.

285	and Johnson & Johnson Vision, Jacksonville, FL, USA), and holds patents on the
286	noncontact meibography system used in the study (Japanese patent registration no.
287	5281846, U.S. patent publication no. 2011-0273550A1, European patent publication no.
288	2189108A1).

- 289 9. Kim S, Shin J, Lee JE. A randomised, prospective study of the effects of 3%
 290 diquafosol on ocular surface following cataract surgery. Sci Rep. 2021;11(1):9124. Epub
 2021/04/29. doi: 10.1038/s41598-021-88589-7. PubMed PMID: 33907267; PubMed
 292 Central PMCID: PMCPMC8079705.
- 293 10. Endo KI, Sakamoto A, Fujisawa K. Diquafosol tetrasodium elicits total
 294 cholesterol release from rabbit meibomian gland cells via P2Y(2) purinergic receptor
 295 signalling. Sci Rep. 2021;11(1):6989. Epub 2021/03/28. doi: 10.1038/s41598-021296 86433-6. PubMed PMID: 33772064; PubMed Central PMCID: PMCPMC7997929
 297 conflicts of interest in this work.
- 298 11. Zhang Q, Zhang H, Qin G, Wu Y, Song Y, Yang L, et al. Impact of Diquafosol
- 299 Ophthalmic Solution on Tear Film and Dry Eye Symptom in Type 2 Diabetic Dry Eye:
- 300 A Pilot Study. J Ocul Pharmacol Ther. 2022;38(2):133-40. Epub 2022/01/21. doi:
- 301 10.1089/jop.2021.0083. PubMed PMID: 35049373.

302	12. Qin G, Chen J, Li L, Qi Y, Chen Y, Zhang Q, et al. Effects of Diquafosol Sodium
303	Ophthalmic Solution on Tear Film Matrix Metallopeptidase-9 and Corneal Nerve Density
304	in Patients with Type 2 Diabetic Dry Eye. J Ocul Pharmacol Ther. 2023. Epub 2023/12/15.
305	doi: 10.1089/jop.2023.0098. PubMed PMID: 38100078.
306	13. Uchino M, Yokoi N, Shimazaki J, Hori Y, Tsubota K, On Behalf Of The Japan
307	Dry Eye S. Adherence to Eye Drops Usage in Dry Eye Patients and Reasons for Non-
308	Compliance: A Web-Based Survey. J Clin Med. 2022;11(2). Epub 2022/01/22. doi:
309	10.3390/jcm11020367. PubMed PMID: 35054060; PubMed Central PMCID:
310	РМСРМС8779746.
311	14. Hori Y, Oka K, Inai M. Efficacy and Safety of the Long-Acting Diquafosol
312	Ophthalmic Solution DE-089C in Patients with Dry Eye: A Randomized, Double-Masked,
313	Placebo-Controlled Phase 3 Study. Adv Ther. 2022;39(8):3654-67. Epub 2022/06/19.

doi: 10.1007/s12325-022-02194-2. PubMed PMID: 35716319; PubMed Central PMCID:

315 PMCPMC9309120.

Ishikawa S, Sasaki T, Maruyama T, Murayama K, Shinoda K. Effectiveness and
Adherence of Dry Eye Patients Who Switched from Short- to Long-Acting Diquafosol
Ophthalmic Solution. J Clin Med. 2023;12(13). Epub 2023/07/14. doi:

319 10.3390/jcm12134495. PubMed PMID: 37445527; PubMed Central PMCID: 320 PMCPMC10342394.

- 16. Kaido M, Arita R. Effects of a Long-Acting Diquafosol Ophthalmic Solution on
- 322 the Ocular Surface, Tolerability, and Usability in Dry Eye Disease. Adv Ther. 2024. Epub

323 2024/05/06. doi: 10.1007/s12325-024-02871-4. PubMed PMID: 38709396.

- 324 17. Singh S, Srivastav S, Modiwala Z, Ali MH, Basu S. Repeatability,
- reproducibility and agreement between three different diagnostic imaging platforms for tear film evaluation of normal and dry eye disease. Eye. 2023;37(10):2042-7. Epub
- 327 2022/10/20. doi: 10.1038/s41433-022-02281-2. PubMed PMID: 36261494; PubMed
- 328 Central PMCID: PMCPMC10333265.

329 18. Rinert J, Branger G, Bachmann LM, Pfaeffli O, Iselin K, Kaufmann C, et al.

330 Accuracy of a New Noninvasive Automatic Ocular Surface Analyzer for the Diagnosis

of Dry Eye Disease-Two-Gate Design Using Healthy Controls. Cornea. 2023;42(4):416-

332 22. Epub 2022/05/12. doi: 10.1097/ICO.000000000003052. PubMed PMID: 35543570.

Arita R, Minoura I, Morishige N, Shirakawa R, Fukuoka S, Asai K, et al.
Development of Definitive and Reliable Grading Scales for Meibomian Gland
Dysfunction. American journal of ophthalmology. 2016;169:125-37. doi:
10.1016/j.ajo.2016.06.025. PubMed PMID: 27345733.

- 337 20. van Bijsterveld OP. Diagnostic tests in the Sicca syndrome. Archives of
 338 ophthalmology. 1969;82(1):10-4. PubMed PMID: 4183019.
- 339 21. Shimazaki J, Sakata M, Tsubota K. Ocular surface changes and discomfort in
- patients with meibomian gland dysfunction. Archives of ophthalmology.
 1995;113(10):1266-70. PubMed PMID: 7575257.
- 342 22. Arita R, Itoh K, Inoue K, Amano S. Noncontact infrared meibography to
- 343 document age-related changes of the meibomian glands in a normal population.
- 344Ophthalmology.2008;115(5):911-5.Epub2008/05/03.doi:
- 345 10.1016/j.ophtha.2007.06.031. PubMed PMID: 18452765.
- 34623.Shirmer O. Studiun zur Physiologie und Pathologie der Tranenabsonderung und
- Tranenabfuhr. von Graefes Arch Ophthalmol. 1903;56:197-291.
- 348 24. Arita R, Suehiro J, Haraguchi T, Maeda S, Maeda K, Tokoro H, et al. Topical
- 349 diquafosol for patients with obstructive meibomian gland dysfunction. The British journal
- 350 of ophthalmology. 2013;97(6):725-9. doi: 10.1136/bjophthalmol-2012-302668. PubMed
- 351 PMID: 23584719; PubMed Central PMCID: PMC3664386.
- 352 25. Wang Y, Dogru M, Matsumoto Y, Ward SK, Ayako I, Hu Y, et al. The impact
- 353 of nasal conjunctivochalasis on tear functions and ocular surface findings. American

354	journal	of	ophthalmology.	2007;144(6):930-7.	Epub	2007/10/06.	doi:
355	10.1016/	j.ajo.2	2007.07.037. PubMe	ed PMID: 17916317.			

- 356 26. Kimura N, Watanabe A, Suzuki K, Toyoda H, Hakamata N, Nakamura Y, et al.
- 357 [Measurement of age-related changes in human blinks using a high-speed blink analysis
- 358 system]. Nippon Ganka Gakkai Zasshi. 2012;116(9):862-8. Epub 2012/10/25. PubMed
- 359 PMID: 23092093.
- 360 27. Asbell PA, Maguire MG, Peskin E, Bunya VY, Kuklinski EJ, Dry Eye A, et al.
- 361 Dry Eye Assessment and Management (DREAM(c)) Study: Study design and baseline
- 362 characteristics. Contemp Clin Trials. 2018;71:70-9. Epub 2018/06/09. doi:
 363 10.1016/j.cct.2018.06.002. PubMed PMID: 29883769; PubMed Central PMCID:
- 364 PMCPMC7250048.
- 365 28. Zhao M, Yu Y, Ying GS, Asbell PA, Bunya VY, Dry Eye A, et al. Age
- 366 Associations with Dry Eye Clinical Signs and Symptoms in the Dry Eye Assessment and
- 367 Management (DREAM) Study. Ophthalmol Sci. 2023;3(2):100270. Epub 2023/02/28.
- doi: 10.1016/j.xops.2023.100270. PubMed PMID: 36846104; PubMed Central PMCID:
- 369 PMCPMC9950493.
- 370