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Abstract

Pathogen genomics can provide insights into underlying infectious disease trans-
mission patterns, but new methods are needed to handle modern large-scale pathogen
genome datasets and realize this full potential. In particular, genetically proximal
viruses should be highly informative about transmission events as genetic proxim-
ity indicates epidemiological linkage. Here, we leverage pairs of identical sequences
to characterise fine-scale transmission patterns using 114,298 SARS-CoV-2 genomes
collected through Washington State (USA) genomic sentinel surveillance with asso-
ciated age and residence location information between March 2021 and December
2022. This corresponds to 59,660 sequences with another identical sequence in the
dataset. We find that the location of pairs of identical sequences is highly consistent
with expectations from mobility and social contact data. Outliers in the relationship
between genetic and mobility data can be explained by SARS-CoV-2 transmission
between postal codes with male prisons, consistent with transmission between prison
facilities. We find that transmission patterns between age groups vary across spa-
tial scales. Finally, we use the timing of sequence collection to understand the age
groups driving transmission. Overall, this work improves our ability to leverage
large pathogen genome datasets to understand the determinants of infectious disease
spread.

Introduction

Pathogen transmission is impacted by a multiplicity of factors associated with individual, popu-
lation and environmental characteristics. As exposure and transmission aren’t directly observed,
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evaluating the contribution of these different factors to epidemic dynamics generally proves dif-
ficult. In order to anticipate the burden associated with epidemics and guide control policies, it
is however pivotal to understand how these different elements shape transmission risk.

Sequence data can provide insights into the proximity of individuals in a transmission chain.
Phylogeographic approaches have helped characterise how pathogens spread between different
geographical regions [1, 2] and demographic groups [3]. However, these methods currently face
multiple limitations. First, they do not scale well past a few hundred or few thousand sequences
due to difficulties in scaling phylogenetic tree inference. Second, conclusions can be highly biased
when sequencing is uneven [4]. We thus critically need new methods to analyse large pathogen
genome datasets, such as those produced during the COVID-19 pandemic, which number in the
millions of genomes [5].

As mutations accrue over the course of transmission events, we expect epidemiologically related
individuals to be infected by pathogens that are genetically similar. Genetic distance cutoff
have been used to distinguish plausibly linked infections from infections resulting from distinct
introductions within densely sampled outbreaks such as healthcare facilities or nursing homes [6,
7]. Here, we build from this expectation to characterise transmission patterns at the population
level.

We introduce a novel statistical framework describing the relative risk of observing genetically
proximal sequences in specific subgroups of the population. Our metric of association accounts
for heterogeneity in sequencing effort between sampled locations and does not require build-
ing a phylogenetic tree, thus making this approach directly scalable to large pathogen genomic
datasets. We use this framework to investigate the spatial and social drivers of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in Washington state (WA)
by analysing 114,298 sequences (with associated age and home location information) collected
through genomic sentinel surveillance in WA between March 2021 and December 2022.

Results and Discussion

Identical sequences are imprinted by SARS-CoV-2 spatial patterns of spread

As mutations accrue over time on pathogen sequences, individuals who are close together within
a transmission chain are expected to be infected by genetically proximal viruses (Figure 1A). For
example, we expect that 64% of SARS-CoV-2 infected individuals are infected by a virus with
the same consensus genome as their infector (Figure 1B). Identical sequences should hence be
highly informative about SARS-CoV-2 transmission events as they are preferentially collected
from the most epidemiologically linked individuals. Therefore, their geographic clustering should
be informative about spatial patterns of transmission. In this work, we leverage the clustering of
identical sequences between groups to characterise transmission at the population level (Figure
1A). In WA, we identify 17,231 clusters of identical sequences excluding singletons, corresponding
to 59,660 sequences (Figure 1C). In some large clusters of identical sequences, we observe local
spread prior to wider geographic expansion (Figure 1D). Using postal codes and collection dates,
we estimated cluster radius in km. Across clusters, we find that the spatial expansion of clusters
increases over time (Figure 1E) and is significantly lower than expected at random (Figure
S1). The probability for a cluster to remain within the county and zip code where it was first
identified decreases over time. These probabilities are significantly higher than expected at
random (Figure S1). This confirms that clusters of identical sequences contain a strong spatial
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Figure 1. Temporal and spatial signature of spread in clusters of identical SARS-CoV-2
sequences. A. The clustering of identical pathogen sequences across population groups reflects under-
lying disease transmission patterns at the population level and can be use to characterise spread patterns
between groups. In this toy figure, each colour represents a different cluster of identical sequences. B.
Probability for two individuals separated by a fixed number of transmission generations of being infected
by viruses at a given genetic distance assuming a Poisson process for the occurrence of substitutions (at a
rate µ = 8.98 ·10−2 substitutions per day) and Gamma distributed generation time (of mean 5.9 days and
standard deviation 4.8 days). C. Size distribution of clusters of identical sequences in the WA dataset.
Clusters of size 1 correspond to singletons and are hence not included in the relative risk computations.
D. Spatio-temporal dynamics of sequence collection in two large clusters of identical sequences. Black
diamonds indicate the location of Seattle, the largest city in WA. E. Radius of clusters of identical se-
quences and probability for all sequences within a cluster of identical sequences of remaining in the same
spatial units as a function of time since first sequence collection. In D, the cluster radius is computed
as the mean spatial expansion of clusters of identical sequences. F. Definition of the relative risk of
observing pairs of sequences in two subgroups as a measure of enrichment. G. Relative risk of observing
pairs of sequences within the same county as a function of the genetic distance separating them. Grey
points correspond to values for individual counties. Orange triangles correspond to the median across
counties.
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and temporal signature of spread.

Relative risk framework to look at the distribution of identical sequences

To quantify the association between subgroups of the population (such as geographical units or
age groups) from genetic data, we introduce a measure of relative risk (RR) describing how the
number of pairs of sequences separated by a fixed genetic distance observed in two subgroups
differs from what we expect from the sequencing effort (Figure 1F, see Methods). This RR can
be interpreted as a measure of enrichment describing how the number of pairs shared by these
two subgroups differs from what we expect from the overall number of pairs observed in these
two subgroups.

Figure 1G depicts the relationship between the RR of observing sequences within the same
county and the genetic distance between pairs. Among all counties, the median RR of observing
identical sequences within the same county is equal to 4.7 (interquartile range: 2.4–21.2) across
the time period. When considering a greater genetic distance between pairs, this signal decreases
to plateau at 1. This confirms that the location of genetically close sequences (less than a couple
mutations away) and especially identical sequences is informative about local spread patterns,
wherein infected individuals transmit more often within their home county.

We observe this trend across variants and periods (Figure S2). The magnitude of the absolute
RR along with the speed at which it decays as a function of genetic distance vary. For example,
during the period where the prevalence of Omicron rises and Delta declines, the RR of observing
identical sequences in the same county is higher among Delta than Omicron sequences. This
can be explained by differences in transmission intensity: a higher transmission rate results in
larger clusters of identical sequences [8] that will tend to be more geographically widespread
(Figure S2C). The spatial signal from genetically close sequences is hence weaker in periods
characterised by a higher transmission intensity. Other factors, such as changes in mixing and
travels patterns, can also impact the magnitude of the RR.

Sampling biases can considerably impact the results of phylogeographic inference [4]. Here, al-
though the proportion of pairs of identical sequences observed in a county is highly correlated
with the number of sequences observed in this county, we find that the RR is no longer correlated
with sequencing effort (Figure S3). Using a simulation approach, we show that our RR metric
captures the migration probability between population subgroups, including when sequencing
effort is heterogeneous (Figure S4, Table S1). This contrasts with migration rates obtained from
a discrete trait analysis (DTA) [9] which are poorly correlated with true migration rates when
sequencing effort differs between regions (Figure S4, Table S1). These DTA results are obtained
by inputting the exact simulated transmission tree. In practice, inferring the underlying tree
will decrease accuracy due to phylogenetic uncertainty so that these DTA estimates represent
an upper bound of DTA’s potential performance. If we compare DTA accuracy between in-
put phylogeny and phylogeny estimated from sequence data we find that Pearson correlation
between true migration rates and estimated migration rates changes from 0.54 to 0.10 for un-
biased sampling and changes from -0.22 to 0.15 for biased sampling (Table S1). Running the
phylogenetic DTA analysis on simulated data with 1745 sequences requires 1 day when using the
empirical tree and 24 days when jointly inferring the tree and the migration rates (see Methods).
Running our RR analysis on the same sequence dataset takes 33 seconds. This result demon-
strates that the RR framework constitutes an appropriate approach to study the determinants of
SARS-CoV-2 transmission by explicitly accounting for sequencing effort and uneven sequencing
between population subgroups.

4

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.05.24.24307811doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.24.24307811


Patterns of SARS-CoV-2 spread between WA counties

We explore geographic spread through analysing patterns of occurrence of identical sequences
in WA counties (Figure 2). The matrix of pairwise RRs between counties (Figure S5) is char-
acterised by a strong diagonal, which is consistent with within-county transmission. To better
understand the spatial patterns of SARS-CoV-2 spread between counties, we display these RRs
on choropleth maps indicating RR for different focal counties (Figure 2A, Figure S6). These
maps suggest that identical sequences have a higher risk of falling within counties that are
geographically nearby. Across all pairs of counties, we find a geographic gradient in the RR
of identical sequences, where the risk is highest within the same county, intermediate between
adjacent counties, and lowest between non-adjacent counties (Figure 2B). The risk of observing
identical sequences between counties also decays as a function of geographic distance (Figure
2C) and is no longer significant at distances greater than 177 km (95% confidence interval (CI):
137-241).

To assess whether global spatial structure is maintained, we implement a multidimensional
scaling (MDS) algorithm by defining a similarity metric based on the RR of observing identical
sequences between counties. MDS enables us to display the relatedness of observations based
on a distance matrix. This MDS ordination shows country relationships that recapitulate the
Western and Eastern WA regions, two regions separated by the Cascades mountain range (Figure
2D). Within Eastern and Western WA, we find a strong signal for local spread, with identical
sequences having a higher risk of being observed between adjacent than between non-adjacent
counties (Figure 2E). Across the Eastern / Western WA border, we no longer find that identical
sequences have an increased risk of being observed in adjacent counties. Results are similar
when analysing pairs of identical sequences at the postal code level (Table S2). This lack of
association is not affected by the low number of pairs of adjacent counties across the Eastern /
Western WA border (Figure S7). This illustrates how heterogeneous physical landscape features
can impact and distort patterns of disease spread and genetic diversity [10–13]. We also find that
the association between the RR of observing identical sequences in two counties is significant at
greater distance within Eastern WA than within Western WA (Figure 2F). We do not find any
association with distance across the W/E border, though this might be explained by the lack of
counties with low distances across the Eastern / Western WA border.

Finally, we find that, across epidemic waves, pairs of identical sequences observed on both sides
of the Cascades are consistently observed first in Western WA (Figure 2G, Figure S8). As testing
behaviour and access to healthcare are likely influenced by county demographic characteristics
and how rural or urban a county is, we explore how this trend varied when using symptom
onset dates instead of sequence collection dates, which provides similar trends (Figure 2G).
Despite the existence of negative serial interval for SARS-CoV-2 [14], this analysis provides
direct insight into the typical transmission direction between groups as the proportion of SARS-
CoV-2 transmission pairs with positive serial intervals in greater than 50% (Supplementary text
1) [15]. This asymmetry suggests that identical sequence clusters tend to percolate from Western
to Eastern WA more so than the reverse, indicating transmission generally flows from Western
to Eastern WA. This trend is similar to the one reported in phylogeographic analyses of the
first COVID-19 wave in WA, that concluded that more introductions occurred from Western to
Eastern WA than from Eastern to Western WA [16].
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Figure 2. Identical sequences reveal patterns of spread between WA counties. A. Illustration
of the pairwise relative risk of observing identical sequences between counties, using sequences shared
between Stevens County (red point) and other counties in WA as an example. Similar maps for the other
counties are depicted in Figure S6. B. Relative risk of observing pairs of identical sequences by counties’
adjacency status. C. Relative risk of observing pairs of identical sequences as a function of the geographic
distance between counties’ centroids. D. Similarity between WA counties obtained from MDS based on
the relative risk of observing pairs of identical sequences in two counties. Counties are colored by East /
West region membership. E. Relative risk of observing pairs of identical sequences by counties’ adjacency
status stratified by counties East / West region membership. F. Relative risk of observing pairs of identical
sequences as a function of the geographic distance between counties’ centroids stratified by counties East /
West region membership. G. Proportion of pairs of identical sequences observed in Eastern and Western
WA that were first observed in Western WA. In C and F, the lines correspond to LOESS curves on the
logarithmic scale. In B and E, p-values for Wilcoxon tests: *** < 0.0001, ** < 0.001, * < 0.05, ns ≥ 0.05.
In B, Wwithin, adjacent = 6195 (p = 3.7 · 10−12) and Wadjacent, non adjacent = 65542 (p < 2.2 · 10−16). In
E, for within Eastern WA, Wwithin, adjacent = 120.5 (p = 6.7 · 10−6) and Wadjacent, non adjacent = 4555.5
(p = 4.0·10−6). For within Western WA, Wwithin, adjacent = 95 (p = 9.9·10−7) and Wadjacent, non adjacent =
4555.53626 (p = 1.1 · 10−4). For between Eastern and Western WA, W = 2719 (p = 0.17).

Human mobility predicts the location of pairs of identical sequences

Next, we explore to what extent spatial transmission patterns inferred from identical sequences
can be explained by human mobility indicators. To compute the RR of movement between two
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counties or regions, we use aggregated mobile phone location data obtained from the SafeGraph
‘Weekly Patterns’ dataset and pre-pandemic commuting data from the US Census Bureau [17]
(see Methods). Despite commuting data being collected before the pandemic and mobile phone
location data being collected during our study period, we find that these two mobility data
sources are highly correlated (Figure S9). We assess how the RR of observing identical se-
quences in two counties relates to the RR of movement (Figure 3A, Figure S10, Table S3) by
implementing a generalised additive model (GAM) that includes a single predictor of smoothed
RR of movement between two counties as a covariate. We use a GAM rather than linear regres-
sion as we expect the functional form of the relationship to be non-linear (Figure S11). This
non-linearity can be explained by the indirect mapping between transmission events and iden-
tical sequences that encompass both direct transmission pairs and pairs of individuals a couple
generations apart.

When comparing RRs at the county level, we find that 60% of the variance in identical sequence
data is explained by between-county flows derived from the mobile phone data (Figure 3A, Table
S3). For a subset of counties, the number of pairs of identical sequences or the number of trips
reported in the mobility dataset are low. For these low counts, we expect RRs to be more noisy.
To remove potential noise associated with these lower counts, we repeat this analysis at a larger
spatial scale. Aggregating pairs at the regional level (9 regions in WA for 39 counties, Figure
S12) increases the variance explained to 81% (Figure S13). We also find that pre-pandemic
workflow data are highly informative of the spatial distribution of pairs of identical sequences
with a similar strength of relationship as observed for mobile phone mobility data (Figure S10,
S13, Table S3).

Non-pharmaceutical interventions along with behavioral changes have impacted human mobility
patterns throughout the COVID-19 pandemic. We find that mobility data explains a high
percentage of variance in the RR of observing identical sequences between WA regions across
individual epidemic waves (Figure S14) but not to a greater extent than over the entire study
period. This can likely be explained by the high stability of the structure of the mobility network
between WA counties across epidemic waves (Figure S15). This suggests that analyzing COVID-
19 waves separately tends to introduce noise rather than increase spatial resolution, in line with
a former analysis concluding to the high stability of between-county mobility patterns during
the beginning of the pandemic in the United States [18].

Among counties located across the Eastern / Western WA border, the risk of movement across
the border is lower than the risk of movement within the same region (Figure S16). This shows
that human mobility is highly predictive of the location of pairs of identical sequences and
explains some of the spatial patterns reported in Figure 2.

Outliers in the relationship between mobility and sequence data appear asso-
ciated with male state prisons.

We identify unexpected patterns of transmission between counties from outliers in the relation-
ship between mobility and genetic data (Figure 3A). We define outliers as pairs of counties for
which the absolute value of the scaled Pearson residuals from the GAM are greater than 3. As
we expect RRs computed from a low number of pairs of identical sequences to be noisier, we
focus on pairs of counties between which at least 100 pairs of identical sequences are observed.
We find unexpected patterns of SARS-CoV-2 spread between two non-adjacent pairs of coun-
ties, Franklin/Mason and Walla Walla/Mason Counties, with more pairs of identical sequences
observed than expected from mobility data (Figure 3B). The association between Franklin &
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Figure 3. Comparison of the location of identical sequences with expectations from mobility
data reveals spread between WA male prisons’ postal codes. A. Relationship between the
relative risk of observing identical sequences in two counties and the relative risk of movement between
these counties as obtained from mobile phone mobility data. The trend line corresponds to predicted
relative risk of observing identical sequences in two regions from a GAM. R2 indicates the variance
explained by the GAM. B. Scaled Pearson residuals of the GAM plotted in A as a function of the number
of pairs of identical sequences observed in pairs of counties. C. Map of male state prisons in WA. Mason,
Walla Walla and Franklin male prisons are colored. D. Relative risk of observing identical sequence
between Mason and Franklin County’s postal codes. E. Relative risk of observing identical sequence
between Mason and Walla Walla County’s postal codes. F. Centrality score (eigenvector centrality) for
each postal code that is the home of a male state prison. G. Week of sequence collection of 8 large
clusters of identical sequences identified in postal codes with WA male state prisons. In G, the top
colored segments indicate the period during which each cluster was identified.

Mason (RR of 13.4 (95% CI: 11.4-16.4)) and Walla Walla & Mason (RR of 5.9 (95% CI: 4.0-8.3))
is particularly surprising given that they are non-adjacent counties located on different sides of
the Cascades. As no demographic or geographic factors provide a straightforward explanation
for such an association, we hypothesise that such a pattern might arise from SARS-CoV-2 spread
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on a dissemination network that differs from the general community. We identify that these three
counties are the home of male state correction centers (Figure 3C). We also find that identical
sequences have a higher risk of being observed within Lincoln County and a lower risk of being
observed within Pacific County that expected from cellphone mobility data, without identifying
any demographic factor explaining these associations.

To investigate whether the unexpected pattern of association between Franklin & Mason and
Walla Walla & Mason Counties can be explained by transmission within the prison network, we
look at patterns of association between Franklin & Mason and Walla Walla & Mason postal codes
(Figure 3D-E). For most of these pairs of postal codes, we don’t observe any pair of identical
sequences throughout the study period. Interestingly, for each pair of counties, the genetic signal
can be explained by a high RR of observing identical sequences between two postal codes, which
correspond to the postal codes that are the home of the male correction centers we identified.
The greater number of pairs of identical sequences observed between Mason & Franklin and
Mason & Walla Walla counties than expected from mobile phone derived mobility data can
hence be explained by a large number of pairs of identical sequences in specific postal codes
with male correction centers.

We also investigate patterns of occurrence of pairs of identical sequences between the two counties
(Mason and Pierce) that are the home of female prisons. At the county level, identical sequences
don’t have an increased risk of occurring between Mason & Pierce counties (RR of 0.59 (95%
CI: 0.49-0.67)). At the postal code level however, we find that the RR of observing identical
sequences is highest between the two postal codes with female prisons (Figure S17). This shows
how our framework enables exploration of patterns of spread at different spatial scales: we don’t
find any signal at the county level, likely because Mason and Pierce are adjacent counties, but
we can identify association at the postal code level.

It is interesting that the pairs of outliers we identified systematically involved Mason County
(Figure 3B), which is the home of only the sixth (out of ten) most populated male prison in
the state (Figure 3C). The prison in Mason County (Washington Corrections Center) plays a
particular role in the WA prison network since it serves both as a reception center for anyone
entering the WA prison system and as a transfer hub [19]. To understand whether the prison
network structure can explain patterns of SARS-CoV-2 transmission, we conduct a centrality
analysis. To do so, we analyse the network of postal codes with WA male prisons and we define
the weight of each edge by the RR of observing identical sequences between these two postal
codes. We find that the two nodes with the highest eigenvector centrality scores are the postal
codes that are the home of Washington Corrections Center (Figure 3F) and of the Franklin
County prison (most populated prison). This shows that patterns of occurrence of identical
sequences in WA are imprinted by the structure of the prison network.

Finally, we investigate whether large clusters of identical sequences are shared between postal
codes with male state prisons, which we define as clusters with more than 15 sequences in
male state prisons postal codes. Figure 3G depicts the timing of the large clusters we identify.
Notably, the largest cluster (Cluster A) includes 71 sequences collected between 18 July and
31 July 2022, 67 of which came from postal codes with male state prisons. The second largest
cluster (Cluster B) is composed of 58 sequences collected between 21 February and 29 March
2023, among which 51 came from 7 different prison postal codes. Interestingly, the postal code
of Washington Corrections Center is the only one in which all these eight clusters were observed.

Populations who are incarcerated have been particularly affected by the COVID-19 pandemic
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[20, 21]. To mitigate the impact of the pandemic in these congregate settings, various interven-
tions have been implemented. In WA, for example, testing followed by quarantine protocols
were carried out in Washington Correction Center upon admission and before any transfer. Ac-
tive screening of staff was also implemented throughout the pandemic. Individuals incarcerated
diagnosed with COVID-19 however at times had to be transferred from Washington Correction
Center to other WA prisons due to the finite capacity of the reception center. With vaccine
mandates, staff also had to be relocated to cope with the departure of other employees. Our
results reveal multiple SARS-CoV-2 introductions between WA prisons, that could be explained
by the movements of both individuals incarcerated and staff.

This analysis showcases how identical sequences can help identify under recognised viral dissem-
ination networks that differ from transmission pathways in the general community. The counties
we identified as outliers in the relationship between genetic and mobility data have a particularly
high ratio between the prison population size and the county population size (between around
2% and 4%, Table S4). This likely explains why we were able to detect this signal at the county
level but had to investigate transmission at the postal code level to study transmission between
other prisons.

The spatial scale of spread impacts transmission patterns between age groups

Spatial and social factors (such as age) are key determinants of the spread of respiratory infec-
tions such as SARS-CoV-2 and influenza [22–25]. We expect movement patterns to differ between
age groups (such as children, adults and elderly people), which can impact patterns of disease
transmission [26–28]. There has however been limited empirical evidence of this phenomenon
and data sources that can be leveraged to characterise this interaction are critically needed.
Here, we show that we can combine pathogen sequence information with detailed metadata to
investigate how age mixing patterns vary across spatial scales.

We first examine whether we can recover the expected age mixing signature from the sequence
data before delving into the interaction between age and space. We find that the age groups in
which identical sequences are observed are consistent with assortative mixing patterns and mix-
ing between generations (Figure S18). Comparing this with expectations from synthetic social
contact data for WA [29], we find that the signal obtained from identical sequences are highly
correlated with that expected from age mixing matrices (Figure 4A) (GAM: 90% of variance
explained ; Spearman ρ = 0.86, p < 10−16). The signal for SARS-CoV-2 transmission between
generations (such as the 0-9y and the 30-39y) fades out when considering pairs of sequences
separated by a greater genetic distance (Figure S19). As sequences at a greater genetic distance
come from individuals who are further apart within a transmission chain (Figure 1A), fine-scale
patterns of spread might indeed not be apparent from sequences at more than a couple mutations
away. This emphasises the value of analysing identical pathogen sequences to characterise subtle
patterns of pathogen spread and population mixing, especially when population subgroups are
very mixed.

Next, we compare the RR of observing identical sequences between two age groups by looking at
either all pairs of sequences or only pairs of sequences from individuals living in different counties
or postal codes. We find that the spatial scale modulates patterns of disease transmission
between age groups (Figure 4B-C, S20). We find that pairs of identical sequences coming
from the same county and postal code are enriched in same-age pairs. This enrichment is
particularly important in elderly groups. For example, the RR of observing identical sequences
in individuals aged 80 and older drops from 1.80 (95% CI: 1.65-2.01) when considering all pairs
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Figure 4. Patterns of SARS-CoV-2 transmission between age groups in WA. A. Relative
risk of observing pairs of identical sequences in two age groups as a function of the relative risk of
contact between these age groups. B. Impact of the spatial scale on the relative risk of observing pairs of
identical sequences in the 0-9 y.o. and other age groups. We display similar plots for the other age groups
in Figure S20. C. Relative risk of observing identical sequences between two age groups across all pairs of
sequences, only pairs in different postal codes and only pairs in different counties. D. Proportion of pairs
of identical sequences observed in age groups A and B that were first collected in age group A across
different epidemic waves (heatmaps). The dot plots depict the earliness scores of age group A across
epidemic waves. In A and B, vertical segments correspond to 95% subsampling confidence intervals. In
D, vertical segments correspond to 95% binomial confidence intervals. In D, the heatmaps represent
symmetric matrices P = (pi,j) characterised by pi,j + pj,i = 1.
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to 0.79 (95% CI: 0.71-0.85) when considering pairs coming from individuals living in different
counties (Figure S20). This shows that transmission to and from older age groups tends to occur
close to their home location and suggests that elderly individuals’ typical radius of movement
is smaller than that of other age groups. Only considering pairs of sequences in 0-9 year-olds
coming from different spatial units largely decreases the signal for SARS-CoV-2 transmission
between children and adults aged 30-49y (Figure 4C). This is expected given that we anticipate
most of these contacts to occur within the household [30]. Overall, we find that looking at
patterns of occurrence of identical sequences at a greater geographic scale largely distorts the
contact structure. For example, the location of identical sequences suggest that transmission
to and from elderly individuals outside of their home counties tend to occur with younger age
groups, including younger children (e.g. grandchildren).

Mixing patterns between age groups have been extensively studied [31, 32]. A social contact
survey performed in southern China reported that elderly individuals’ contacts occurred closer
to their homes than younger individuals’ contacts [33]. Overall, there has however been lim-
ited evidence to quantify the spatial distribution of these contacts. Spatial mixing is generally
measured from aggregated mobility data sources which generally do not provide demographic
information such as age. Because spatial and age mixing are reconstructed from different data
sources, understanding their interplay has been difficult. Here, we show that we can directly
leverage pathogen genome data with linked age and spatial information to understand where
age-specific transmission is occurring. This suggests that the wider availability of sequencing
data might provide an opportunity to directly infer how population groups interact in a way
that is relevant for pathogen spread, without the need to implement laborious contact surveys
or collect mobility data.

The timing of identical sequence collection sheds light on the groups driving
transmission

Finally, we use the timing of identical sequence collection to investigate the age groups driving
SARS-CoV-2 transmission over the course of the pandemic in WA. Within pairs of identical
sequences, we indeed expect age groups acting as sources to be consistently detected before
groups acting as sinks (Figure S21). In Figure 4D, we display for every age group combination
and across epidemic waves the proportion of pairs of identical sequences first collected in a given
age group. During the fourth and fifth pandemic wave in WA (respectively mainly caused by the
Alpha and Delta SARS-CoV-2 variants of concern), we find that pairs of identical sequences are
consistently observed later in elderly groups even though the RR of observing identical sequences
in elderly groups and younger groups is low (Figure S18). This could be consistent with younger
age groups acting as source of infections for elderly individuals. During the fourth pandemic
wave, sequences from individuals aged 20-29y and 40-59y are systematically observed before any
other groups within pairs of identical sequences and likewise during the fifth pandemic wave,
sequences from 20-29y and 40-69y individuals are observed earlier than other age groups. This
could be consistent with these groups acting as sources of infection for the other age groups.
During the sixth wave, sequences from 10-19y tend to be observed first within pairs of identical
sequences, which suggests their role as sources for other ages groups and corresponds to the
Omicron wave during a time when schools had recently returned to in-person instruction. From
March 2022, the contribution to transmission is more evenly distributed across age groups.

The role played by young children during the COVID-19 pandemic has been highly debated
[25,34]. Here, we find that during the Alpha and Delta epidemics (waves 4 and 5), children aged
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0-9y could have acted as source of SARS-CoV-2 infections for elderly individuals but not for
younger adults. This pattern disappears during the Omicron epidemic (wave 6) in which pairs of
identical sequences tend to be observed first in other age groups before being collected in young
children aged 0-9y. This could be explained by behavioral changes or by different immune
profiles across age groups, resulting in different relative susceptibility to Omicron relative to
Delta [35]. Overall, we do not find indication for young school age children to act as major
sources of SARS-CoV-2 transmission in the population, even after schools reopened.

Overall, our results highlight the porosity of SARS-CoV-2 transmission across age groups and
suggest a role played by lower risk groups in seeding infections in higher risk groups. We come
to similar conclusions when looking at the timing of symptom onset dates (Figure S22), which
suggests that our conclusions are robust to differences in testing behaviors across age groups.
Our conclusions are in line with existing literature emphasising the important role played by
young adults and teenagers and the limited contribution of children and elderly individuals
in driving SARS-CoV-2 spread [25, 36]. Analysing the timing of identical sequence collection
provides immediate insights into pathogen flow between population subgroups.

Here, we focus on understanding patterns of SARS-CoV-2 spread between age groups but this
approach can be applied to investigate the spread of fast-evolving pathogens between various
demographic groups, such as occupational and ethnic groups, behavioral and risk groups. For
example, we find that identical sequences collected within an age group tend to be enriched
in same-vaccine status pairs during the Alpha, Delta and Omicron BA.2/BA.5 waves in WA
(Figure S23). Social clustering of unvaccinated individuals or generally individuals with differ-
ent immune background can have important implications regarding the size and likelihood of
infectious disease outbreaks [37,38]. This suggests that our approach has potential to shed light
on such a phenomenon and more generally on broad determinants of disease transmission

Caveats

Though our RR metric explicitly accounts for sampling intensity in locations in which pairs
of identical sequences are collected, it cannot describe patterns of spread from non-sampled
locations. In theory, unsampled locations could impact our assessment of local transmission
patterns if two individuals with an identical sequence are both infected by someone outside
the study area. In practice however, we find that non-sampled locations have little impact
our RR computation (Figure S24). This suggests that background sequences are not required
to evaluate SARS-CoV-2 transmission at the state level. Other epidemiological settings might
nonetheless require more careful considerations, for example in the hypothetical scenario where
a non-sampled location is responsible for the majority of the infections within the study area.

Compared with existing phylogeographic methods, our approach however does not require in-
cluding background sequences from outside locations as non-sampled locations little impact
the RR computation (Figure S24). Our approach could also overestimate RRs associated with
transmission events that are over-represented in the sequencing data. For example, applying this
analysis to sequences predominantly collected through household studies could overestimate the
contribution of contacts within the household to the overall infection burden. In our case, pat-
terns of occurrence of identical sequences in WA are potentially affected by intensive testing
performed during outbreaks within WA prisons during the pandemic. Part of the signal we have
detected might hence come from a higher sequencing rate in prisons compared with the general
community. The very large clusters of identical sequences shared between multiple prison postal
codes however confirm that SARS-CoV-2 extensively spread within the prison network.
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Our results suggest that the timing of sequence collection within clusters of identical sequences
provides valuable information to understand transmission direction. Here, we report a simple
quantity based on the proportion of pairs first observed in a group, that summarises the earliness
of a group compared to another within pairs of identical sequences. Such an earliness metric
might incompletely capture the transmission process as clusters can for example span more
than 2 groups. We perform a sensitivity analysis where we only rely on clusters of identical
sequences observed in two groups, that provides similar results (Figure S25). Overall, more work
is warranted to robustly quantify transmission rates from the timing of identical sequences.

Finally, the magnitude of RRs is impacted by transmission intensity (Figure S2), so that values
computed between two regions across different time periods cannot be directly compared. Within
a time period, the ranking of RRs is however informative about patterns of transmission between
groups. Overall, further work exploring how patterns of occurrence of identical sequences can
be used to directly infer mixing rates between groups while incorporating temporal changes in
transmissibility would be particularly interesting.

Applicability beyond SARS-CoV-2

In this manuscript, we study patterns of SARS-CoV-2 transmission between geographies and
age groups in WA using a particularly rich sequence dataset, both given the amount of sequences
available and the quality of the associated metadata. This work can however readily be applied
to other densely sampled pathogens.

The power of our method is determined by the number of pairs of identical sequences available
which will be impacted by transmission intensity (higher reproduction numbers will tend to result
in larger clusters of identical sequences [8]) and the relative timescale at which substitution and
transmission events occur [8]. Overall, this approach is well tailored to study densely sampled
outbreaks. Compared with phylogeny-based methods whose power comes from the number of
unique haplotypes, our ability to characterise spread from identical sequences depends on the
number of haplotypes with multiple observations. Whereas we expect diminishing returns of
sequencing a greater proportion of cases for phylogeny-based methods with a decreasing number
new haplotypes per additional sequence, the number of haplotypes with multiple occurrences
will increase for each additional sequence included in the dataset (Figure S26). The number
of population groups included in the analysis will also impact the amount of sequencing data
required. In situations where the sample size results in a lower number of pairs of identical
sequences, aggregating groups can be a valuable strategy to reduce uncertainty. Within our WA
sequencing dataset, we find that assessing spread between 2 age groups requires around 102−103

sequences whereas 9 age groups increases the number of sequences required to 104− 105 (Figure
S27).

Extending the analysis to pairs of sequences separated by a greater Hamming distance could
also increase the statistical power by increasing the amount of data available, in particular
for pathogens characterised by a higher mutation rate (Figure S28). Increasing the threshold
however comes at the cost of diluting the signal by including pairs that are less epidemiologically
linked in the analysis, hence introducing more noise (Figure S28). Other factors, such as the
rate of mixing between groups or the natural history of the infection, can impact the optimal
threshold.
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Perspectives

Large scale pathogen genome sequencing provides an incredible opportunity to understand where
and how transmission is occurring. The computational cost of existing methods that rely on in-
ferring the phylogenetic tree has limited their ability to elucidate fine-scale transmission patterns.
Here, we show that a simple count-based metric based on pairs of identical pathogen sequences
with detailed linked metadata can provide unique insights into the determinants of SARS-CoV-2
transmission. Future work investigating how to better describe asymmetry in transmission be-
tween groups and how to infer group-level contributions to epidemic growth from such data are
a promising research direction. This shows that relying on pairs of identical or nearly identical
pathogen sequences along with fine-grained metadata is valuable to understand how and where
transmission is happening. By providing scalable new tools to understand detailed pathogen
spread patterns, we believe that this work represents an important development to guide future
epidemic control efforts.

Methods

Data sources and preprocessing

Sequence data and metadata

We analyse 116,791 SARS-CoV-2 sequences from Washington state genomic sentinel surveillance
system [39] sampled between 1 March 2021 and 31 December 2022. Sequence metadata are
collated by the Washington State Department of Health and include sample collection date,
symptom onset date, de-identified patient ID, county of home location, postal code of home
location, age group (0-9y, 10-19y, 20-29y, 30-39y, 40-49y, 50-59y, 60-69y, 70-79y and 80y+)
and vaccination status upon positive test. For patients with multiple sequences in the database
(2,309 out of 114,306 patients), we restrict our analysis to the earliest sequence collected. Among
these 114,306 sequences, the age information is missing for 1 sequence, the county information
for 659 sequences and the postal code information for 1011 sequences.

Consensus sequences are extracted from the GISAID EpiCoV database [40, 41] and curated
using the Nextstrain nCoV ingest pipeline [42]. We discard sequences with undefined Nexstrain
clade assignments (8 sequences out of 114,306). This leaves us with 114,298 sequences, with
114,297 sequences gathered from patients with known age, 113,639 sequences gathered from
patients with known county of home location and 113,287 sequences gathered from patients
with known postal code of home location. 96 % of sequences have coverage in greater than 90%
of the genome. We match postal codes to zip code tabulation areas (ZCTAs). For postal codes
that do not have a ZCTA with the same name, we manually match them by looking at ZCTA
boundaries. All analyses at the postal code level use ZCTA metadata information. We extract
the postal codes of WA prison facilities from [43].

Computing pairwise genetic distances from sequences

We compute pairwise genetic distances between Washington state sequences with the ape R
package [44] using Hamming distances. To avoid unnecessary computational costs, we only
compare sequences belonging to the same Nextstrain clade [45] and generate one distance matrix
per clade. We don’t expect the clade definition to impact the pairs of identical sequences we
identified since pairs of identical sequences should always belong to the same clade.
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Generating pairs of identical sequences from a sequence data file is the most computationally
expensive step in this analysis. To provide context, generating a distance matrix from 1,000
sequences takes 33 seconds, while 10,000 sequences takes 1 hour 37 minutes, on 1 core of an
Apple M2 chip. Generating the full distance matrix for the analysis set of 113,287 sequences took
around 96 hours of compute time readily parallelised across a compute cluster. More efficient
software tools can significantly bring that compute time down (e.g. 1.14 hour with pairsnp [46]).

Workflow data

We use data describing the daily number of commuters between each WA county from the
American Community Survey (2016-2020) [17]. This dataset provides the number of directed
commuting flows between residence and workplace counties. We use the number of commuting
flows between counties to compute the RR of commute between two regions (see below).

Mobile phone location data

We obtain mobile device location data from SafeGraph (https://safegraph.com/), a data com-
pany that aggregates anonymised location data from 40 million devices, or approximately 10%
of the United States population, to measure foot traffic to over 6 million physical places (points
of interest) in the US. Following Perofsky et al. [47], we estimate movement within and between
counties in Washington from January 2020 to June 2022, using SafeGraph’s Weekly Patterns
dataset, which provides weekly counts of the total number of unique devices visiting a point of
interest (POI) from a particular home census block group. POIs are fixed locations, such as
businesses or attractions. A visit indicates that a device entered the building or spatial perimeter
designated as a POI. The home location of a device is defined as its common nighttime (18:00-
7:00) census block group (CBG) for the past 6 consecutive weeks. We restrict our dataset to
POIs that have been tracked by SafeGraph since December 2019. To measure movement within
and between counties, we extract the home CBG of devices visiting POIs in each week and limit
the dataset to devices with home CBGs in the county of a given POI (within-county movement)
or with home CBGs in counties outside of a given POI’s county (between-county movement). To
adjust for variation in SafeGraph’s device panel size over time, we divide Washington’s census
population size by the number of devices in SafeGraph’s panel with home locations in Wash-
ington state each month and multiply the number of weekly visitors by that value. For each
mobility indicator, we sum adjusted weekly visits across POIs from March 2021 to June 2022.
We use the number of visits between counties to compute the RR of movement from mobile
phone data between two regions (see below).

To explore potential geographic biases in the mobility data, we divided the weekly number of
devices residing in each county by the weekly number of devices residing in WA state (“observed
proportions”) and compared these values to “expected proportions” based on county and state
census population sizes during 2020-2022. SafeGraph’s panel consistently captured 2-5% of each
county’s population, with strong correlations between device counts and census population sizes
(Spearman’s ρ = 0.99, Figure S29). We estimated county-level bias as the “observed proportion”
of devices tracked by SafeGraph in individual counties relative to WA state minus the “expected
proportion” based on census population sizes. Annual bias estimates for individual counties
ranged from -2.2% to 1.7%, with no clear trend of over- or underrepresentation by population
size or urban-rural classification (Figure S30). Although the most populous counties in WA state
tend to have greater absolute bias, large counties are both underrepresented and overrepresented
in the SafeGraph dataset (Figure S30). For example, the most populous county in WA, King
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County, was slightly underrepresented each year (-2.2% to -1.6% bias; green negative outlier
in Figure S30), while three of the other top five largest counties (Clark, Pierce, and Spokane)
were slightly overrepresented (1.1% to 1.7% bias; pink, blue, and goldenrod positive outliers in
Figure S30). Our method for estimating geographic bias is based on SafeGraph’s Google Co-Lab
Notebook on Quantifying Bias [48].

Social contact data

We use synthetic social contact data for WA generated by Mistry et al. [29] based on recon-
structing synthetic populations of interacting individuals using WA population demographics.
They describe the per-capita probability for an individual of age i of interacting with someone
of age j during a day.

Quantifying connectivity between different population groups

From genetic data: Relative risk for sequences separated by a given genetic distance
of being in given subgroups of the population

Let n denote the number of sequences included in the study and Hi,j the Hamming distance
between sequence index by i and j. Let Si denote the subgroup of sequence i. We introduce
nd
A,B the number of Hamming distance matrix elements (excluding the diagonal) equal to d

where sequence i belongs to group A and sequence j belongs to group B.

nd
A,B =

n∑
i=1

n∑
j=1

1{i̸=j} 1{Hi,j=d} 1{Si=A} 1{Sj=B}

where X → 1X is the indicator function which is equal to 1 if X is true and 0 otherwise.

Let nd
A,• =

∑
B nd

A,B and nd
•,• =

∑
A

∑
B nd

A,B.

We derive the relative risk RRd
A,B for sequences separated by a genetic distance d of being

observed in subgroups A and B compared to what is expected from the sequencing effort in the
different subgroups of the population as:

RRd
A,B =

nd
A,B/n

d
A,•

nd
B,•/n

d
•,•

=
nd
A,B · nd

•,•

nd
A,• · nd

B,•
(1)

The numerator nd
A,B/n

d
A,• corresponds to the proportion of the pairs where the subgroup of

sequence i is A that are occurring with the B group.

The denominator nd
B,•/n

d
•,• is a normalisation factor quantifying the contribution of group B to

the total number of pairs separated by a Hamming distance of d. The ratio between these two
quantities hence quantifies to which extent pairs of sequences observed in groups A and B are
enriched compared to the number of sequences observed in these groups.

We use a subsampling strategy to compute confidence intervals around these RRs. Bootstrapping
(random sampling with replacement) would result in comparing sequences with themselves and
therefore lead to biased upwards RRs of observing identical sequences in the same group. To
avoid this, we used a subsampling strategy (random sampling without replacement) with a 80%
subsampling rate (1,000 replicate subsamples).
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We provide the tools to compute this RR metric from user-provided sequence and metadata files
in the GitHub repository associated with this manuscript [49].

From mobility data: Relative risk of movement between two geographical locations

Both the mobile phone and commuting mobility data provide directed flows between WA coun-
ties. Let wA→B denote the number of commuters reported in the commuting data (respectively
the number of visits for the mobile phone mobility data) whose home residence is in county A
and who work in county B (respectively for which a visit in county B is reported). We compute
the total movement flow between counties A and B as :

wA,B = wA→B + wB→A

We then calculate the relative risk RRmobility
A,B of movement between counties A and B as:

RRmobility
A,B =

wA,B · w•,•
wA,• · wB,•

where wX,• =
∑

Y wX,Y and w•,• =
∑

X,Y wX,Y .

We compute a similar statistic by aggregating counties at the regional level (Figure S12).

From social contact data: Relative risk of contact between two age groups

Mistry et al. estimated the average daily number of contacts Mi,j that individuals of age i have
with individuals of age j (considering one-year age bins) [29]. As we are interested in the age
groups available in the sequence metadata, we reconstruct the average daily number of contacts
cA,B that individuals within age group A have with individuals in age group B as:

cA,B =

∑
i∈A

∑
j∈B Mi,j · ni∑
i∈A ni

where ni is the number of individuals of age i. We can then derive the total daily number of
contacts between age groups A and B as ΓA,B = cA,B ·NA where NA is the number of individuals
in age group A. We then compute the relative risk RRcontacts

A,B for a contact of occurring between
age groups A and B compared to what we expect if contacts were occurring at random in the
population as:

RRcontacts
A,B =

ΓA,B · Γ•,•
ΓA,• · ΓB,•

where ΓA,• is the total daily number of contacts involving individuals within age group A and
Γ•,• is the total daily number of contacts in the population.

Using the timing of sequences to understand directionality in transmission

From sequence collection dates

We introduce tx as the time at which the sequence x was collected. Let IA,B denote the ensemble
of pairs of identical sequences observed in groups A and B.

IA,B =
{
(a, b) ∈ IA,B | |ta − tb| > 0

}
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thus denotes the subset of these pairs with different sequence collection dates. We compute the
proportion pA→B of pairs consistent with the transmission direction A → B as:

pA→B =
#
({

(a, b) ∈ IA,B | ta < tb
})

#(IA,B)

where #(X) is the cardinal of X.

We also report 95% binomial confidence intervals around these proportions.

From symptom onset dates

The delay between infection and sequence collection can be impacted by healthcare seeking
behaviours and access to testing which might vary across age groups, geographical locations
and time periods. If the distribution of the delay until testing differs between two subgroups
A and B, the proportion of pairs of identical sequences pA→B that are first collected in group
A will both reflect the timing of infections and healthcare seeking behaviours. When available,
symptom onset dates should be less impacted by healthcare seeking behaviours.

Among the 113,638 SARS-CoV-2 sequences with associated age group and county of home loca-
tion information, symptom onset dates are available for 34,167 of them (30%). The availability
of symptom onset information is susceptible to be impacted by individual demographic pro-
files (such as age), which could result in sequences with symptom onset information not being
representative of all the sequences available. To avoid this, we impute missing symptom onset
dates based on the empirical delay distribution between symptom onset and sequence collection
(computed from individuals with known symptom onset dates) stratified by age group, time pe-
riod and Eastern/Western WA region (Figure S31). Out of the sequences with known symptom
onset dates, the absolute value of the delay between sequence collection and reported symptom
onset is strictly greater than 30 days for 192 of them (<0.6%). We discarded these sequences
in the computation of the symptom onset to sequence collection delay and considered that they
were equivalent to sequences with missing symptom onset information (and hence imputed their
symptom onset dates). We generate 1,000 imputed datasets. For each of these imputed datasets,
we compute the proportion psympto

A→B of pairs with symptom onset dates occurring first in group
A among pairs of identical sequences in groups A and B with distinct symptom onset dates.
We then report the median across these 1,000 imputed datasets. We also generate a measure
of uncertainty by computing on each of the imputed datasets 95% binomial confidence intervals
around the proportion psympto

A→B . We then report an uncertainty range around these proportion
by using the minimum lower bound of the 95% CI and the maximum upper bound of the 95%
CI across the imputed datasets.

Spatial analyses

Assessing the spatial extent of clusters of identical sequences

We reconstruct clusters of identical sequences from the pairwise genetic distance matrices [8].
Figure S32 depicts the typical size and duration of these clusters of identical sequences through-
out the study period. To assess the spatial and temporal signal in clusters of identical sequences,
we evaluate how the spatial extent of a cluster (summarised by its radius) evolves over time. For
each cluster, we define primary sequences as the cluster’s earliest collected sequence. We then
define the cluster’s primary ZIP Code Tabulation Areas (ZCTAs) as the ZCTAs of its primary
sequences. We exclude clusters with ambiguous primary ZCTA (several primary ZCTAs) from
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this analysis. We define the radius of a cluster at a given time as the maximum distance between
the primary ZCTA and the ZCTAs of the sequences collected by that time. We also compute
the time required for sequences to be collected outside the primary ZCTA and primary county
(using a similar definition as for the primary ZCTA). We report the mean cluster radius and
the proportion of clusters remaining within the same geographical unit (ZCTA and county) as
a function of the time since collection of the first sequence within a cluster. We generate 95%
confidence intervals using a bootstrap approach with 1,000 replicates.

We compare the observed cluster radius and the observed proportion of clusters remaining within
the same geographical unit to those expected from a null distribution assuming no spatial depen-
dency between sequences within a cluster of identical sequences. We simulate a null distribution
by randomly permuting the geographical locations of the WA sequences and recomputing our
statistics of interest (cluster radius, proportion of clusters within the same county and proportion
of clusters within the same ZCTA).

Comparing the location of pairs identical sequences by counties’ adjacency status

We compare the RR of observing identical sequences between two counties depending on coun-
ties’ adjacency status (within the same county, between adjacent counties and between non-
adjacent counties) by using Wilcoxon signed rank tests.

Assessing the relationship between the RR of observing identical sequences between
two counties and the geographic distance separating them

We explore how the RR of observing identical sequences in two distinct counties compare with
the geographic distance between counties’ centroids. We summarise this trend by reporting the
LOESS curves with 95% confidence intervals between the log RRs and the distance in kilometers.

Mapping the association between counties using multidimensional scaling

We evaluate the extent to which patterns of association obtained when looking at the location
of pairs of identical sequences are consistent with global spatial structure. To do so, we perform
Non-metric Multidimensional Scaling (NMDS) based on the matrix of RR of observing pairs of
identical sequences between two counties. We restrict our analysis to the subset of counties for
which there was always at least 5 pairs of identical sequences observed with the other counties
in the subset. This is done to remove potential noise associated with low number of pairs
observed. As the NMDS algorithm requires a measure of similarity between counties, we define
the similarity sA,B between counties A and B as:

sA,B = e−RR0
A,B

We perform 2-dimensional NMDS using the vegan R package [50].

Exploring directionality in transmission between Eastern and Western WA

We evaluate whether the timing of identical sequence collection is consistent with transmission
rather occurring from Western to Eastern or Eastern to Western WA. We define 4 time periods
corresponding the 4 epidemic waves experiences by WA during our study period (Figure S33):

• Wave 4: March 2021 - June 2021
• Wave 5: July 2021 - November 2021
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• Wave 6: December 2021 - February 2022
• Wave 7: March 2022 - August 2022

For each of these time periods, we compute the proportion of pairs of identical sequences first
collected in Eastern WA among pairs of identical sequences observed in both Eastern and West-
ern WA that were not collected on the same day. We report 95% binomial proportion CI around
these proportions.

To explore whether our conclusions could be explained by differences in testing behaviours
between Eastern and Western WA, we conduct a sensitivity analysis by imputing the date of
symptom onset.

Mobility analyses

Evaluating the relationship between genetic and mobility data

We compute the Spearman correlation coefficient between the RR of observing identical se-
quences between two counties and the RR of movement between two counties (both from mobile
phone derived and commuting mobility data) as well as the geographic distance between coun-
ties’ centroids. We determine the percentage of variance in the genetic data explained by the
mobility data by fitting generalised additive models (GAMs) predicting the RR of observing
identical sequences based on the RR of movement between two counties, both on a logarithmic
scale, using a thin plate smoothing spline with 5 knots. For the GAM analyses, we remove pairs
of counties for which the number of pairs of identical sequences or the total mobility flow is equal
to 0, which ensures that both the RR of observing identical sequences and the RR of movement
are strictly positive. We also fit a GAM between the RR of observing identical sequences be-
tween two counties (on a logarithmic scale) and the distance between counties centroids. We
repeat these analyses at the regional level, instead of at the county one.

Identifying outliers in the relationship between genetic and mobility data

We define outliers in the relationship between genetic and mobility data as pairs of counties
for which the absolute value of the scaled Pearson residuals of the GAM is greater than 3. As
we expect RRs computed from a low number of pairs of identical sequences to be more noisy,
we focus on pairs of counties for which at least 100 pairs of identical sequences are observed
throughout the study period.

Characterising spread between postal codes with male prisons

Centrality analysis

We characterise transmission between the 10 postal codes with male state prisons by performing
a network centrality analysis. We consider a network with 10 nodes corresponding to these
different postal codes. We define the weight of each edge as the RR of observing identical
sequences between the two postal codes that define the nodes connected by this edge. This
results in a fully connected network. For each node (postal code with a male state prison), we
compute eigenvector centrality scores using the R igraph package. This centrality score measures
a node’s influence in the network: nodes have higher scores when they are connected to other
influential nodes.
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Identifying large clusters of identical sequences shared between different male prison
postal codes

We define large clusters of identical sequences in the prison networks as clusters of identical
SARS-CoV-2 sequences (i) which are observed in at least two postal codes with male prisons
and (ii) with at least 15 sequences in prison postal codes.

Age analyses

Evaluating the relationship between genetic and social contact data

We quantify the association between the relative risk RR0
A,B of observing identical sequences

between two age groups A and B and the relative risk of contacts RRcontacts
A,B between these

two groups using a generalised additive model (GAM) on a logarithmic scale. We report the
percentage of variance in the RR of identical sequences explained by the RR of contact from the
GAM. We also report the Spearman correlation coefficient between RR0

A,B and RRcontacts
A,B .

Investigating age-specific transmission patterns across spatial scales

To understand how age-specific transmission patterns vary across spatial scales, we compare the
RR of observing identical sequences between age groups using all pairs of identical sequences,
using only pairs of identical sequences in different postal codes and using only pairs of identical
sequences in different counties.

Exploring typical transmission direction between age groups

We use sequence collection dates to explore transmission direction between age groups across 4
periods (March 2021 - June 2021, July 2021 - November 2021, December 2021 - February 2022
and March 2022 - August 2022). To facilitate the interpretation of these results, we introduce an
earliness score that measures the contribution of a given age group to transmission to other age
groups. For an age group A, this score is equal to the proportion of pairs of identical sequences
first observed in age group A among all pairs of identical sequences observed in age groups A.
We also report 95% binomial confidence interval around this score.

To explore whether our conclusions could be explained by differences in testing behaviours
between age group, we conduct a sensitivity analysis by imputing the dates of symptom onset
and using symptom onset dates instead of sequence collection ones (Figure S22). We also
compute earliness scores on each of the 1,000 datasets with imputed symptom onset dates using
the same definition as that based on sequence collection dates. We then report the median
earliness score across all 1,000 datasets as well as an uncertainty range defined as the minimum
lower bound and the maximum upper bound of the 95% binomial confidence interval around
this score for each of the imputed dataset.

Relative risk of observing identical sequences between vaccination groups

Available matched patient information include details regarding the individuals’ vaccination
statuses upon positive test:

• No valid vaccination record (denoted Unvaccinated)
• Completed primary series (denoted Vaccinated)
• Completed primary series with an additional dose (denoted Boosted)
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Here, we use this information to quantify mixing between groups characterised by their vacci-
nation status. We focus on the mixing between vaccination groups within age groups to avoid
biases coming from age group and vaccination status being correlated. Among sequences col-
lected within each period (4 waves) and age groups in decade, we compute the RR of observing
identical sequences between vaccination groups. We only include the Boosted vaccination group
for wave 6 (Omicron BA.1 wave) for age groups older than 10, and from wave 7 for the 0-9y. We
only include the 0-9y in our analysis from wave 6 (Omicron BA.1 wave) and the 10-19y from
wave 5 (Delta wave).

To quantify the tendency of individuals of transmitting to individuals with the same vaccination
status, we compute for each vaccination groups (V1, V2) the ratio RRV1,V2/RRV1,V1 . Values lower
than 1 indicate that the enrichment of pairs of identical sequences is greater within the same
vaccination group than between different vaccination groups. Such values suggest assortativity
in mixing patterns between vaccination groups.

Sensitivity analysis for the typical transmission direction analysis

In the former paragraphs, we describe an approach based on the timing of pairs of identical
sequences to better understand the typical transmission direction between groups. The inter-
pretation of this pair-based analysis is complicated by several factors. First, clusters of identical
sequences can span more than two groups. Second, even in instances where clusters only span
two groups, counting pairs could improperly capture transmission direction, for example if local
transmission of the cluster is occurring within the two groups. We implemented this pair-based
approach as an intuitive exploration of whether the timing of sampling of identical sequences
might provide some signal about transmission direction. This pair-based approach is crude but
yet interesting as we do expect groups that tend to be the source to more often be observed
first within clusters or pairs of identical sequences. As a sanity check, we perform a sensitivity
analysis relying on clusters of identical sequences that are only observed within two groups.
We define the source group as the group of the earliest collected sequence within the cluster of
identical sequences. We remove ambiguous clusters, meaning clusters with two potential source
groups, from the analysis. For clusters observed in groups A and B, we compute the proportion
of clusters with source group A. We refer to this proportion as “proportion from clusters” to dis-
tinguish it from the “proportion from pairs” that we use in our main analysis. We compute 95%
confidence interval around the proportion from clusters. This proportion from clusters should
be more robust that the proportion from pairs but tends to be noisier as we are computing the
proportion from less observations. We then compare the proportion obtained from pairs and
from clusters. We compute the Spearman correlation coefficient between these two proportions
using all pairs of groups or only pairs of groups for which the confidence intervals don’t contain
50% for the two proportions.

Deriving the distribution of the number of mutations conditional on the num-
ber of generations separating two infected individuals

In this section, we derive the probability distribution of the number of mutations MAB separat-
ing the consensus genomes of two infected individuals A and B conditional on the number of
transmission generations GAB separating them.
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Generation time distribution

We assume that the generation time (i.e. the average duration between the infection time of an
infector and an infectee) follows a Gamma distribution of shape α and scale β. The time between
g generations then follows a Gamma distribution of shape g·α and scale β assuming independence
of successive transmission events. Let fα,β(·) denote the probability density function of a Gamma
distribution of shape α and scale β.

Mutations events

Let MAB denote the number of mutations separating their infecting viruses. Let µ denote
the mutation rate of the virus (in mutations per day). Let T evo

AB denote the evolutionary time
separating A and B (in days).

Assuming a Poisson process for the occurrence of mutations, we have:

MAB ∼ P(µ · T evo
AB )

Distribution of the number of mutations conditional on the number of generations

LetGAB denote the number of generations separating two infected individualsA andB belonging
to the same transmission chain.

P [MAB = m | GAB = g] =

∫ +∞

tevoAB=0
P [MAB = m | GAB = g, T evo

AB = tevoAB] · p(tevoAB | GAB = g) dtevoAB

=

∫ +∞

tevoAB=0
P [MAB = m | T evo

AB = tevoAB] · fαg,β(tevoAB) dt
evo
AB

=

∫ +∞

tevoAB=0

(µ tevoAB)
m · e−µtevoAB

m!
·
βαg · (tevoAB)

αg−1 · e−βtevoAB

Γ(αg)
dtevoAB

=
µm βαg

m! Γ(αg)

∫ +∞

tevoAB=0
(tevoAB)

m+αg−1 · e−(µ+β)·tevoAB dtevoAB

=
µm βαg Γ(m+ αg)

m! Γ(αg) (µ+ β)m+αg

∫ +∞

tevoAB=0
fm+αg,µ+β(t

evo
AB) dt

evo
AB

=
Γ(m+ αg)

m! Γ(αg)
·
( β

β + µ

)αg
·
( µ

β + µ

)m

which is the probability mass function of a negative binomial distribution of parameters:

r = αg

p =
β

β + µ

Application to SARS-CoV-2

We compute these probabilities for SARS-CoV-2 considering a mutation rate µ = 8.98 · 10−2

substitutions per day (32.76 substitutions per year) [51]. We assume that the generation time
is Gamma distributed with a mean 5.9 days and standard deviation 4.8 days [52].
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Simulation study to evaluate the ability of the RR framework to describe
migration patterns

We conduct a simulation study to evaluate how our RR framework performs under different
sequencing scenarios. We also compare the results obtained from a phylogeographic analysis.

Simulating synthetic sequence data

We use ReMASTER [53] to simulate an SEIR epidemic in a structured population with 5 demes,
each populated with 100,000 inhabitants. We simulate an epidemic characterised by a basic
reproduction number R0 of 2 with a daily time-step. We initiate the simulations by introducing
a single infected individual (compartment I) in the population (group of index 0). We consider
a pathogen with a 3,000 kb genome evolving following Jukes-Cantor evolution model with a
substitution rate of 3 · 10−5 substitutions per site per day. Upon infection, infected individuals
enter an Exposed (E) compartment during which they are not infectious yet and that they exit at
a rate of 0.33 per day. They then enter an Infectious (I) compartment where they are infectious
that they exit at a rate of 0.33 per day. Sequencing occurs upon exit of the I compartment.
Given that our RR does not account for directionality in transmission, we considered a scenario
with symmetric migration rates. We draw migration rates between demes from a log-Uniform
distribution of parameters (10−3, 10−1).

We then explore two sequencing scenarios. In an unbiased scenario, we assume that each individ-
ual has the same probability of being sequenced in each deme. In a biased scenario, we assume
that the sequencing probability varies between demes. We draw deme-specific relative sequenc-
ing probabilities from a log-Uniform distribution of parameters (10−3, 10−1). In the unbiased
scenario, we fix sequencing probability to the mean of the sequencing probabilities across demes
in the biased scenario. We explore different sequencing intensities by scaling these probabilities
by different multiplicative factor (Table S1):

• a scaling factor of 0.1 resulting in a mean sequencing probability of 0.43% and a dataset
of around 1700 sequences (used for the DTA analyses)

• a scaling factor of 0.5 resulting in a mean sequencing probability of 2.16% and a dataset
of around 8600 sequences (used for the RR and the DTA analyses)

• a scaling factor of 2 resulting in a mean sequencing probability of 8.66% and a dataset of
around 34,500 sequences (used for the RR analyses)

Discrete trait analysis

We conduct phylogeographic inference using symmetric discrete trait analysis (DTA) [9] us-
ing the Bayesian stochastic search variable selection (BSSVS) model implemented in BEAST
1.10.4 [54] applied to the synthetic data simulated in our two sequencing scenarios. In order to
isolate the accuracy and precision of the phylogeographic reconstruction, we run our discrete
trait analysis using an empirical tree that is generated directly from ReMASTER simulations.
Directly inputting such a tree is not possible in real-world scenarios where the genealogical tree
must be (noisily) estimated from empirical sequence data. In this case, it serves a demonstration
of the power of DTA when provided perfect genealogical signal. The empirical tree approach
also requires substantially less computation and so allowed us to analyse datasets of thousands
of sequences using DTA in acceptable time.

Two independent Markov chain Monte Carlo (MCMC) procedures are run for 2.5 · 108 itera-
tions and sampled every 1,000 iterations. Resulting posterior distributions are combined after
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discarding initial 10% of sampled trees as burn-in from each of them. We use Tracer 1.7 [55] to
assess convergence and to estimate effective sampling size (ESS), ensuring ESS values greater
than 200 for each migration rate estimate. We adjust the estimated migration rates by the
estimated rate scalar in order to calculate the per-day rates of transition between demes.

To evaluate how estimating the genealogical tree from empirical sequence data impacts both
results and computing times, we perform an additional phylogeographic analysis based on simu-
lated but this time jointly inferring the genealogical tree and migration rates. We run this model
for 24 days (corresponding to 475,733,000 MCMC steps), until each migration rate parameter
has an ESS greater than 200.

Relative risk analysis

We compute the RR of observing identical sequences between two demes i and j and compare
these RR to the daily probability pi,j of migration between these two demes which is computed
as:

pi,j = 1− exp(−mi,j) j ̸= i

pi,i = 1−
∑
k ̸=i

pi,k

wheremi,j is the migration rate between demes i and j. We generate 95% subsampling confidence
intervals around the RRs using an 80% subsampling rate.

Simulation study to explore the expected relationship between the RR of observing
identical sequences between groups and the RR of contacts between groups

We perform a simulation study to characterise the expected relationship between the RR of
observing identical sequences between groups and the RR of contacts between these groups. We
illustrate this by looking at transmission between age groups but we expect a similar relationship
between the RR of observing identical sequences between regions and the RR of movement
between these regions.

To do so, we generate clusters of identical sequences including the age group of the corresponding
infected individuals assuming a probability that an infector and an infectee have the same
consensus sequences p of 0.7 (close to the value we previously estimated for SARS-CoV-2 [8]), a
reproduction number R of 1.2 and a sequencing fraction pseq of 0.1.

We use the contact matrix estimated by Mistry et al. [29] to characterise disease transmission be-
tween age groups. We assume that the probability pA,B for a contact from an infected individual
in age group A to occur with a susceptible individual in age group B is equal to:

pA,B =
cA,B∑
B′ cA,B′

where cA,B is the mean daily number of contacts that an individual in age group A has with
individuals in age group B. We introduce an age-specific reproduction number (RA) describing
the average number of secondary cases infected by a single primary case within age group A.
As different age groups have different average daily total number of contacts, the age-specific
reproduction number varies between age groups. It can be derived as:

RA =

∑
B′ cA,B′

ρ(C)
·R
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where ρ(C) is the maximum eigenvalue of the matrix C = (cA,B) [56]. We then simulate
individual clusters of identical sequences using the following steps:

1. Initialization
Draw the age of the primary case Aprimary from a uniform distribution.

2. Simulate clusters (successive infections with identical genomes)
While the number of generations is lower than 10

For each individual infected at the previous generation
• Let A denote the age of this infectious individual.
• Draw the number of infections with the same genotype:

I ∼ P((p ·RA)
−1) (Poisson distribution).

• Draw the age of these individuals:
(A1, ..., AI) ∼ M(I, nage, (pA,1, ..., pA,nage)) where M(n, k, (p1, ..., pk)) is a
multinomial distribution with n trials, k possible events with probabilities
(p1, ..., pk)

3. Simulate sequencing
Draw the sequencing status of each cluster member from a Bernoulli distribution of pa-
rameter pseq.

We end simulations after 10 generations to minimise computational costs.

Downsampling approach to explore the genome dataset size required to com-
pute relative risks

We implement a downsampling strategy to understand the amount of sequencing data required
to compute RR estimates. We consider genome datasets of the following sizes:

{1 · 102, 2 · 102, 3 · 102, 4 · 102, 5 · 102, 6 · 102, 7 · 102, 8 · 102, 9 · 102,
1 · 103, 2 · 103, 3 · 103, 4 · 103, 5 · 103, 6 · 103, 7 · 103, 8 · 103, 9 · 103,
1 · 104, 2 · 104, 3 · 104, 4 · 104, 5 · 104, 6 · 104, 7 · 104, 8 · 104, 9 · 104, 1 · 105}

For each of these dataset sizes, we generated 100 downsampled datasets from our WA sequencing
data. For each of these downsampled datasets, we compute the RR of observing identical
sequences between age groups (Figure S34). To understand how the number of groups studied
impacts the amount of data required, we also compute RR of observing identical sequences
between aggregated age groups:

• 0-39y and over 40y for 2 age groups,
• 0-29y, 30-59y and over 60y for 3 age groups,
• 0-19y, 20-39y, 40-59y and over 60y for 4 age groups,
• 0-9y, 10-19y, 20-29y, 30-39y, 40-49y, 50-59y, 60-69y, 70-79y and over 80 (standard definition
used throughout the paper) for 9 age groups.

We compute the error between the RR obtained from a subsampled dataset RRd and the RR
from the full dataset RRf as:

ϵ =
RRd −RRf

RRf

For each pair of age groups, we then compute the number of pairs of identical sequences required
for the error to be below 10%.
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Simulation study to evaluate the possibility to extend the Hamming distance
threshold

In this work, we assess how pairs of infected individuals whose infected genome is separated
by 0 mutation can help characterise population level transmission patterns. We apply this
method to SARS-CoV-2 sequences from WA but our approach should be broadly applicable
for epidemics caused by pathogens where the timescale of mutation events is similar to that of
transmission events. In this section, we describe a simulation approach to understand how a
pathogen’s mutation rate could impact the optimal Hamming distance threshold to apply our
RR framework.

We implement the same simulation framework as the one described in the section “Simulation
study to evaluate the ability of the RR framework to describe migration patterns”. We consider
that each infection has the same probability of being sequenced (equal to 4.33 %, corresponding
to a sequencing probability scaling factor of 1). We explore a range of scenarios for the pathogen’s
mutation rate. To do so, we introduce a multiplicative scaling factor for the baseline pathogen’s
mutation rate (3 · 10−5 substitutions per site per day) with values ranging between 0.1 and 10.
For each multiplicative scaling factor, we perform 100 replicate simulations.

For each simulated epidemic, we count the number of pairs separated by less than d mutations
between two regions (for d varying between 0 and 10). In certain scenarios (for example those
characterised by a high mutation rate and a low Hamming distance threshold d), we sometimes
don’t observe any pairs less than d mutations away in a specific group. To be able to compute
the RR even in those scenarios, we report a modified version of the RR of observing sequences
separated by less than d mutations between two regions:

R̃R
d

A,B =
(nd

A,B + 1) · (nd
•,• + 1)

(nd
A,• + 1) · (nd

B,• + 1)

with the same notations as the ones used in the definition of the RR of observing sequences less
than d mutations away in groups A and B.

We then compute the Spearman correlation coefficient between the relative risk for pairs of
sequences less than d mutations apart of being in two regions and the daily migration probability
between these regions. In simulations where the standard deviation of the RR is equal to 0 (all
modified RRs have the same value), we assume that the Spearman correlation coefficient is equal
to 0 (RRs are not informative about migration rates).

Data and code accessibility

Code to reproduce our analyses can be found at https://github.com/blab/phylo-kernel-public
[49]. A step by step tutorial describing how to implement our RR approach is available
at https://github.com/CecileTK/tutorial-rr-identical-sequences [57]. We also share
counts of pairs of identical sequences between population groups (counties and age groups) ob-
tained from the WA Sentinel surveillance data. All sequences referenced in this manuscript are
publicly shared to GISAID and are publicly available with standard metadata (generally con-
sisting of date of sample collection and sometimes county of sample collection). More detailed
metadata curated by Washington State Department of Health (WA DOH) of county, postal
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code, age group and vaccination status were shared with the Fred Hutchinson Cancer Center
under a Data Sharing Agreement for Confidential Data with an associated IRB. These more
detailed metadata are not currently shared publicly while we seek clearance with WA DOH.
GISAID accessions and a sequence-level acknowledgements table are provided in the GitHub
repository associated with this manuscript [49].
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Figure S1. Permutation test to explore the spatio-temporal signal in clusters of identical
SARS-CoV-2 sequences. A. Radius of clusters of identical sequences as a function of time since first
sequence collection. B. Probability for all sequences within a cluster of identical sequences of remaining
in the same county as a function of time since first sequence collection. C. Probability for all sequences
within a cluster of identical sequences of remaining in the same ZCTA as a function of time since first
sequence collection. The grey shaded areas correspond to 95% confidence intervals of a null distribution
generated from 100 simulation where the geographical location of sequences fromWA Sentinel surveillance
are permuted. The grey lines correspond to the medians the simulated null distributions.
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Figure S2. The magnitude of the relative risk of observing sequences at a given genetic
distance within the same county is impacted by transmission intensity. A. Relative risk of
observing sequences at a given genetic distance within the same county across multiple epidemic waves.
We defined waves as: March 2021-June 2021 (Wave 4), July 2021-November 2021 (Wave 5), December
2021-February 2022 (Wave 6) and March 2022-August 2022 (Wave 7). In A, circular points correspond
to individuals counties and triangles correspond to the median across counties. B. Median relative risk of
observing pairs sequences within the same county (with IQR) as a function of genetic distance stratified by
variant during Wave 6. C. A higher transmission intensity results in larger clusters of identical sequences
that tend to be more mixed across groups. In C, the two clusters are simulated using a branching process
with mutation [8] by assuming the probability for an infector and an infectee to have the same consensus
sequence equal to 0.69 and a probability for an infectee of being in the same groups as its infector of 0.7.
We consider a reproduction number of 1.2 for the lower transmission intensity scenario and of 2.0 in the
higher transmission intensity scenario.
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Figure S3. Our measure of relative risk corrects for uneven sequencing between regions.
A. Proportion of pairs of identical sequences shared between counties A and B among pairs observed in
county A as a function of the proportion of pairs of identical sequences observed in county B. B. Relative
risk for pairs of identical sequences of being observed in counties A and B as a function of the proportion
of pairs of identical sequences observed in county B. C. Proportion of pairs of identical sequences shared
between counties A and B as a function of the number of sequences available in county B. D. Relative
risk for pairs of identical sequences of being observed in counties A and B as a function of the number of
sequences available in county B.
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Figure S4. Simulation study exploring the impact of sequencing bias on results from a
discrete trait analysis and from our RR framework. A. Comparison between migration rates
estimated from a discrete trait analysis and the true migration rates used to simulate the sequence data.
B. Comparison between the relative risk of observing identical sequences between two demes and the
weekly migration probability between demes. C. Comparison between migration rates inferred from
a sequence dataset generated in a biased sampling and an unbiased sampling scenario. D. Comparison
between the relative risk of observing identical sequences in two groups from a sequence dataset generated
in a biased sampling and an unbiased sampling scenario. For the RR, segments indicate 95% subsampling
confidence intervals. For the migration rates, segments indicate 95% highest posterior density intervals.
For each plot, we indicate the Spearman correlation coefficient (and the associated p-value).
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Figure S5. Relative risk of observing identical sequences in two counties. Grey squares
correspond to pairs of counties between which no pairs of identical sequences were observed during the
study period.
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Figure S6. Relative risk of observing pairs of identical sequences between counties. On each
map, we represent the relative risk of observing pairs of identical sequences in the county indicated by a
red point (map title) and all the other counties in Washington state. Areas are coloured in grey when no
pairs of identical sequences are observed. To increase readability, each map has its own colour scale.
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Figure S7. Impact of subsampling on the significance of the association between the relative
risk of identical sequences and whether counties and ZCTAs are adjacent or not. We
investigate whether our conclusions regarding the significance of the association between the relative risk
of identical sequences falling in two distinct counties / ZCTAs and their adjacency status (adjacent / non-
adjacent) can be impacted by the number of pairs of counties involved in the comparison (within Eastern
WA, within Western WA and between Eastern and Western WA). At the county level, we subsample
the pairs of counties involved in these 3 comparisons to 12 adjacent pairs of counties (number of pairs
of adjacent counties between Eastern and Western WA) and 132 non-adjacent pairs of counties (number
of pairs of non-adjacent counties within Western WA). This ensures that all comparisons are performed
on the same number of pairs of counties. On each subsampled dataset, we compute the p-value from a
Wilcoxon test evaluating differences between the relative risk of observing identical sequences in adjacent
and non-adjacent counties. This is done for 1,000 subsampled datasets. Boxplots indicate the p-values
obtained across these different subsampling iterations (5%, 25%, 50%, 75% and 95% quantiles). We do
a similar analysis at the ZCTA level.
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Figure S8. Distribution of the delay between sequence collection within pairs of identical
sequences collected between Eastern and Western WA and across epidemic waves.
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Figure S9. Comparison between the number of directed commuting flows and the number
of directed visits between two counties. The number of work commutes is extracted from [17].
The number of visits is estimated using Safegraph Weekly patterns mobility data. The comparison is
done by matching the origin county in the mobile phone data to the residence county in the workflow
data and the destination county in the mobile phone data to the workplace county in the workflow data.
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Figure S10. Comparison between the relative risk of observing identical sequences and the
relative risk of movement at the county level. A. Relationship between the relative risk of
observing identical sequences in two counties and the relative risk of movement between these counties
as obtained from mobile phone mobility data. B. Scaled Pearson residuals of the GAM plotted in A as
a function of the number of pairs of identical sequences observed in pairs of counties. C. Relationship
between the relative risk of observing identical sequences in two counties and the relative risk of movement
between these counties as obtained from workflow mobility data. D. Scaled Pearson residuals of the GAM
plotted in C as a function of the number of pairs of identical sequences observed in pairs of counties. E.
Relationship between the relative risk of observing identical sequences in two counties and the Euclidean
distance between counties centroids. F. Scaled Pearson residuals of the GAM plotted in E as a function
of the number of pairs of identical sequences observed in pairs of counties. In B, D and F, we label pairs
of non-adjacent counties sharing at least 100 pairs of identical sequences and for which the absolute value
of the Scaled Pearson residual is greater than 3. The trend lines correspond to predicted relative risk of
observing identical sequences in two regions from each GAM. R2 indicate the variance explained by each
GAM.
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Figure S11. Expected relationship between the RR of observing identical sequences in two
age groups and the RR of contacts between these age groups. These results were obtained by
simulating 105 clusters of identical sequences from a branching process with mutations [8] using a Poisson
offspring distribution. The simulation was parametrised by a reproduction number of 1.2, a probability
that an infector and an infectee have the same consensus sequence of 0.7 and a sequencing fraction of
10%.
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Figure S12. Geographical regions used to aggregate counties. Dark green: Peninsula/Coastal.
Orange: South Puget Sound. Purple: Northwest. Red: North Puget Sound. Pink: Southwest. Dark
blue: South Central. Light blue: Southeast.Brown: Northeast. Light green: North Central.
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Figure S13. Comparison between the relative risk of observing identical sequences and the
relative risk of movement at the region level. A. Relationship between the relative risk of
observing identical sequences in two regions and the relative risk of movement between these regions
as obtained from mobile phone mobility data. B. Relationship between the relative risk of observing
identical sequences in two regions and the relative risk of movement between these regions as obtained
from workflow mobility data. C. Relationship between the relative risk of observing identical sequences
in two regions and the euclidean distance between region centroids. D. Scaled Pearson residuals of the
GAM between the relative risk of observing identical sequences in two regions and (i) the relative risk of
movement from commuting data, (ii) the relative risk of movement from mobile phone data and (iii) the
geographic distance between regions’ centroids. The trend lines correspond to predicted relative risk of
observing identical sequences in two regions from each GAM. R2 indicate the variance explained by each
GAM.
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Figure S14. Relationship between the relative risk of observing identical sequences in two
regions and the relative risk of movement between these regions obtained from mobile phone
mobility data across epidemic waves A. Wave 4. B. Wave 5. C. Wave 6. D. Wave 7. Vertical
segments indicate 95% subsampling confidence intervals. The trend line correspond to predicted relative
risk of observing identical sequences in two regions from a GAM. R2 indicate the variance explained by
each GAM.
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Figure S15. Comparison of the total number of visits between pairs of WA counties across
the 4 epidemic waves during our study period. Points indicate the total number of visits between
pairs of counties over the study periods labeled on the plot axes.
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Figure S16. Comparison of connectivity metrics across the Eastern / Western WA border
among counties located on the border. A. Relative risk of movement from mobile phone data
across the border or within Eastern / Western WA (p-value for Wilcoxon rank sum test of 6.1 · 10−5).
B. Relative risk of movement from commuting data across the border or within Eastern / Western WA
(p-value for Wilcoxon rank sum test of 1.6 ·10−4). C. Relative risk of observing identical sequences across
the border or within Eastern / Western WA (p-value for Wilcoxon rank sum test of 2.5 · 10−2). In this
analysis, we only consider WA counties along the W/E border.
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Figure S17. Patterns of occurrence of pairs of identical sequences between ZCTAs in Pierce
and Mason counties, the two counties that are home of WA female prisons. A. Relative risk
of observing identical sequences between ZCTAs in Mason and Pierce counties. Black squares indicate
adjacent ZCTAs. ZCTAs in red correspond to postal codes that are the home of female prisons. B.
Relative risk of observing identical sequences between Mason and Pierce counties ZCTAs ordered by
increasing values. Vertical segments correspond to 95% subsampling confidence intervals.
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Figure S18. Relative risk for pairs of identical sequences of being observed between two
age groups. Vertical segments correspond to 95% confidence intervals obtained through subsampling.
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Figure S19. Relative risk for pairs sequences of being observed between two age groups
depending on their genetic distance. Vertical segments correspond to 95% confidence intervals
obtained through subsampling.
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Figure S20. Impact of the spatial scale on the relative risk for pairs sequences of being
observed between two age groups. Vertical segments correspond to 95% confidence intervals obtained
through subsampling.
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Figure S21. Median delay between the dates of sequence collection within pairs of identical
sequences A. considering all pairs of identical sequences collected in two age groups and B. considering
only pairs of identical sequences collected on different days in two age groups.
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Figure S22. Sensitivity analysis on the timing of pairs identical sequences between age
groups using symptom onset dates Median proportion of pairs of identical sequences with onset
dates in age groups A before age group B across different epidemic waves from 1,000 imputed datasets
(heatmaps). The dots plots depict the median earliness scores of age group A across 1,000 imputed
datasets for the different epidemic waves. Vertical segments indicate uncertainty range around earliness
score (see Methods).
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Figure S23. Ratio between the relative risk of observing identical sequences within a given
vaccination group (denoted V1) and between two vaccination groups (denoted V1 and V2).
Values above 1 indicate that pairs of identical sequences tend to be enriched in pairs observed within the
same vaccination group. The analysis is restricted to pairs observed within the same age group. Each
point correspond to the ratio computed for a given pair of vaccination status (V1, V2) and age group.
Boxplots indicate the 2.5%, 25%, 50%, 75% and 97.5% percentiles.
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Figure S24. Impact of non-sampled locations on the computation of the RR. A. Comparison
between the relative risk of observing identical sequences between Western WA counties using only
sequence in Western WA counties or the entire sequence dataset. B. Comparison between the relative
risk of observing identical sequences between Eastern WA counties using only sequence in Eastern WA
counties or the entire sequence dataset.
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Figure S25. Sensitivity analysis for our transmission direction analysis relying on clusters
of identical sequences observed only in two groups. A. Proportion of clusters first collected in
Western WA among clusters observed in Eastern and Western WA and across pandemic waves. Like in
Figure 2G, these proportions are all greater than 0.5. B. Sensitivity analysis at the regional level (Figure
S12) comparing the proportion from pairs and the proportion from clusters. C. Sensitivity analysis at
the regional level comparing the proportion from pairs and the proportion from clusters across waves. D.
Sensitivity analysis at the age level comparing the proportion from pairs and the proportion from clusters
across waves. For wave 4, the cluster based analysis relies on less than 10 clusters in 13 out of 36 pairs
of age groups, which could explain the poor correlation. Segments indicate 95% CIs around proportions.
In B, C and D, the colour red depicts points for which the CIs don’t cross 0.5 for both the proportion
from clusters and the proportion from clusters. We report in red the Spearman correlation coefficient
with p-values for these red points and in black for all the points.
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Figure S26. Impact of dataset size on the number of clusters of identical sequences and the
number of sequences with another identical sequence in the dataset. We generate this figure
by considering sequence datasets of increasing sizes, ranging between 102 and the 114,298 (the size of our
WA dataset) with an increment of 102 between 102 and 103 and an increment of 103 above 103. We run
100 simulations where we first downsample 102 sequences from our full dataset and then incrementally
include more sequences (drawn from the total remaining sequences not yet included). At every step,
we compute the additional number of clusters of identical sequences per additional sequences (red) as
well as the additional number of sequences with another identical sequence in the dataset per additional
sequence (cyan). Points indicate the results from individual simulations and lines the LOESS curves.
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Figure S27. Impact of the number of groups included in the analysis on the dataset size
required for the error in the relative risk of observing identical sequences to be lower than
10%. A. Number of pairs of identical sequences required for the error relative risk of observing identical
sequences to be lower than 10%. Boxplots indicate the 2.5%, 25%, 50%, 75% and 97.5% percentiles. See
Methods for a description of the downsampling strategy. B. Number of sequences required for the number
of pairs of identical sequences observed within the age group on the x-axis to reach the median depicted
in A. Each point corresponds to a subsampled dataset. Purple triangles indicate the median.
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Figure S28. Impact of the pathogen’s mutation rate on the optimal Hamming distance
threshold to apply our RR framework. Boxplots indicate Spearman correlation coefficient between
the relative risk of pairs of sequences below the genomic distance threshold of being observed in two
regions and the daily migration probability between these two regions. Boxplots indicate the 2.5%, 25%,
50%, 75% and 97.5% percentiles. See Methods for a description of the simulation approach.
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Figure S29. Comparisons between county census population sizes and SafeGraph panel sizes
in Washington state, 2020 – 2022. A. County census population sizes strongly correlate with the
mean number of devices tracked by SafeGraph (“SG”) in each year. B. Expected proportions of devices
based on county and state census population sizes strongly correlate with the observed proportion of
devices tracked by SafeGraph (“SG”) in each year. Points represent individual counties in WA state. In
B, the black dashed line indicates the expected relationship for a true random sample of devices.
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Figure S30. County-level bias of SafeGraph data in Washington state does not correlate
with A. census population size, B. SafeGraph panel sizes in individual counties relative to
WA state (“county observed proportion”), or C. census urban-rural classification, 2020 –
2022. Points represent individual counties in WA state. Bias is estimated as the “observed proportion” of
devices tracked by SafeGraph in individual counties relative to WA state minus the “expected proportion”
of devices based on census population sizes. Negative values indicate under-represented counties, and
positive values indicate over-represented counties. The black dashed line (y = 0) indicates no bias in the
SafeGraph panel of devices.
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Figure S31. Empirical distribution of the delay between symptom onset and sequence
collection by age (rows), period (columns) and geographic region (colours).
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Figure S32. Characteristics of clusters of identical sequences across the study period. Grey
bars (left y-axis) indicate the number of clusters by week of first cluster detection (defined as the week
where the sequence with the earliest collection date was collected). The orange line (right orange y-axis)
depicts the mean size of clusters of identical sequences by week of first cluster detection. The cyan line
(right cyan y-axis) depicts the mean cluster duration by week of first cluster detection.
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Figure S33. Time-series of COVID-19 cases in WA over the study periods. Shaded rectangles
indicate the periods used to define the successive epidemic waves.
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Figure S34. Illustration of the downsampling strategy used to quantify the amount of data
required to compute relative risks. A. Relative risk RRd of identical sequences being shared
between the 0-9y computed on 10 downsampled datasets as a function of the number of pairs of identical
sequences shared between the 0-9y. B. Error ϵ on the relative risk of observing identical sequences in
downsampled datasets as a function of the number of pairs of identical sequences present for a pair of
age groups in the downsampled datasets.
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Corr.
biased /
unbiased

DTA
Fix tree

0.43 % 1 1745 1744 0.54 -0.22 -0.26

DTA
Fix tree

0.43 % 2 1714 1805 0.60 0.19 0.35

DTA
Fix tree

2.16 % 1 8723 8709 0.61 0.39 0.87

DTA
Fix tree

2.16 % 2 8551 8675 0.77 0.25 0.70

DTA
Inferring

tree
0.43 % 1 1745 1744 0.10 0.15 -0.13

RR 8.66 % 1 34338 35304 0.91 0.74 0.77
RR 8.66 % 2 34736 35123 0.93 0.84 0.79
RR 2.16 % 1 8723 8709 0.94 0.80 0.79
RR 2.16 % 2 8551 8675 0.80 0.75 0.86

Table S1. Performance of Discrete Trait Analysis (DTA) and our relative risk metric (RR)
in quantifying migration patterns. The sample sizes correspond to the number of sequences on
which the inference is performed. All correlation coefficients reported are Spearman rank correlation
coefficients. In the DTA analysis, we report the correlation between estimated and true migration rates
(both for the biased and unbiased sequencing scenarios) and the correlation between the migration rates
estimated on the biased and unbiased datasets. In the RR analysis, we report the correlation between the
RR and the migration probability between demes (both for the biased and unbiased sequencing scenarios)
as well as the correlation between the RR estimated on the biased and unbiased datasets.

Region Adjacency status compared
p-value

(Wilcoxon test)

p-value
(Wilcoxon test)

without 0

East-East
Within ZCTA & Adjacent ZCTAs 5 · 10−10 3 · 10−12

Adjacent ZCTAs & Non-adjacent ZCTAs < 10−16 < 10−16

East-West Adjacent ZCTAs & Non-adjacent ZCTAs 0.73 0.39

West-West
Within ZCTA & Adjacent ZCTAs < 10−16 < 10−16

Adjacent ZCTAs & Non-adjacent ZCTAs < 10−16 < 10−16

Table S2. Comparison of the relative of risk of observing identical sequences at the ZCTA
level by adjacency level. We report the p-values of Wilcoxon rank sum test using either all pairs of
ZCTAs or only pairs of ZCTAs for which pairs of identical sequences are collected (column ”without 0”).
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At the county level At the region level

Spearman correlation ρ
Mobile phone mobility 35% 61%
Workflow mobility data 40% 59%
Geographic distance -35% -48%

Spearman correlation ρ (without 0)
Mobile phone mobility 43% 61%
Workflow mobility data 56% 59%
Geographic distance -36% -48%

Variance explained (GAM)
Mobile phone mobility 60% 81%
Workflow mobility data 70% 79%
Geographic distance 32% 57%

Table S3. Comparison between the relative risk of observing identical sequences between
two geographic regions and the risk of movement between different geographies. We consider
three data sources to inform the relative risk of movement between geographies: the relative risk for a
visit to occur between two geographies (from mobile phone data), the relative risk for a work commute to
occur between two geographies (from workflow data) and the geographic distance between geographies’
centroids.

Facility name County
Prison
capacity

County
population

size

Ratio prison
capacity / county

population

Washington State Penitentiary Walla Walla 2439 62584 3.90 · 10−2

Stafford Creek Corrections Center Grays Harbor 1936 75636 2.56 · 10−2

Coyote Ridge Corrections Center Franklin 2468 96749 2.55 · 10−2

Washington Corrections Center Mason 1268 65726 1.93 · 10−2

Clallam Bay Corrections Center Clallam 858 77155 1.11 · 10−2

Airway Heights Corrections Center Spokane 2258 539339 4.19 · 10−3

Olympic Corrections Center Clallam 272 77155 3.53 · 10−3

Monroe Correctional Complex Snohomish 2400 827957 2.90 · 10−3

Cedar Creek Corrections Center Thurston 480 294793 1.63 · 10−3

Larch Corrections Center Clark 240 503311 4.77 · 10−4

Table S4. Characteristics of WA male prisons.
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Supplementary text 1: Relationship between the number of trans-
mission pairs and the number of pairs with timing consistent with
a transmission direction

Notations

Let NX→Y denote the number of transmission pairs where the infector is in subgroup X and the
infectee in subgroup Y . Let NX<Y denote the number of transmission pairs between subgroups
X and Y (regardless of the transmission direction) where the timing of symptom onset is earlier
in X than in Y . Let NXY denote the total number of transmission pairs between subgroups
X and Y (regardless of the transmission direction). Let pX→Y = NX→Y /NXY denote the
proportion of transmission pairs between X and Y that were in the direction X → Y . Let
pX<Y = NX<Y /NXY denote the proportion of transmission pairs between X and Y where the
timing of symptom onset is earlier in X than in Y .

We introduce p0 as the proportion of transmission events with positive serial intervals (defined
by the delay between the onset of symptom of the infectee and the infector).

Relationship between pX<Y and pX→Y

Here, we demonstrate that comparing NX→Y and NY→X is equivalent to comparing NX<Y and
NY <X as long as p0 is greater than 50%.

NX<Y = NX→Y · p0 +NY→X · (1− p0) = NX→Y · (2p0 − 1) + (1− p0)

By diving the two sides of this equation by NXY , we have:

pX<Y = pX→Y · (2p0 − 1) + (1− p0)

Therefore, if p0 > 0.5,

pX<Y > 0.5 ⇔ pX→Y · (2p0 − 1) + (1− p0) > 0.5 ⇔ pX→Y >
p0 − 0.5

2p0 − 1
⇔ pX→Y > 0.5

This means that as long as p0 is greater than 0.5, comparing the number of transmission pairs
between X and Y with symptom onset dates first occurring in X to the transmission pairs
between X and Y with symptom onset dates first occurring in Y provides direct insights into
the proportion of transmission pairs between X and Y happening in the X → Y direction.

Estimation of p0 for SARS-CoV-2

For a given pathogen, p0 can directly be estimated from a known serial interval distribution
or from transmission pair data. For SARS-CoV-2, Geismar et al. [15] estimated this from
reconstructed SARS-CoV-2 transmission events across a range of variants of concerns. In all
analyses, their results show values greater of p0 greater than 50 %.

Here, we focus on the timing of symptom onset within transmission pairs. However, this argu-
ment is directly transposable to other timing definitions, such as the timing of sequence collection
dates by replacing p0 by the proportion of transmission pairs where the sequence collection date
of the infectee occurs after the sequence collection date of the infector.
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