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Abstract.
Epilepsy poses a significant global health challenge, driving the need for

reliable diagnostic tools like scalp electroencephalogram (EEG), subscalp EEG,
and intracranial EEG (iEEG) for accurate seizure detection, localization, and
modulation for treating seizures. However, these techniques often rely on feature
extraction techniques such as Short Time Fourier Transform (STFT) for efficiency
in seizure detection. Drawing inspiration from brain architecture, we investigate
biologically plausible algorithms, specifically emphasizing time-domain inputs with
low computational overhead. Our novel approach features two hidden layer dendrites
with Leaky Integrate-and-Fire (dLIF) spiking neurons, containing fewer than 300K
parameters and occupying a mere 1.5 MB of memory. Our proposed network is tested
and successfully generalized on four datasets from the USA and Europe, recorded with
different front-end electronics. USA datasets are scalp EEG in adults and children,
and European datasets are iEEG in adults. All datasets are from patients living with
epilepsy. Our model exhibits robust performance across different datasets through
rigorous training and validation. We achieved AUROC scores of 81.0% and 91.0% in
two datasets. Additionally, we obtained AUPRC and F1 Score metrics of 91.9% and
88.9% for one dataset, respectively. We also conducted out-of-sample generalization by
training on adult patient data, and testing on children’s data, achieving an AUROC
of 75.1% for epilepsy detection. This highlights its effectiveness across continental
datasets with diverse brain modalities, regardless of montage or age specificity. It
underscores the importance of embracing system heterogeneity to enhance efficiency,
thus eliminating the need for computationally expensive feature engineering techniques
like Fast Fourier Transform (FFT) and STFT.
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1 Introduction

Epilepsy is a neurological condition characterized by recurrent seizures, impacting
millions of individuals globally. Approximately 30% of cases exhibit resistance to
conventional Anti-Epileptic Drugs (AEDs), resulting in drug-resistant epilepsy. Despite
extensive efforts in developing and testing AEDs, there has been limited advancement in
enhancing their efficacy [1]. The unpredictable nature of seizures poses significant risks
to patients’ quality of life, employment status, and overall well-being, including potential
hazards such as falls and sudden unexpected death in epilepsy [2, 3]. Implementing a
dependable system for precise seizure detection and quantification could substantially
improve decision-making processes, treatment strategies, and disease management,
ultimately improving patient outcomes. Technologies for electronically sensing the
brain include electroencephalogram (EEG) and electrocorticography (ECoG) aka. iEEG
(intracranial EEG), capturing the brain’s electrical activity from the scalp or head
surface, often non-invasively or using electrodes sitting directly on the brain’s surface
(subdurally/epidurally), respectively. iEEG obviously provides superior spatial and
temporal resolution as well as Signal-to-Noise Ratio (SNR) but accessing the brain
surface has been a major challenge surgically [4]. iEEG, if it is done for relatively long-
term use, has several applications, including brain-machine interface [5], but it is often
used as a presurgical method to locate the seizure focal points in patients with epilepsy
[6]. ECoG or iEEG can also be recorded as endovascular, which is a breakthrough
in the delivery mechanism of electrodes to the brain, albeit often without a chance
for the device’s explantation [7, 8, 9, 10]. The use of Artificial Intelligence (AI) in
brain signal analysis is shown to be reasonably successful for efficient seizure detection
[11, 12, 13, 14, 15]. AI applications in EEG monitoring are limited by hospital resources
and hardware/software constraints. Current AI focus in EEG monitoring with fewer
electrodes, automated channel reduction, and suggests multi-modal data fusion [16].
These AI methods encompass diverse approaches, including traditional and embedded
AI. Traditional AI usually operates on robust Graphics Processing Units (GPU) clusters,
facilitating ultra-fast computations and EEG data analysis, while embedded AI involves
integrating AI capabilities directly in or close to edge sensors, enabling more real-time
analysis and decision-making on the device itself. This approach is especially beneficial
for continuous monitoring and early seizure detection, as it minimizes data transmission
requirements, making it well-suited for long-term monitoring scenarios with on-device
learning.

1.1 Background

Researchers are actively developing AI models for seizure detection. For instance,
studies have combined Independent Component Analysis (ICA) and Short Time
Fourier Transform (STFT) for pre-processing, followed by Convolutional-Long Short
Term Memory (ConvLSTM) blocks, achieving an Area Under the Receiver Operating
Characteristic Curve (AUROC or AUC) of 0.84 in the largest epilepsy dataset in United
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States [17]. Similarly, by utilizing domain adaptation and STFT pre-processing, authors
has reported an AUC of 0.75 ± 0.03 [18]. Moreover, a study has introduced anchored-
STFT to enhance temporal-spectral resolution trade-off in EEG analysis [19]. Despite
their strong performance, these models often demand significant memory and power
resources, making them impractical for deployment on edge devices. Neuromorphic
AI, inspired by the brain, differs significantly from the traditional architecture based
on von Neumann, which utilizes separated memory and processing units, consuming
power during data transmission. Instead, a neuromorphic chip employs physical neurons
interconnected by physical synapses, implementing collocated memory processing in
a non-volatile manner. This design drastically reduces the necessity to move data
across the circuit, leading to substantial improvements in speed and energy efficiency
[20]. While the biophysical model has dendrites, axons and receptors, the current
models only consider the somas. Dendrites are crucial for neuronal computation
due to their ability to act as semi-independent thresholding units, generating local
dendritic Spikes (dSpikes). These spikes are produced by voltage-gated mechanisms
and influence synaptic input integration and plasticity [21]. Dendritic mechanisms
operate across multiple timescales, enabling complex computations such as coincidence
detection, filtering, input segregation, nonlinear processing, and logical operations
[22, 23]. Therefore, dendrites are essential for accurately modeling neuronal integration
and output at the single-cell level, contributing significantly to the computational power
of neural networks. However, the current theoretical framework for modelling dendrite
properties consists of complex equations with numerous free parameters, making it
mathematically intractable and impractical for use in Spiking Neural Networks (SNNs).
Simulators have been proposed that enable dendrites to operate semi-independently from
the soma and perform complex functions, enhancing the computational capabilities of
the model [24], but not being scaled to SNNs.

1.2 The proposed system

In this study, we proposed tiny dendritic Leaky Integrate-and-Fire (dLIF) SNN
that embraces dendritic computations by representing them as small RC circuits to
provide heterogeneity to the network [25]. This integration contributes to improved
computational efficiency and balanced performance. The model is based on two hidden
layers, with dendritic inputs that act as rich inputs, considering how biological neurons
receive, process, and transmit information. Notably, the simplicity of this model allows
for memory utilization of approximately 1.5 MB with less than 300K parameters.

1.3 Novelty and significance

This work leverages the potentials of dLIF models for seizure detection, which enables:

(i) Direct analysis in the time domain without relying on traditional time-frequency
transformation techniques like STFT or FFT. This approach simplifies the pre-
processing analysis, potentially reducing power and hardware requirements.
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Figure 1. Biological Inspired Neuron Model. The main components of the brain are
neurons, which have different parts as the dendrites, soma, and axon (A). Different
types of biological-inspired neural networks, like LIF Neurons, are built from the Soma
and do not consider the dendrites as part of their system. Therefore, it minimizes the
heterogeneity of an actual brain. Those models often use Time-Frequency Analysis to
enhance efficiency (B). However, this analysis can be computational and power costly;
therefore, adding heterogeneity by incorporating dendrites in the LIF-Spiking Neurons
allows time-domain series processing. B1-n: Branches, Nb: Number of Branches, Wn

= Synaptic Weights.

(ii) Tiny model by its minimal requirement of only two hidden layers, enhancing its
efficiency below 300K parameters.

(iii) Down-sampling scalp-EEG signal (i.e 250 Hz to 125 Hz) yield similar performance,
paving the way for rapid, energy-efficient training systems.

(iv) Efficacy across different brain activity recordings is demonstrated through rigorous
testing using both scalp-EEG and iEEG datasets.

(v) Out-of-sample seizure detection by training with adult patients montages and
testing in children montages.

2 Methods

2.1 Datasets

There are 4 datasets used in this work: the Temple University Hospital (TUH) Corpus
scalp-EEG, the Children’s Hospital Boston (CHB-MIT) dataset, the Freiburg Hospital
(FB), and the intracranial-EEG EPILEPSIAE dataset. Fig. 2 illustrates a summary of
the TUH dataset used, providing key statistics related to its data. This dataset is divided
into two categories: one set of training and one set of validation, offering a comprehensive
overview of the dataset’s contents. It includes information such as the number of patients
with and without seizure sessions. It also shows the inter-ictal and ictal periods used
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Figure 2. An overview of the TUH dataset used for training and validation.

Table 1. Summary of datasets being employed in this work.
Dataset Location EEG modality No. of channels Validation type Age Group

TUH USA Scalp 22 In-sample Adult
CHB-MIT USA Scalp 22 Out-of-sample Pediatric

EPILEPSIAE EUROPE Intracranial 30-114 In-sample Adult
FB EUROPE Intracranial 6 In-sample Adult

(Background and Seizure duration). With its large volume of files, the TUH dataset from
America offers vast data and served as a meaningful scalp-EEG dataset as it is the largest
dataset worldwide. Most of these patients are also adults. We performed out-of-sample
generalization in the CHB-MIT dataset for a non-montage and age-dependent systems.
We randomly selected 17 patients; the most significant channels were the same number
as the channels trained in the TUH dataset. We compared with previous studies that
utilize different model structures, with time-frequency domain and in-sample testing.
We explored further how our model can recognize and train with iEEG signals. Thereby,
we utilize the FB and EPILEPSIAE datasets. We trained and tested in-sample in 14
patients as these datasets do not possess the same montages and different amounts
of channels across the EPILEPSIAE, varying from 30 to 120 electrodes, utilizing a
sampling rate of 256 Hz. The EPILEPSIAE dataset contains high-quality, long-term
EEG, intracranial EEG, and concurrently recorded ECG data. Intracranially implanted
strips, grids, and/or stereotactically (stereo-EEG) implanted depth electrodes are used
in patients with invasive recordings. The EPILEPSIAE dataset possessed very long
interictal periods (background data between ictal events), which is a much more realistic
iEEG dataset and makes our false negatives highly reliable. The FB dataset contains 21
intractable epilepsy patients with iEEG recordings. In this dataset, data was recorded
from 6 selected electrodes, at a sampling rate of 256 Hz, where three are epileptogenic
regions, and the rest are from other remote areas. 12 patients with 311.4 hours recording
length are tested because of the availability of the dataset. A summary detailed of these
datasets can be seen in Table 1.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307841doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307841


Tiny dLIF 6

2.2 Pre-Processing

We utilized the Independent Component Analysis (ICA) technique to address the
challenges related to scalp-EEG data artifacts removal. Initially, the EEG signals
were split into 12-second segments, and the ICA algorithm was applied to decompose
the signals into 19 independent components using Blind Source Separation (BSS).
ICA separates EEG signals into statistically independent components, represented in
Equ. (1),

T ≈ MAT (1)

where T contains the EEG data, M contains the time information, and A contains
the weights for topographic maps. We used Pearson correlation to identify independent
sources strongly associated with eye movement, which was detected from two EEG
channels, ’FP1’ and ’FP2’. These identified sources related to eye movement were
removed from the independent components, resulting in EEG signals free from eye
movement artifacts. Subsequently, we implemented power-line noise removal for both
the FB and iEEG-EPILEPSIAE datasets at 50 Hz, employing a notch filter sourced
from the MNE Package. For the TUH and CHB-MIT datasets, we applied a notch
filter at 60 Hz. This measure was imperative due to detecting noise within the specified
frequency range via power spectrum analysis.

2.3 SNN structure

2.3.1 dLIF Spiking Neuron Structure: The dLIF neuron model enhances the classic
LIF-based spiking neuron by introducing multi-timescale memory on dendrites, governed
by Equ. (2), (3), (4) where u represents the soma’s membrane potential, β is the timing
factor, R is membrane resistance, d is the dendritic branch index, and uth is the firing
threshold [25].

ut+1 = βut + (1− β)
∑
d

Rit+1
d − otuth (2)

it+1
d = αdi

t
d + (1− αd)I

t+1
d (3)

ot+1 = H(ut+1 − uth) (4)

The Heaviside function H(·) regulates spiking. Synaptic input on the dth dendritic
branch is the sum of feedforward and recurrent inputs as shown in Equ. (5), defined by
sparse vectors Wd and Ud [25].

I t+1
d =< Wd, X

t+1 > + < Ud, o
t > (5)

Extending this to dLIF-SNN involves incorporating layer information as shown in
Equs. (6), (7), (8), with synaptic currents on the dth branch as shown in Equ. (9),
determined by matrix forms of feed-forward and recurrent synaptic weights (Wd and
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Ud), which are again sparse, considering only valid synapses connected to dendritic
branches in the next layer [25].

ut+1,l = β ⊙ ut,l + (1− βl)⊙R
∑
d

it+1,l
d − ot,luth (6)

it+1,l
d = αl

d ⊙ it,ld + (1− αl
d)⊙ I t+1,l

d (7)

ot+1,l = H(ut+1,l − uth) (8)

I t+1,l
d = W l

do
t+1,l−1 + U l

do
t,l (9)

2.3.2 Learning rule: The Backward Propagation Through Time (BPTT) algorithm
has been adopted better to handle the unique characteristics of spiking neural networks.
During training, model parameters such as synaptic weights (W ) and timing factors
(α̂, β̂) are automatically learned to optimize network performance based on the loss
function [25]. The Equ. (10), (11), (12) shows the details of the BPTT where δ denotes
the gradient of the loss function L concerning specific variables [25]. The BPTT for dLIF-
SNN utilizes gradient descent with the chain rule to update parameters while dealing
with non-differentiable spiking activities using a soft multi-Gaussian curve shown in
Equ. (13) as a surrogate gradient function, with parameters like γ, h which will influence
the magnitude, σ, s which will influence the width [25].

δut,l = βl ⊙ δut+1,l +H ′ ⊙ δot,l (10)

δit,ld = (1− βl)R⊙ δut,l + αl
d ⊙ δit+1,1

d (11)

δot,l = −uthδu
t+1,l +

∑
d

W l+1T

d (1− αl+1
d )⊙ δit,l+1

d +
∑
d

U lT

d (1− αl
d)⊙ δit+1,l

d (12)

H ′ =
δot

δut
= γ(1 + h)N(ut|Uth, σ

2)− γhN(ut|σ, (sσ)2)− γhN(ut| − σ, (sσ)2) (13)

Gradients of parameters are shown in Equ. (14), (15), (16) are computed using this
surrogate gradient function, particularly around the firing threshold (uth) where neurons
emit spikes, enabling efficient training and improved performance of dLIF-SNNs [25].

δW l
d =

∑
t

(1− αl
d)⊙ δit,ld ot,l−1T , δU l

d =
∑
t

(1− αl
d)⊙ δit+1,l

d ot,l
T

(14)

δβ̂l =
∑
t

δβt,l ⊙ (1− δβt,l), δβt,l = ut−1,l ⊙ δut,l −R
∑
d

it,ld ⊙ δut,l (15)

δα̂l
d =

∑
t

δα̂t,l
d =

∑
t

αt,l
d ⊙ (1− δαt,l

d ), αt,l
d = it−1,l

d ⊙ δit,ld − I t,ld ⊙ δit,ld (16)
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Figure 3. Neuromorphic Detecting System using dSNN. Bio-signals such as scalp-
EEG and iEEG are preprocessed using a notch filter for power-line noise removal or
ICA to separate blind-source components and then fed into a single two-layer dLIF for
detecting seizures. Nb: Number of branches (4), Hn: Hidden Neurons (100).

2.4 Implementation details and Performance metrics.

We employed cross-entropy as our loss function and a softmax function of the model’s
predictions to assess different performance metrics. We utilized the area under the
receiver operating characteristic curve (AUC-ROC or AUROC). Specifically, The AUC
captures both the sensitivity and specificity in a threshold-free score. We also provide
precision, recall, and F1-score metrics to evaluate the model performance across different
datasets. Precision measures the proportion of correctly identified positive cases among
all cases predicted as positive by the model. Recall measures the proportion of correctly
identified positive cases among all actual positive cases in the dataset. The F1-score
is the harmonic mean of precision and recall. It provides a single metric that balances
both precision and recall. In our experiments, it is worth noting that we performed
in-sample testing with the TUH, FB, and iEEG-EPILEPSIAE datasets. However, we
performed out-of-sample testing in the CHB-MIT dataset. A detailed diagram of the
system is represented in Fig. 3. The model was trained and tested on a V100 GPU.

3 Experimental Results

3.1 Scalp-EEG.

3.1.1 Training and Validation: Following the methodology outlined earlier, our
model was trained and validated using the TUH dataset. We successfully attained an
impressive AUC score of 81.4%. Our findings, as illustrated in Fig. 4 (A), highlight the
superior performance of our spiking model compared to non-spiking models. Notably,
our model’s performance rivals existing approaches within the time and time-frequency
domains, with fewer layers and memory needs, and in a spiking fashion. Table 2 provides
a comprehensive overview of the model performance across a range of metrics.
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Figure 4. Model Performance Results. We assessed our model’s effectiveness against
others using TUH Dataset, with a 12 s window Size and with Time or Time-Frequency
Inputs (A). AUC-ROC in-sample testing results for both TUH and FB datasets shows
an optimal balance between True Positive Rate and False Positive Rate (B).

Table 2. TUH Results for down-sampling test. It is worth noting that a decrease of
50% in the original sampling frequency leads to similar performance.

EEG Sampling Rate AUROC AUPRC Precision Recall F1-Score
250 Hz 81.4 90.1 84.4 81.3 83.1
125 Hz 81.0 89.2 84.2 74.9 79.2

3.1.2 Preliminary findings in down-sampling the signal leads to similar
performances: In our investigation, we examined the effects of reducing the sampling
rate in the TUH dataset on our model’s performance. Impressively, our results
showcased a remarkable level of robustness, with minimal drops in performance observed
across key metrics such as AUROC, AUPRC, and Precision. Notably, while there
was a slight decline of approximately 7% in Recall and 4% in F1-Score, the overall
performance remained commendable. These findings support the hypothesis that
our model prioritizes detection biomarkers located in lower frequencies over higher
frequencies. This assertion is further substantiated by previous research [26]. Our
results are represented in Table 2.

3.1.3 Out-of-Sample generalization in children: Non-Montage and Non-Age
Specific: This study investigated out-of-sample generalization in children, employing
a non-montage and non-age-specific approach. Our research methodology involved
rigorous testing utilizing the CHB-MIT dataset, a widely recognized repository for
pediatric EEG data. Unlike previous models predominantly operating in the time-
frequency domain, our novel approach focuses solely on the time domain, offering a
unique perspective on EEG analysis in pediatric populations. Notably, our model
adopts a spiking paradigm, further distinguishing it from existing methodologies.
Importantly, we emphasize the significance of out-of-sample validation, diverging from
the conventional in-sample evaluations commonly observed. Through meticulous
analysis, we reveal how our framework, emphasizing time-domain evaluation and in-
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Table 3. CHB-MIT Results. Comparison of AUC-ROC across different models with
time-frequency vs time-domain input (ours) and in sample vs out-sample (ours).

In-Sample Out-of-Sample
Time-Frequency Domain Time Domain

Patient ID CNN [27] Conv-LSTM [27] SNN-Conv-LSTM [27] dLIF-SNN
1 100.0 100.0 96.4 71.9
3 100.0 100.0 92.3 51.1
5 100.0 100.0 95.3 66.4
6 94.9 93.4 88.8 51.1
7 97.0 96.5 92.0 87.3
8 99.4 98.2 72.5 79.8
9 99.7 100.0 96.1 98.3
10 100.0 100.0 97.5 86.6
11 98.8 98.9 81.2 98.6
15 99.9 99.7 73.0 50.7
17 88.2 91.0 87.7 88.1
18 98.5 96.9 86.0 63.0
19 95.4 99.8 95.9 72.0
20 97.1 97.7 87.9 68.8
21 99.3 100.0 92.5 65.7
22 100.0 100.0 96.6 95.6
23 100.0 100.0 95.9 95.0

Average 98.13 98.36 89.9 75.9

sample testing, differs from existing methodologies. Importantly, while our model does
not demonstrate superiority in all aspects, it offers valuable insights by considering
spiking models and temporal input data often overlooked in prior research. Results can
be observed in Table 3, which demonstrate the need for embracing biological neural
networks.

3.2 Intracranial-EEG

3.2.1 Training and Validation: We conducted extensive analyses using data from
both the FB and EPILEPSIAE datasets. Our examination involved multiple patients
from the FB dataset, where we assessed our model’s performance in the time-frequency
domain and compared it with alternative models. Surprisingly, even when utilizing only
temporal input, our model exhibited efficacy on par with non-SNN and conventional
SNN methods, achieving an impressive average AUROC score of 93.4. For the
EPILEPSIAE dataset, we performed multiple training as each patient exhibited different
channel numbers. Our study yielded notable outcomes across various evaluation metrics,
including AUPRC, Sensitivity (Recall), Precision, and F1 Score, with impressive values
of 92.0, 85.0, 95.0, and 89.0, respectively. These results, along with detailed comparative
findings presented in Table 4, Fig. 4(B) and in Table 5, underscore the promising
capabilities of our proposed approach in the analysis of iEEG signals.
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Table 4. FB Results. Comparison of AUC-ROC across different models with time-
frequency vs time-domain(ours).

Time-Frequency Domain Time Domain
Patient ID CNN [27] Conv-LSTM [27] SNN-Conv-LSTM [27] dLIF

1 100.0 100.0 100.0 100.0
3 100.0 100.0 93.7 80.2
4 100.0 100.0 99.9 96.1
5 85.0 84.8 84.4 100.0
6 86.8 90.6 92.4 53.3
14 80.5 92.6 85.6 100.0
15 93.3 99.1 89.5 100.0
16 93.4 96.1 85.7 99.0
17 100.0 100.0 97.3 94.9
18 100.0 100.0 98.5 99.1
20 94.8 99.1 94.5 99.2
21 98.8 97.5 91.4 99.7

Average 94.4 96.7 92.7 93.4

Table 5. iEEG-EPILEPSIAE Results. Training and testing occur independently for
each patient.

Patient ID Gender NoE AUPRC Sensitivity Precision F1 Score
1 F 66 78.1 71.2 70.0 71.1
2 F 30 100.0 100.0 100.0 100.0
3 M 114 96.1 92.3 100.0 96.1
4 F 75 97.2 93.1 100.0 96.2
5 M 82 80.3 50.3 100.0 67.1
7 M 60 98.1 92.1 100.0 96.2
8 M 38 60.2 50.1 68.0 58.1
9 M 92 99.2 97.2 100.0 98.1
10 M 56 94.1 75.3 100.0 86.6
11 F 46 100.0 100.0 100.0 100.0
12 F 124 99.1 95.1 100.0 97.1
13 F 62 98.0 88.3 100.0 94.2
14 F 121 95.4 89.2 97.3 93.1
15 M 58 91.1 93.1 89.1 91.2

Average - - 91.9 84.8 94.6 88.9

M: Male, F: Female, NoE: Number of invasive electrodes.

4 Discussion

Our next step is to incorporate this biologically plausible algorithm for a seizure
prediction system and enhance its robustness for continuous learning and low
computational preprocessing [28]. We foresee that this algorithm will be robust against
catastrophic forgetting as it does not depend on back-propagation, and this phenomenon
is present in back-propagation domains [29]. BPTT updates RNN parameters on an
instance by back-propagating the error in time over the entire sequence length, leading
to poor trainability due to the well-known gradient explosion/decay phenomena. Given
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the exceptional performance of Forward Propagation Through Time (FPTT) in previous
studies with EEG data for seizure detection, we will integrate this approach into our
model training framework [30] to deal with the challenges of BPTT. Although this
training system takes considerable computation time per epoch, it is still more efficient
than proposed delay hardware dendritic systems [31].

5 Conclusion

In this study, we assessed the advantages of compartmental models that enabled the
analysis of effective time-domain. By only utilizing basic pre-processing and non-power
consuming techniques such as power-line noise in real-world scenarios of iEEG datasets
such as FB and EPILEPSIAE, and ICA on scalp-EEG datasets as the meaningful TUH
dataset, we have demonstrated the capabilities to exhibit efficient performance while
maintaining a low-power consumption spectrum. By only utilizing two hidden dendritic
layers, we believe this study shows the possibility of more embedded AI applications for
long-term data, demonstrating that more dynamic and biological neural networks are
necessary. Future studies will merge liquid-time constant spiking neurons with dendritic
neurons for more dynamic features.
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