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Key Points 

Question: No two individuals with schizophrenia have the same anatomical change in the 

brain. Is this variability a fixed feature of schizophrenia or does it become more pronounced 

at later stages? Is this variability explained by a putative ‘spreading pattern’ of gray matter 

deficits originating in one part of the brain and diffusing elsewhere? 

Findings: In 1,792 individuals with schizophrenia, neuroanatomical variability is not a fixed 

feature; it is more pronounced at the illness onset but less prominent in later stages. The 

neuroanatomical variability is associated with various molecular and neurobiological 

processes implicated in the neurodevelopmental etiology of schizophrenia. Differences in 

the site of ‘origin’ of gray matter deficits in each individual with schizophrenia explains most 

of the observed variability. 

Meaning: Our work finds support for a space-time interaction along a shared 

pathophysiological continuum (network-based trans-neuronal diffusion), as a possible 

explanatory model for inter-subject variability. These findings contribute to the 

understanding that inter-individual variability in schizophrenia may arise from a common 

cohesive process that varies in its state (across time) and space (across brain regions). 

This also raises the question of what dynamic processes contribute to the reducing 

heterogeneity over time in schizophrenia. Answering this question will be a key test to the 

neurobiological validity of the concept of schizophrenia.  
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Abstract 

Importance: Schizophrenia is characterized with greater variability beyond the mean 

differences in brain structures. This variability is often assumed to be static, reflecting the 

presence of heterogeneous subgroups, but this assumption and alternative explanations 

remain untested. 

Objective: To test if gray matter volume (GMV) variability is more less in later stages of 

schizophrenia, and evaluate if a putative ‘spreading pattern’ with GMV deficits originating 

in one part of the brain and diffusing elsewhere explain the variability of schizophrenia. 

Design, settings, and participants: This study evaluated the regional GMV variability 

using MRI of 1,792 individuals with schizophrenia and 1,523 healthy controls (HCs), and 

the association of GMV variability with neurotransmitter and transcriptomic gene data in 

the human brain. 

Main outcomes and measures: Regional variability was evaluated by comparing the 

relative variability of patients to controls, using the relative mean-scaled log variability ratio 

(lnCVR). A network diffusion model (NDM) was employed to simulate the possible 

processes of GMV alteration across brain regions. 

Results: Compared with HCs, greater lnCVR (pFDR<0.05) was found in 50 regions in the 

whole patient group (n=1792; 762 females; mean[SD] age, 29.9[11.9] years), at a much 

greater frequency (p=5.0×10-13) in the first-episode drug-naïve subsample (73 regions) 

(n=478; mean[SD] illness duration, 0.548[0.459] years), compared to the chronic 

medicated subsample (28 regions) (n=398; mean[SD] illness duration, 14.0[10.4] years). 

The average lnCVR across all regions was greater in the first-episode than chronic 

subsample (t=10.8, p=1.7×10-7). The areas with largest lnCVR were located at 

frontotemporal cortex and thalamus (first-episode), or hippocampus and caudate (chronic); 

there was a significant correlation with case-control mean difference (r=0.367, p=6.7×10-

4). We determined a gene expression map that correlated with the lnCVR map in 

schizophrenia (r=0.491, p=0.003). The NDM performed consistently (72.1% patients, 

pspin<0.001) in replicating GMV changes when simulated and observed values were 

compared. 

Conclusion and relevance: Brain-based heterogeneity is unlikely to be a static feature of 

schizophrenia; it is more pronounced at the onset of the disorder but reduced over the long 

term. Differences in the site of ‘origin’ of GMV changes in individual-level may explain the 

observed anatomical variability in schizophrenia.  
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1. Introduction 

Many psychiatric disorders, including schizophrenia, are heterogeneous in their clinical 

presentation and phenotypic markers such as brain measures. This heterogeneity may 

result from the multitude of mechanisms that contribute to the eventual clinical features, 

resulting from a lack of single genetic, molecular, cellular or mesoscale brain markers of 

schizophrenia [1, 2]. On the other hand, this also provides an opportunity for precision 

medicine approaches. For example, we may be able to ‘split’ schizophrenia into biologically 

more homogeneous subtypes [3], identified from phenotypic differences (e.g. brain 

structure [4]), that may differ in their clinical trajectories and respond differently to 

treatments [5, 6]. As a result, phenotypic heterogeneity is increasingly being viewed as a 

feature of interest in the causal models of schizophrenia. 

One of the expectations when studying brain-based heterogeneity in schizophrenia is that 

the homogenously affected regions reflect a common pathophysiological process, while 

regions with high variability reflect non-overlapping subtypes [1, 7]. This expectation 

follows an implicit assumption that regional heterogeneity is a static feature that does not 

vary over illness course, which is yet to be tested in schizophrenia. Secondly, if high 

variability is concentrated in regions without a notable mean difference (i.e., no 

schizophrenia vs. controls effect), this supports the existence of different subtypes with no 

overlapping structural effects. On the other hand, the regions that show highest mean 

difference may also show the highest variability, if the same causal mechanism results in 

quantitative variations due to compensatory forces operating at these regions [8, 9]. The 

relationship between mean effect and variability is yet to be studied in schizophrenia. 

Structural brain imaging studies consistently demonstrate lower gray matter volume (GMV) 

in schizophrenia [10, 11], which progresses over time across various stages of the illness 

[12-14]. Interestingly, recent studies suggest that the spatial pattern of GMV alterations 

associated with schizophrenia is not random, but rather shaped by the underlying 

architecture of brain networks [15]. In the context of anatomical heterogeneity, this opens 

up the possibility that each person with schizophrenia may have a distinct site of origin of 

GMV changes, but a diffusion or transneuronal ‘spread’ of tissue reduction along the 

network architecture may occur over time [16]; this putative ‘space-time interaction’ along 

the connectome structure can produce GMV variability despite a common mechanistic 

process operating across subjects. This will result in high variability of structural changes 

in early stages, but lower variability as the illness progresses and spatial convergence 

occurs. The contribution of connectomic architecture to anatomical heterogeneity in 

schizophrenia remains unexplored to date. 

Brain network can serve as conduits for the spread of pathology, allowing illness processes 

originating in one region to propagate and affect distributed systems [17, 18]. The network-

based ‘spreading’ pattern is initially observed in neurodegenerative disorders [19] and may 

also play a role in neuropsychiatric disorders such as schizophrenia [20, 21]. Recent 

studies show that cross-sectional cortical alterations across the course of schizophrenia 

strongly adhere to the organization of brain network architecture [20]. Another study also 
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reports that longitudinal GMV changes in schizophrenia are indeed constrained by brain 

network architecture, consistent with expectations for a network-based ‘spreading’ pattern 

[21]. These evidences are based on group-level GMV difference between patients and 

controls; whereas inter-individual differences among patients are crucial for mapping 

network-based ‘spreading’ pattern at the individual level. 

The first aim of the study is to comprehensively evaluate the brain structural heterogeneity 

in cross-sectional brain MRI data of 1,792 individuals with schizophrenia and address three 

specific questions. First, we tested for a systematic relationship between overall (mean) 

changes in GMV and variability in schizophrenia. Second, we tested if the anatomical 

heterogeneity is more pronounced in later stages of schizophrenia. Third, we tested if a 

putative diffusion process with GMV deficits originating in one part of the brain and 

spreading elsewhere explain the anatomical heterogeneity of schizophrenia. To this end, 

we quantified patients’ individual deviations from the normative level from 1,532 healthy 

controls and employed a network diffusion model [22] to simulate specific spatial patterning 

of GMV alteration. Additionally, we explored the association of brain variability in 

schizophrenia with neurotransmitter receptor expression distribution and transcriptomic 

gene expression data in the human brain. This allowed us to identify the processes 

contributing to brain structural alteration at an individual level, and unveiled the diversity of 

brain phenotypes with differential pathophysiological ‘sources’.  
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2. Methods 

2.1 Sample 

Discovery sample. The discovery sample included cross-sectional magnetic resonance 

imaging (MRI) T1-weighted scans from a total of 1,799 individuals diagnosed with 

schizophrenia (762 females, mean age=29.9±11.9 years) and 1,532 healthy controls (702 

females, mean age=31.3±11.8 years). Details of demographics, clinical characteristics, 

and inclusion/exclusion criteria for each cohort are described in the Supplementary Table 

1-2. All data obtained approval from their respective local institutional review boards or 

ethics committees, and written informed consent was obtained from all participants. This 

study was conducted under the approval of the Medical Research Ethics Committee of 

Fudan University. 

External validation data. An external validation data included MRI-derived cortical 

thickness/subcortical volume statistical data in schizophrenia. Summary statistics (i.e., 

effect sizes for case-control differences) were obtained from ENIGMA data including over 

4,000 scanned individuals with schizophrenia against almost 5,000 healthy controls in 

published studies [23, 24]. 

 

2.2 MRI-derived gray matter volume measurements 

Brain images were processed by using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). 

Regional gray matter volume (GMV) was quantified by each of 68 cortical regions in the 

Desikan-Killian atlas [25], along with 14 subcortical regions including bilaterally thalamus, 

caudate, putamen, pallidum, hippocampus, amygdala and accumbens. Regional GMV 

measure was adjusted by regressing out the factors of no interest, such as sex, age, 

square of age, total intracranial volume (TIV) and site [5]. Sample outliers were removed if 

any of regional volume > 5 standard deviations away from the group-level average. A total 

of 3,315 subjects (1,792 patients) were included after quality control. 

 

2.3 Variability measures in regional gray matter volume 

To explore whether individuals with schizophrenia demonstrate higher variability of regional 

GMV, we computed the variability by comparing the relative variability of patient to control 

measures, using the log variability ratio (lnVR) as an index [1]. We used a relative mean-

scaled variability (lnCVR), which accounts for differences in mean GMV [1]. The lnVR and 

lnCVR are given by the equation: 

lnVR = ln (
𝑠𝑝

𝑠𝑐
) +

1

2(𝑛𝑝 − 1)
−

1

2(𝑛𝑐 − 1)
 

lnCVR = ln (
𝑠𝑝/𝑚𝑝

𝑠𝑐/𝑚𝑐
) +

1

2(𝑛𝑝 − 1)
−

1

2(𝑛𝑐 − 1)
 

Where sp and sc are the sample standard deviations, mp and mc are the sample means, 

and np and nc are the sample sizes for patient and control groups, respectively. 

 

2.4 Individual deviation relative to healthy controls 

We quantified GMV difference in each patient compared to the healthy control group by 

using z score [5]. Specifically, for each patient i and a given region j, the regional GMV 
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measures were further transformed to z scores by the following: 

 

𝑧 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) =
𝑚𝑐 − 𝐺𝑀𝑉(𝑖, 𝑗)

𝑠𝑐
 

Where mc is the sample mean of control group, sc is the standard deviation of control group, 

and GMV(i, j) is the covariates-adjusted GMV of region j of patient i. 

In this way, patient-specific GMV changes were estimated as z scores, which quantify the 

degree of deviations relative to an average of healthy controls. A higher z score for each 

patient signifies a greater deviation degree from the normal level, indicating a smaller GMV 

in this context. We also calculated the percentage of patients whose deviation was in the 

direction of reduction (PD-) or increase (PD+) in regional GMV compared to the normative 

levels (beyond the threshold of z score>1 or z score<-1). 

 

2.5 Statistical analysis 

2.5.1 Patient-control comparison. Two sample t test was performed to compare the 

mean difference in covariates-adjusted regional GMV between patients and controls. 

Permutation test was used to compare the variability difference in regional lnCVR between 

patients and controls (Supplementary Materials). FDR correction was conducted for a 

total of 82 regional-level multiple comparisons. 

2.5.2 Spatial correlation. Spearman correlation tests were conducted to investigate 

associations (1) between two case-control mean difference (i.e., effect sizes) maps in 

discovery sample and validation sample; (2) between variability map (i.e., lnCVR) and 

effect size map; (3) between lnCVR and individual deviation to smaller GMV (i.e., PD-); 

and (4) between lnCVR and individual deviation to larger GMV (i.e., PD+). Spatial 

permutation test (i.e., spin test) was further employed for spatial autocorrelation adjustment 

(Supplementary Materials). FDR correction was utilized for multiple comparisons. 

 

2.6 Transcriptomic analysis 

We investigated the association between transcriptome and regional variability and 

individual deviation in schizophrenia by using Allen Human Brain Atlas dataset (AHBA) 

(http://human.brain-map.org). Details of transcriptomic analysis are described in 

Supplementary Materials. Briefly, partial least squares (PLS) correlation analysis [26] 

was used to examine the association of gene expression levels for 12,668 genes 

expressed in human brain with regional variability and individual deviation in schizophrenia. 

The associated genes with an FDR corrected p<0.05 was extracted for the gene 

enrichment analysis using Metascape [27]. 

 

2.7 Neurotransmitter receptors and transporters analysis 

We investigated the relationships between regional variability (and individual deviation) in 

schizophrenia and neurotransmitter systems (Details are provided in Supplementary 

Materials). We used whole-brain positron emission tomography (PET) images across a 

cohort over 1200 healthy individuals [28]. Using these data, we examine the association of 

the lnCVR map (PD- and PD+ maps) in schizophrenia with neurotransmitter maps 

including dopamine (D1, D2, and DAT), norepinephrine (NAT), serotonin (5-HT1a, 5-HT1b, 
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5-HT2a, 5-HT4, 5-HT6, and 5-HTT), acetylcholine, glutamate (mGluR5 and NMDAR), 

gamma-aminobutyric acid (GABAa), histamine, cannabinoid, and opioid. 

 

2.8 Network diffusion model 

We employed a classical algorithm known as the NDM [22] to simulate the specific spatial 

patterning of GMV alterations through a putative diffusion process within a brain network. 

NDM has been applied in schizophrenia, revealing specific spatial patterning of GMV 

changes across different stages of psychosis [21]. Details of NDM are provided in 

Supplementary Materials and briefly described here. In NDM, pathological progression 

is assumed to be a diffusive propagation between connected brain regions, as described 

by the equation: 

 

𝑓(𝑡) = 𝑒𝛽𝐻𝑡𝑓0 

 

Where t is the model diffusion time, f(t) is a vector describing the pattern of diffusion in 

each region at time t, β is a diffusivity constant, and H is the Laplacian of the brain network, 

and f0 is the initial distribution of pathology at t=0. 

We used a seed-searching approach to detect the optimal seed for modeling. Specifically, 

we repeatedly initialized the model by using each of the 82 regions as the starting seed. 

We further computed the Spearman r values to determine whether such a diffusion process 

from specific seed region matched GMV changes from empirically observed data. An 

acceptable performance by NDM was defined as corrected pspin<0.001. In this way, it was 

able to determine the optimal connectome type and optimal seed region for NDM 

simulation of both group-level and individual-level GMV changes.  
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3. Results 

3.1 Mean difference in regional gray matter measures 

We found significant group differences of mean GMV in 73 brain regions (p<0.05, FDR 

corrected) (Supplementary Table S3). Most regional mean volumes were significantly 

lower in patients compared with healthy controls. Only bilateral pallidum volumes were 

significantly larger in patients. The regional effect sizes of group mean difference are 

mapped to a brain template (Figure 1a); the largest effect size is located at bilateral 

hippocampus (Supplementary Table S3). Consistent with another independent sample 

over 4000 individuals with schizophrenia, the effect size brain map showed a high spatial 

correlation (r=0.678, p=2.7×10-12) with the brain map of case-control difference collected 

from ENIGMA data (Supplementary Figure 1). 

 

3.2 Variability difference in regional gray matter measures 

We calculated each regional lnCVR in the whole sample and two independent subsamples 

at early or late illness stages (first-episode drug-naïve subsample [n=478, age=23.1±7.6 

years, 239 females, illness duration=0.548±0.459 years] and chronic medicated 

subsample [n=398, age=37.9±12.1 years, 139 females, illness duration=14.0±10.4 years]). 

Figure 1b-d show regional lnCVR values across all brain regions by mapping them to a 

brain template. Compared with healthy controls, significant greater lnCVR (p<0.05, FDR 

corrected) was found in 50 regions in the whole patient group, at a much greater frequency 

in the first-episode group (73 regions), compared to the chronic group (28 regions; Chi-

square test, p=5.0×10-13). The greater lnCVR in first-episode than chronic group was also 

replicated in females (p=2.7×10-21) or males (p=9.5×10-8) (Supplementary Materials). 

The areas with largest variability were mainly located at the frontotemporal and thalamus 

for first-episode patients, or the hippocampus and caudate for chronic patients (Figure 1b-

d). Significantly lower variability than controls was not found in any regions in the whole 

patient group or in the first-episode group, but in bilateral pericalcarine, left cuneus and left 

parahippocampal in the chronic subsample (p<0.05, FDR corrected). In addition, the 

average lnCVR across all regions was higher in the first-episode subsample than chronic 

subsample in a head-to-head comparison (t=10.8, p=1.7×10-7) (Figure 1e). 

Supplementary Table S4 provides statistical results of regional-wise case-control 

comparison in each group. We also derived a score by ranking ratio between the effect 

size in group-level mean difference and variability for each region to identify regions that 

are ‘invariant’ in gray matter reduction (Supplementary Materials). 

 

3.3 Individual deviation from the normal level 

We measured the individual deviation, by quantifying the proportion of patients whose 

regional GMV exhibited an ‘abnormal’ deviation to reduction (PD-) or increase (PD+) 

relative to the average of healthy people (Figure 2a and Supplementary Table S5). The 

highest proportions of patients had PD- at bilateral thalamus (27.0% patients in the right 

and 26.1% in the left thalamus (Figure 2b)) and PD+ at basal ganglia sub-regions. 

Specifically, 19.3%, 18.8% and 18.0% patients showed individual-level volume increase in 

the right pallidum, right and left caudate, respectively (Figure 2c). We also computed PD- 
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and PD+ in first-episode drug-naïve subsample and chronic subsample (Supplementary 

Table S5). 

 

3.4 Spatial correlation between regional variability and volume reduction 

We found that the lnCVR map was significantly spatially correlated with effect size map in 

case-control difference (r=0.367, p=6.7×10-4) (Figure 1f). The first 10 regions with highest 

lnCVR (except bilateral caudate regions) showed obvious volume reduction in patients 

(Supplementary Table S4). Furthermore, it showed a stronger spatial correlation (r=0.489, 

p=7.4×10-6), when correlation test was limited on these regions with smaller volume (i.e., 

Cohen’s d>0) in patients relative to controls (Figure 1g). In addition, the lnCVR was 

significantly spatially correlated with the PD- map (r=0.478, p=5.6×10-6) (Figure 2d), but 

not with the PD+ map (r=0.025, p=0.824) (Figure 2e). Details of spatial correlation results 

are provided in Supplementary Table S6. 

 

3.5 Molecular mechanisms of regional variability in schizophrenia 

We further conducted transcriptomic analysis to determine which genes were associated 

with regional lnCVR and PD- (PD+) in schizophrenia. We found that the spatial map of 

PLS1 (Figure 3a) was positively correlated with the lnCVR map (r=0.491, p=0.003; Figure 

3b). We ranked the genes according to their weights to PLS1 (Figure 3c), resulting in a 

total of 829 significant genes (FDR p<0.05) for enrichment analysis, which revealed the 

top 20 biological processes (Figure 3d). In cell type signatures, these genes were enriched 

in the multiple neuron types, such as GABAergic, serotonergic and dopaminergic neurons 

(Figure 3e). Human disease-associated gene enrichment analysis showed that these 

genes are mainly enriched in the hypoplasia of corpus callosum (Figure 3f). 

There was a spatial association (r=0.391, p=0.022) between the PD- map and gene PLS1 

map (see Supplementary Figure 2 and Supplementary Materials). There was no 

significant spatial correlation between PD+ map and gene PLS1 map (r=0.216, p=0.219). 

In addition, we found significant correlations between brain variability map and 

neurotransmitter maps (Supplementary Table 7). 

 

3.6 Network-based diffusion modeling at group-level and individual-level 

We next employed the NDM to simulate the possible processes (i.e., spatial ‘spreading’ 

pattern) of GMV alteration across brain regions. We found that the group-level GMV 

difference in patients was successfully simulated by using the NDM in both discovery and 

validation samples (Supplementary Figure 3 and Supplementary Table 8). Temporal 

lobe regions (mainly the hippocampus) were consistently identified as the optimal source 

seed, across the three models, and across subsamples at different illness stages (first-

episode, drug-naïve, and chronic) (Supplementary Figure 3). A full list is provided in 

Supplementary Table 9 to show the model performances with each region being the 

starting point of NDM. This indicates that ‘spreading’ atrophy patterns starting at 

hippocampus, pars opercularis and thalamus are likely explanations for the variability seen 

in patients. 

At the individual-level, we found that the NDM can achieve an accepted performance 

(pspin<0.001) in the consistency between estimated values and observed values for 72.1% 
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patients (SZNDM, n=1,292) (Supplementary Table 10a). For these SZNDM patients, we 

further classified them into several subgroups based on the heterogeneity in optimal seed 

locations (Supplementary Table 10b). Figure 4 shows specific spatial patterns of GMV 

change in each spatial phenotype, indicating that ‘temporal cortex’ and ‘frontal cortex’ 

phenotypes account for the highest proportion of patients, reaching 24.2% and 13.6% 

respectively. Supplementary Table 11 shows regional comparison of GMV between 

patients and controls for each spatial phenotype. A detailed description is provided in 

Supplementary Materials. Together, we show the existence of neuroanatomically distinct 

phenotypes, which are characterized with differential spatial patterns of gray matter 

alterations in schizophrenia.  
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4. Discussion 

Our work assessed the inter-subject variability of regional GMV in schizophrenia. We found 

support for a space-time interaction along a shared pathophysiological continuum 

(network-based trans-neuronal diffusion), as a possible explanatory model for inter-subject 

variability. This allowed us to delineate the potential genetic and neurotransmitter basis for 

brain structural variability in schizophrenia without invoking the need for mechanistic 

subgroups. These findings contribute to the understanding that inter-individual variability 

in schizophrenia may arise from a common cohesive process that varies in its state (across 

time) and space (across brain regions). 

One of our main findings is that inter-individual differences of brain structure are vast in 

people diagnosed as schizophrenia. An earlier study has reported that schizophrenia is 

associated with greater variability (i.e., heterogeneity) of temporal cortex, thalamus and 

putamen [1], but this was limited to meta-analytical data. In addition to these regions [1], 

our individual level data found significant greater variability in more brain areas, including 

frontotemporal structures, hippocampus, basal ganglia and other sub-cortical regions. 

Interestingly, for the first time, we show the relationship between greater variability and 

illness stages, pointing out the exaggerated or hyper-variability in the first-episode drug-

naïve subsample, which is relatively less pronounced (despite significantly higher than 

controls) in patients with longer term illness. Our observations argue against the 

expectations [7] that inter-individual variability may increase in established cases as 

patients may vary across illness stages and severity, due to differences in treatment status, 

varied progression and ageing. 

The relatively large hyper-variability at the disease onset may imply either the numerosity 

of factors contributing to gray matter changes or the multiplicity of response states 

emerging from the converging effects of the various mechanistic factors in schizophrenia 

[29]. The latter explanation is supported by the observation that hyper-variability is more 

likely in those regions that show a shared mean reduction in patients. Furthermore, over a 

longer term, a reduction of hyper-variability with the emergence of hypo-variability in some 

regions occurs, likely a result of the convergence of the diverse etiogenic factors on a 

common path, thus reducing heterogeneity. The regional distribution of lower variability in 

schizophrenia (i.e., homogeneity) has been inconsistent in prior studies [1, 7, 30] (see more 

discussion in Supplementary Materials). 

Another finding shows that the inter-patient variability is related to several neurobiological 

processes closely linked to the etiology of schizophrenia during neurodevelopmental 

processes. Our data show that: (1) the genes whose expression is spatially associated 

with lnCVR in schizophrenia were mainly enriched for biological processes related to 

synaptic functions. Synaptic dysfunction is a long-standing hypothesis [31-33], holding the 

aberrant synaptic pruning during development as the etiology of schizophrenia. (2) Genes 

associated with lnCVR were also enriched in the midbrain GABAergic, serotonergic and 

dopaminergic neuron types, which have been demonstrated be involved in the etiology of 

schizophrenia [34]. This is also consistent with prior research elucidating multi-cellular 

correlates of cortical thinning in schizophrenia [35]. (3) lnCVR-related gene enrichment in 
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human diseases points out hypoplasia of corpus callosum. The etiopathology of 

hypoplastic corpus callosum [36, 37] is related to atypical brain connection, which has been 

generalized as ‘dys-connection syndrome’ in discussing the pathogenesis of schizophrenia 

[38, 39]. (4) Final, the high variability regions in first-episode schizophrenia were primarily 

located within frontotemporal cortex, a region that is said to be affected as a result of 

aberrant neurodevelopmental processes relevant to the early stage of schizophrenia [5, 

40]. Together, our study supports diversity in the etiology of schizophrenia, and suggests 

that multiple biological processes involved in neurodevelopment may ultimately manifest 

as individual differences in brain mesoscale structure in schizophrenia. 

Our modeling algorithm shows the potential to uncover the heterogeneity in 

pathophysiological processes of GMV change in schizophrenia. First, the group-level 

modeling identified the temporal lobe structure (mainly the hippocampus) as an optimal 

putative source of GMV change in schizophrenia. It was also replicated using independent 

ENIGMA data, and consistent with a prior NDM modeling in psychosis [21]. The 

hippocampus has been consistently implicated in the pathogenesis of schizophrenia [41, 

42] (also see [43]), highlighting hippocampal dysfunction during the early stages of the 

disease [44, 45]. Recent research suggests that dysregulation of glutamate 

neurotransmission, which initially occurs in the hippocampal CA1, leads to atrophy in other 

medial temporal areas and their connected regions [41, 46]. Furthermore, Lower volume 

in the CA1 is predictive of the transition to psychosis within a two-year timeframe [40]. 

Positron emission tomography (PET) imaging has also revealed a reduction in synaptic 

vesicle proteins in the hippocampus in schizophrenia [47]. In essence, the highly 

consistence of modeling results from two independent dataset demonstrates the 

robustness of NDM algorithm and reproducibility of hippocampus role as the ‘source’ of 

group-level GMV change in schizophrenia. 

In contrast, the individual-level modeling identifies the heterogeneity of pathophysiological 

processes, which can be characterized into several differential GMV change patterns 

(termed as ‘spatial’ phenotypes). This finding aligns with a recent study, which indicates 

distinct ‘sources’ of GMV losses related to disease stage, longitudinal progression, or 

antipsychotic medication [21]. The ‘sources’ of illness-related GMV loss were found in the 

hippocampus and the prefrontal cortex; whereas the ‘sources’ of antipsychotic-related loss 

were identified in somatosensory, motor, and cingulate regions [21]. Although the exact 

cause of difference among ‘spatial’ phenotypes is unclear, the result provides direct brain 

imaging evidence supporting the existence of brain phenotypic heterogeneity in 

pathophysiological processes of schizophrenia. These phenotypes could shed light on 

primary or common biological characteristics in the pathological mechanisms of 

schizophrenia, which may help delineate potential subtypes of this disorder. We also 

provide an approach to detect homogeneous people with shared focal ‘lesion’ for drug 

development and intervention target. 

The large sample size used for examining variability is a strength of this work; the inclusion 

of samples from various sites improves generalizability of findings across diverse cohorts, 

scanners, or locations. Despite this, our method has some limitations. While we employed 

harmonization procedures to reduce potential bias, it is essential for future multi-site 
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collaborations use a standard protocol. Second, we related the inter-subject variability map 

in schizophrenia with the gene expression brain map sourced from healthy individuals. The 

observed spatial association still needs to be verified on patient level genetic data. Finally, 

the NDM modeling was constructed based on cross-sectional data. Longitudinal studies 

are better suited for making inferences on ‘propagation’ or spreading of changes with the 

temporal progression of pathophysiological processes. 

In conclusion, this study offers novel insights into the diversity of neuroanatomical 

alterations in schizophrenia, emphasizing that brain-based heterogeneity is not a static 

feature of schizophrenia; it is more pronounced at the onset of the disorder but reduced 

over the long term. This heterogeneity is associated with various molecular and 

neurobiological processes implicated in the neurodevelopmental etiology of schizophrenia. 

Thus, the molecular etiological diversity, influencing neuroanatomical sites of origin of gray 

matter reduction in each individual with schizophrenia, may ultimately manifest as 

variability in brain’s mesoscale structure among patients. By presenting an approach to 

understand heterogeneity through individually distinct pathophysiological ‘sources’ of 

changes, our work also raises the question of what dynamic processes contribute to the 

reducing heterogeneity over time in schizophrenia. Answering this question will be a key 

test to the neurobiological validity of the concept of schizophrenia.  
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Data availability 

Data of COBRE, NMorphCH, FBIRN and NUSDAST were obtained from the SchizConnect, 

a publicly available website (www.schizconnect.org). The COBRE dataset was download 

from the Center for Biomedical Research Excellence in Brain Function and Mental Illness 

(COBRE) (http://coins.mrn.org/). The NMorphCH dataset was download from 

https://nunda.northwestern.edu/nunda/data/projects/NMorphCH. The FBIRN dataset was 

download from https://www.nitrc.org/projects/fbirn/. The NUSDAST dataset was download 

from the Northwestern University Schizophrenia Data and Software Tool. The DS000115 

dataset was download from OpenfMRI database (https://www.openfmri.org/). ENIGMA 

summary statistics of thinner cortical thickness map were obtained from ENIGMA toolbox 

(https://github.com/MICA-MNI/ENIGMA) (version 2.0.0, July, 2022). All data needed to 

evaluate the conclusions in the paper are present in the paper and/or the Supplementary 

Materials. 

 

Code availability 

Brain images were processed by using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).  

Gene enrichment analysis was performed using Metascape (https://metascape.org). The 

visualization of brain mapping images was conducted using ENIGMA Toolbox 

(https://enigma-toolbox.readthedocs.io/en/latest/index.html). The code for spatial 

permutation test is available at (https://github.com/frantisekvasa/rotate_parcellation).  
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Figure legends 

 

Figure 1. Group difference of mean volume and variability in regional gray matter 

(GM) measures between patients with schizophrenia and healthy controls. (a) 

Regional effect sizes of group difference in mean volume are mapped to a brain template. 

The right panel shows the first 20 brain regions ranked according to their effect sizes. (b) 

Regional variability values are mapped to a brain template. The variability is evaluated by 

comparing the relative variability of patients to controls, using a mean-scaled log variability 

ratio (lnCVR). The right panel shows the first 20 brain regions ranked according to their 

lnCVR values. (c) Spatial association between the lnCVR map and effect size map in case-

control difference across whole brain regions (r=0.367, p=6.7×10-4). (d) The lnCVR map is 

significantly spatially correlated with effect size map across smaller volume regions 

(colored with blue) in patients relative to healthy controls (r=0.489, p=7.4×10-6).  
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Figure 2. Individual-level deviation from the normal level in regional gray matter 

volume (GMV) changes. Regional GMV difference in each patient compared to the 

healthy control group is quantified by using z score. The left panels show the proportion of 

patients for each brain region with a deviation (more than one standard deviation from the 

average of normal population) of (a) smaller volume, (b) larger volume, and (c) both 

‘abnormal’ volume. The right panels show the first 20 brain regions ranked according to 

their proportion values. (d) The variability (lnCVR) map is significantly spatially correlated 

with the brain map in proportion of patients in smaller volume (r=0.478, p=5.6×10-6), (e) 

but not with the brain map in proportion of patients in larger volume (r=0.025, p=0.824).  
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Figure 3. Partial least squares (PLS) correlation analysis between regional variability 

and human brain gene expression data. (a) Spatial map of the first component (PLS1) 

in the left hemisphere. (b) The spatial correlation between the PLS1 score and the 

variability in schizophrenia, measured by lnCVR score. (c) The ranked gene weights of 

PLS1 (FDR p<0.05). (d) Top 20 gene ontology (GO) biological processes by enrichment 

analysis. Circle color: different biological processes. Circle size: number of genes. (e) Gene 

enrichment analysis in Cell Type Signatures. (f) Gene enrichment analysis in human 

disease-associated database.  
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Figure 4. Distinct neuroanatomical characteristics in network diffusion model 

(NDM)-based ‘spatial’ phenotypes of schizophrenia population. Patients are assigned 

to subgroups (termed as ‘spatial’ phenotypes) based on the heterogeneity in their optimal 

NDM seed locations. Spatial patterns of specific gray matter change are shown by mapping 

case-control effect sizes to a brain template in each ‘spatial’ phenotype, which are labelled 

as ‘temporal cortex’, ‘frontal cortex’, ‘occipital cortex’, ‘parietal cortex’, ‘somatosensory 

cortex’, ‘cingulate-insula’, ‘basal ganglia’ or ‘thalamus’ phenotypes according to an 

anatomical definition. In addition to the nine ‘spatial’ phenotypes, patients who are not 

estimated by NDM are assigned to another phenotype (‘nonNDM’). The number and 

proportion of patients in each phenotype are also described. Color bar represents the case-

control effect size measure by Cohen’s d value. A larger Cohen’s d value indicates severer 

reduction in gray matter volume. 
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