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Abstract

Polygenic risk score (PRS) prediction of complex diseases can be improved by leveraging
related phenotypes. This has motivated the development of several multi-trait PRS methods that
jointly model information from genetically correlated traits. However, these methods do not
account for vertical pleiotropy between traits, in which one trait acts as a mediator for another.
Here, we introduce endoPRS, a weighted lasso model that incorporates information from relevant
endophenotypes to improve disease risk prediction without making assumptions about the genetic
architecture underlying the endophenotype-disease relationship. Through extensive simulation
analysis, we demonstrate the robustness of endoPRS in a variety of complex genetic frameworks.
We also apply endoPRS to predict the risk of childhood onset asthma in UK Biobank by leveraging
a paired GWAS of eosinophil count, a relevant endophenotype. We find that endoPRS significantly
improves prediction compared to many existing PRS methods, including multi-trait PRS methods,
MTAG and wMT-BLUP, which suggests advantages of endoPRS in real-life clinical settings.

Introduction

Many methods have been developed for calculating polygenic risk scores (PRS), such as
pruning and thresholding (P+T) [1], LDpred2 [2], and PRS-CS [3]. Despite this, current PRS for
complex diseases still largely suffer from poor predictive performance [4]. This is partially due to
the limited number of cases available for genome wide association studies (GWAS) [5]. The low
power of these analyses limits the identification of disease-causing genetic variants [6]. Several
multi-trait PRS methods, such as MTAG [7] and wMT-BLUP [8], have increased PRS power
through the incorporation of information from additional phenotypes. These multi-trait PRS
models are particularly advantageous for genetically correlated traits due to their assumption that
the effects of single nucleotide polymorphisms (SNPs) on these traits are correlated. However,
these models assume that the correlation of effect sizes is constant for all SNPs, which is not always
the case. More complex trait relationships, such as vertical pleiotropy where one trait acts as a
mediator for the other [9,10], can result in the varying correlation between SNPs, which these
multi-trait PRS methods do not account for.

Vertical pleiotropy is common between blood cell traits and diseases, as blood cell traits
often mediate disease progression through inflammatory and immune responses [11-16]. For
example, eosinophils are known to play a causal role in the most common form of allergic asthma,
so called “T2-high” asthma, by producing a variety of inflammatory mediators that affect airway
remodeling and hyperresponsiveness [17—-19]. Studies have established a genetic link between the
two traits through the colocalization of eosinophil count quantitative trait loci and known asthma
GWAS loci [20,21]. Further, monoclonal antibodies targeting the eosinophil chemoattractant IL-5
have become key therapeutic approaches for treating asthma. As such, blood cell traits and other
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biomarkers can act as endophenotypes, i.e., surrogate markers with genetic links to disease
progression [22,23]. These endophenotypes are quantitative, so their GWAS are typically more
well powered than GWAS for binary disease outcomes. Thus, we hypothesize that PRS constructed
from SNPs associated with relevant endophenotypes can be predictive of diseases, even if the
individual SNPs have not yet been shown to be associated with the disease. However, no PRS
method has been developed for this endophenotype-disease relationship.

To address this gap in PRS methods, we developed endoPRS, a weighted lasso model that
uses SNPs associated with both the phenotype of interest and a relevant endophenotype to improve
PRS prediction. Our method differs from previous multi-trait PRS methods because it does not
explicitly assume that the effects genetic variants have on the phenotype and endophenotype
exhibit the same correlation for all variants. Additionally, our method integrates SNPs from the
endophenotype GWAS summary statistics directly into the PRS for the desired phenotype without
generating a separate PRS for the endophenotype.

We show through simulations that our endoPRS method outperforms existing PRS methods,
particularly for endophenotype-disease pairs whose genetic architecture does not follow the
commonly assumed genetic correlation model [24]. Additionally, we demonstrate the utility of our
method in a real-data example using eosinophil count as an endophenotype for childhood onset
asthma (COA) in UK Biobank [25,26]. We choose to use COA as a proxy for T2-high asthma, the
subtype in which eosinophils are known to play a causal role. This decision was made because
information about asthma endotype is not available in UK Biobank, but T2-high asthma commonly
presents as COA [27]. Additionally, eosinophil count has been demonstrated to explain 6% of the
PRS risk for COA [28]. We find that our endoPRS method improves the prediction performance
of the COA PRS compared to existing single- and multi-trait PRS methods. This example
demonstrates the advantages of incorporating endophenotype in PRS prediction for clinical
endpoints, indicating the potential clinical utility of our endoPRS method.

Results
EndoPRS Overview

Our endoPRS method consists of three main steps: variant selection, parameter tuning, and
effect size estimation (Figure 1). Consider a phenotype of interest and a corresponding
endophenotype. In the first step, we select variants associated with either the phenotype or
endophenotype based on a certain GWAS p-value threshold a, and split them into three distinct
sets: variants solely associated with the phenotype, variants solely associated with the
endophenotype, and variants associated with both the phenotype and the endophenotype. Note that
GWAS can be external (e.g., from previous studies) or run on the training set.
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For the second step, a series of weighted lasso models with penalty terms
(cq, €3, c3) applied to each of the three sets is fit using the selected variants. Covariates, such as
genetic principal components (PCs), can be included in the model and are not penalized. Penalized
linear regression is used for quantitative traits and penalized logistic regression is used for binary
traits. The models are fit using a 5-fold cross validation model selection and averaging
procedure [29] on the training set over the following grid of tuning parameters {c;: 1},
{c,:0.1,0.5,1,2,10}, {c3:0.1,0.5,1,2,10}, {a:0.01,107%,107%} (Details in Methods). The
obtained lasso models are then applied to the validation set, where tuning parameters with the
largest validation R? for quantitative traits and AUC for binary traits are selected

(C]‘Opt, CZopt,C3opt’ aopt)'

For the last step, the weighted lasso model with the selected tuning parameters is refit to
the combined training and validation set. This refitting method is often recommended for methods
with tuning parameters to maximize the utility of the validation set [30]. We then calculate the PRS
for individuals in the held-out test set using the final effect size estimates obtained from the refitted
model.

Simulation Study

We performed simulation studies to evaluate the performance of endoPRS. We simulated
endophenotypes and phenotypes using imputed dosages at 1,118,716 HapMap3 variants for a
random subset of 60,000 unrelated European ancestry individuals from UK Biobank (Methods).
30,000 individuals were used for training and an independent 30,000 were used for testing. 10%
of the training individuals were set aside for validation for PRS methods that require a tuning
cohort (endoPRS, LDpred2-grid [2], MTAG [7]). We compared our endoPRS method to traditional
lasso models fit using all the available SNPs and fit using subsets of SNPs determined to be
associated with the phenotype based on three GWAS p-value thresholds. Additionally, we
compared endoPRS to a common single-trait PRS method, LDpred2-grid, and a multi-trait PRS
method, MTAG fit using LDpred2-grid.

In the first set of simulations, we simulated the endophenotype acting on the phenotype
through a mediator framework. We initially set the heritability of the phenotype due to direct SNP
effects (h%SNP) to 0.1 and varied the causal effect of the endophenotype on the phenotype (6). As
6 increased, the improvement in testing R? of endoPRS compared to the other PRS methods also
increased (Supplementary Figure S1). Next, we evaluated how endoPRS performs for
fonp (Figure 2A,
Supplementary Figure S2). In all seven of these simulation scenarios, our endoPRS method

phenotypes with different heritabilities by fixing 6 and varying h

outperformed the traditional lasso models, improving the average testing R? by up to 73% (h? NP —
0.01 and 8 = 0.2) compared to the best lasso model. This demonstrated that prioritization of SNP
sets via different penalty factors in endoPRS improves prediction compared to the standard lasso
model.
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At very low phenotype heritability (h%SNP = 0.01), MTAG performs similarly to or

outperforms endoPRS (8 = 0.2 and 6 = 0.5) (Figure 2A, Supp Figure S2). However, in these
scenarios, endoPRS is the second-best PRS method, and the difference in testing R? is less than
12%. For almost all other scenarios, endoPRS outperforms MTAG. For example, when 8 = 0.2
and h?__ = 0.05, endoPRS outperforms MTAG by an average of 63%. The lower prediction

1snp

accuracy of MTAG compared to endoPRS may be due to MTAG’s assumption that all SNP effects
share the same correlation across both traits, which is not satisfied by the mediator framework. We
also simulated binary phenotypes to determine how endoPRS performs in case-control scenarios
(Figure 2B). Notably, at a prevalence of 0.05, the two best PRS methods were the two multi-trait
methods, endoPRS and MTAG. This was expected, since as phenotype GWAS case counts
decrease, the benefit of incorporating information from the better powered endophenotype GWAS
increases. Ultimately, in both binary phenotype simulations, endoPRS resulted in the highest
average testing AUC.

For the second set of simulations, we assumed that in addition to the endophenotype acting
as a mediator to the phenotype, the direct effects of the SNPs on the simulated phenotype and
endophenotype are correlated. We simulated quantitative and binary traits with varying
endophenotype mediator effect sizes (6) and genetic covariances () (Table 3). In all but one of
the nine scenarios, endoPRS had the best average testing prediction improving the average testing
R? by up to 46% and the average absolute AUC by up to 2.7% compared to the second best
performing PRS method (Figure 3, Supplementary Figure S3). In the only exception scenario
where MTAG outperformed endoPRS (68 =-0.5 and £ = 0.2, prevalence 0.05), the phenotype had
a very low heritability. This is consistent with the results from the mediator only simulations.
However, in this scenario, MTAG PRS construction failed for five of the replicates due to the
estimated heritability (measured using LDpred2) being negative. Although endoPRS was second
best in terms of average AUC in this simulation scenario, unlike MTAG and LDpred2, endoPRS
was able to generate a PRS for all ten simulation replicates.

As a summary, endoPRS resulted in the best test prediction for the largest number of
simulation replicates in all but one of the simulation frameworks (Supplementary Figure S4 &
S5). In the replicates where endoPRS was not the best method, it was second best 24 out of 29
times (Supplementary Figures S6). Overall, the results of the simulation studies demonstrate that
endoPRS robustly improves testing cohort prediction across various genetic co-architectures
between the primary phenotype and endophenotype.

Real Data Analysis for Eosinophil-Aided Asthma PRS Construction

Next, we evaluated the performance of endoPRS compared to nine other PRS method
(traditional lasso models with different SNP subsets, LDpred2-grid [2], P+T [1], PRS-CS [3],
wMT-BLUP [8], and MTAG [7] fit using LDpred2-grid) in an analysis of childhood onset asthma
(COA) and the endophenotype of eosinophil counts in UK Biobank. We limited our analysis to
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unrelated European ancestry individuals in UK Biobank whose genotypes passed the QC measures
(Methods). There were 7,459 COA cases and 255,900 non-asthma controls (Supplementary
Table S3). We included the top 15 genetic PCs, sex, age, BMI, assessment center, and genotype
array as covariates in the GWAS and PRS analyses (Supplementary Table S3). We first examined
the relationship between COA and eosinophil count and found a significant genetic correlation (r
= 0.345, p-value <0.0001) (Supplementary Methods, Supplementary Table S4). Next, we
performed a Mendelian randomization analysis and found that eosinophils have a significant
putative causal effect on COA (OR = 4.74, p-value <0.0001) (Supplementary Methods,
Supplementary Figure S7, Supplementary Table S4). This provided evidence to support our
choice of using COA as a proxy for T2-high asthma in UK Biobank. It confirmed that COA, in
our study samples, has a strong phenotype-endophenotype relationship with eosinophil counts,
corroborating earlier genetic studies [20,28].

Briefly, we randomly assigned 80% of the individuals to training and 20% to testing. 10%
of the individuals in the training set were set aside for validation for methods that require a tuning
cohort, such as endoPRS. Other multi-trait PRS methods (wMT-BLUP and MTAG) also used
eosinophil counts as the second trait. We limited our analysis to imputed dosages of European
HapMap3 variants with a minor allele count (MAC) > 20 in the training set and an INFO score >
0.8.

We evaluated performance in the test set based on AUC and the correlation between PRS
and COA adjusted for the covariates (Figure 4). Based on both metrics, the predicted scores from
endoPRS exhibited the best performance to identify COA. EndoPRS significantly improved
testing AUC compared to the other PRS methods (paired t-test p-value 0.0072: endoPRS vs MTAG,
the second-best performer in terms of AUC). The endoPRS scores were also significantly more
correlated with the covariate-adjusted phenotype than the other PRS scores (paired t-test p-value
0.0002: endoPRS vs all SNPs lasso, the second-best performer in terms of correlation). MTAG
had the second largest testing AUC. This is consistent with the results in our simulation studies,
which demonstrated that MTAG performed well for binary phenotypes with low prevalences.
Surprisingly, the multi-trait PRS method, wMT-BLUP, performed particularly poorly. It
performed worse in terms of both AUC and correlation than several single-trait PRS methods,
including LDpred2 and the lasso models. This may be because wMT-BLUP assumes an
infinitesimal genetic architecture model for both traits, which can lead to decreases in performance
when the assumption is not met.

We also examined the average size of the fitted models, defined by the number of SNPs
with nonzero estimated effect sizes (Supplementary Figure S8). The endoPRS models were
ranked the 4th sparsest among the 10 models, with an average of 3910 variants. In particular,
endoPRS models were on average almost three times smaller than the all SNPs lasso model and
over 100 times smaller than the MTAG and LDpred2 models. Thus, our real data analysis
demonstrates that endoPRS improves PRS prediction performance compared to existing methods
with a highly sparse final model.
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Discussion

Our study demonstrated that incorporating information from relevant endophenotypes
using a weighted lasso framework increases the prediction accuracy of PRS for a primary
phenotype of interest. EndoPRS uses only a subset of possible predictors that are likely to be
associated with the trait for model fitting. It improves upon single-trait lasso models by introducing
SNPs associated with the endophenotype into the model. Our simulation studies suggest that the
benefit of using endoPRS increases as the effect of the endophenotype on the phenotype also
increases. In addition, we find that endoPRS performs particularly well for binary phenotypes with
low prevalence. With low case numbers, the disease GWAS is likely to be underpowered, so not
all disease-causing variants can be identified. Thus, it is not surprising that these scenarios benefit
more from introducing SNPs associated with the quantitative endophenotype. These SNPs are
likely to also be associated with the disease, although potentially indirectly, however only the
quantitative endophenotype GWAS is powerful enough to identify them.

Most multi-trait PRS methods, including MTAG and wMT-BLUP, borrow trait information
in both directions to improve prediction for both traits. EndoPRS, on the other hand, only uses
information from the endophenotype for prediction of the primary phenotype; no endophenotype
PRS is constructed. Additionally, a unique feature of endoPRS is that it incorporates information
from the endophenotype without making assumptions of the genetic architecture underlying the
endophenotype-phenotype relationship. EndoPRS penalizes the sets of SNPs associated with only
the phenotype, only the endophenotype, or both differently based on empirical performance in the
validation set. In contrast to endoPRS, other multi-trait PRS methods assume that correlated traits
arise from SNP effects that have a consistent correlation genome-wide. This may explain why in
cases of complicated genetic relationships, such as a mediator effects which result in complicated
local genetic correlation patterns, endoPRS outperforms existing multi-trait PRS methods.

Our endoPRS method yields sparse models. This is a beneficial property as sparse models
often offer better interpretability, robustness, and transferability than larger models [31]. For COA,
the lasso models fit on SNPs with GWAS p-value less than 1x10* resulted in an even sparser
model than endoPRS, while maintaining decent testing performance. However, it is difficult to
know in advance the optimal threshold. For COA, p-value thresholds of 1 and 0.01 resulted in
larger models than endoPRS. While the p-value threshold of 1x107 resulted in a smaller model, it
was only the 6™ best performing PRS model in terms of both AUC and correlation with covariate-
adjusted COA. Our endoPRS method avoids making the user guess a p-value threshold by
incorporating this question into its tuning parameter grid search. It is important to note that
although the endoPRS model is sparse, there is no guarantee that the genetic variants included in
the model are the true causal variants. One characteristic of lasso-based models is that in cases of
highly correlated predictors, they will randomly select one predictor while leaving out the
others [32]. Thus, a future direction is to incorporate functional annotations into our endoPRS
method so that it can prioritize the inclusion of disease-causing variants.
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One caveat of our real data analysis is the use of COA as a proxy for T2-high asthma
subtype. Asthma subtypes are known to be very heterogenous. Therefore, the improvement in
endoPRS risk prediction for COA is likely to vary in different cohorts based on the distribution of
asthma endotypes in the population of interest. In order to truly test our method in a T2-high
population, molecular phenotyping of asthma patients with available genotype data needs to be
studied. [33]

A limitation of endoPRS is that its current design can handle only one endophenotype.
Thus, a future direction is to expand endoPRS to incorporate multiple endophenotypes. One
question that arises from this is whether to include all putative endophenotypes or only carefully
selected endophenotypes with known causal effects on the phenotype. Further studies are
warranted to explore the resulting trade-off between more information and more noise. Another
limitation of our endoPRS approach is that it currently requires individual-level genotype-
phenotype data. Another future research direction is to extend our endoPRS method to perform
model fitting on summary-statistic level data. However, despite this current limitation, the number
of available large individual-level data sets is growing, for example NIH’s recent All of Us research
program [34]. Thus, we believe that there are current opportunities to use endoPRS to aid with
PRS prediction, particularly as more endophenotype-phenotype relationships are identified.

Methods
EndoPRS Framework

The endoPRS method performs variant selection using results from two separate GWAS
studies, one for the phenotype of interest (¥;) and the other for the endophenotype (Y,). We
performed GWAS on the training samples, however, an external GWAS can be used as long as
there is no overlap between the GWAS samples and samples in the validation set. For any given
genetic variant, let the GWAS p-value for association with the trait ¥; be p,,,,i = 1 or 2. This is
used to derive three distinct sets of SNPs: 0, 4, 0, 4, 03 4. 01 4 is the set of SNPs with p,,, < a and
Py, = a. In other words, él,a is the set of SNPs that are associated with the phenotype, but not the
endophenotype at the threshold a. Similarly, éz,a is the set of genetic variants with p,, = a and
Dy, < @. 53,0[ is the set of genetic variants with p, < a and p,, < a, i.e., the set of SNPs
associated with both the phenotype of interest and the corresponding endophenotype. The number
of variants in set éj,a is denoted as m; forj = 1,2,3.

The endoPRS method fits a weighted lasso model on these selected variants from the three
sets ém, 52,0[, 53,0( with a separate penalty assigned to each set. ¥4 is the n-length vector of the

phenotype for n individuals. X 8 is the (n x m;) matrix of standardized genotypes of the set éj,a.

Bj is the m;-length vector of the true effects of Xg; , on¥q. B is the vector (B1, B2, B3")' . Z is
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the (n x m,) matrix of covariates, such as genetic principal components, including the intercept. I’
is the m,-length vector of the true effects of Z on Y. g(Y4) is the link function used for fitting
the model. The identity link is used for quantitative phenotypes and the logit link is used for binary
phenotypes. The estimated effect sizes are obtained by solving the following minimization model:

2
argmin |g(Y1) B X01,a31 N X92,a32 o X03,a33 o ZF| 2 +

pr |les Bl + [le2ABs 1|, + [IcsABsl|,

This model is fit on the training set using the "big spLinReg()’ and 'big spLogReg()’
functions from the bigstatsr package [35] for quantitative and binary phenotypes, respectively. The
optimal value of A is determined from a grid of 100 possible values through a 5-fold Cross-Model
Selection and Averaging procedure [29], which is repeated over a grid of different weights and p-
value thresholds (cy, ¢, c3, @). The weights (cy, ¢,, c3) are multiplicative penalties applied to all
the variants. Therefore, if the weights are all scaled by a factor s to obtain new weights
(scq, 8¢y, S5C3), this will result in the same model as when (¢4, ¢,, ¢3) was used. In order to avoid
this identifiability issue in our grid search, we set ¢; to be 1 and fit the model for
{c,:0.1,0.5,1,2,10}, {c3:0.1,0.5,1,2,10}, {a:0.01,10~% 107°}. The covariate effects are not
penalized.

For each model, we apply the obtained estimates for (81, B2, B3, T to the validation set to
obtain ?1,val- We compare the estimated Vl’m, to the true ¥q,q and calculate the R* for

quantitative traits or AUC for binary traits. The tuning parameters (@op¢, C30p .) with the

C2 opt’
largest validation R%/AUC are selected. Lastly, the above lasso model using Qoptr C2ptr C3 opt is

refit on the combined training and validation set to obtain the final set of estimates, B Final- These
estimated coefficients are used to calculate the genetic risk scores for the held-out test set using

PRSiese = Xg 1,a,test 'Blfinal + Xy 2,a,test 'Bzfinal + Xy 3,atest ﬁ?’final'

Simulations

We simulated phenotypes and endophenotypes using real genotype data from unrelated
European ancestry individuals from UK Biobank who provided informed consent. Unrelatedness
was defined at a T < 0.025, where 7 is the kinship coefficient estimated using GCTA [36].
European ancestry was defined using a combination of self-reported ancestry and k-means
clustering of genetic principal components (PCs) following the procedure described in Sun et al
2022 [37]. Individuals with mismatching self-reported and genetically inferred sex and individuals
whose heterozygosity score was more than three standard deviations from the mean were removed.
From the 342,270 remaining individuals, we randomly assigned 27,000, 3,000, and 30,000
individuals to the training, validation, and testing set, respectively. For PRS methods that do not
require a validation set, the combined training and validation set (z» = 30,000) was used for both
GWAS and model fitting. We constrained the simulations to the imputed dosages of 1,118,716


https://doi.org/10.1101/2024.05.23.24307839
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.05.23.24307839; this version posted May 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

European HapMap3 variants used in PRS-CS [3] with a minor allele frequency (MAF) > 0.1% and
an INFO score > 0.8.

Mediator-Only Simulations

We simulated endophenotype-phenotype pairs using two frameworks. In the first, we
assumed that the endophenotype (Y,) acts as a mediator on the phenotype (Y;). The endophenotype
and phenotype were generated from the following model:

Y1 = ng + (Xl,X3)6 + El
Y, =2 X3)y + &

Here X;/X, are the standardized genotype of the phenotype-specific and endophenotype-specific
causal SNPs, respectively, and X; is the standardized genotype of the causal SNPs shared between
the phenotype and endophenotype. We randomly selected 50 of the quality controlled (QC+) SNPs
to be X;, and repeated this for X, and X3, ensuring no overlap between the three sets. § and y are
the effect sizes of the SNPs on the traits, which were simulated to be

5 h%SNPI 0
<y> ~N|{o[ 02 . h%SNP and h3 syp are the variance parameters, which account
O SNP I

100
for the heritability of Y; and Y, due to SNPs alone. 6 is the causal effect of the endophenotype Y,
on the phenotype Y;. The error terms & and &, were simulated from the following normal

1—hi,,—6 0

0 1- h%SNP

€
distribution: ( g;) ~N| O, ( ) . Thus, the traits ¥; and Y, are
simulated to have a mean of 0 and a variance of 1. So, the total heritability of Y, is h3 oyp and the

total heritability of ¥; is hf, , + 6%h5, ..

We fixed the heritability of the endophenotype (h3 gyp) to be 0.5 for all simulations.
Initially, we fixed the variance parameter of the phenotype Y; (h? syp) to be 0.1 and varied 6 over

0.1, 0.2, and 0.5 to examine how increasing the effect of ¥, on Y; affects the performance of the
endoPRS model. Next, we varied 6 to be 0.2 or 0.5 and varied h%SNP over 0.01, 0.05, 0.1, and 0.2.
Lastly, we simulated a binary phenotype with a prevalence of 0.05 and 0.1, while keeping the
endophenotype as quantitative. This was accomplished by simulating a quantitative Y; for h? SNP
=0.1 and 8 = 0.5 and assigning the bottom 0.05 and 0.1 quantiles as cases and the rest as controls.
Tables 1 and 2 contain details on all the parameters used for simulations. Each simulation setting
was repeated 10 times.

Mediator-Correlated Effects Simulations

In the first simulation framework, we assumed that the direct effects a SNP has on the
phenotype and endophenotype are independent. In the second simulation framework we relaxed
this assumption by introducing a correlation of SNP effect sizes for the two traits. Further, we
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assumed that this correlation is in the opposite direction of the mediator relationship to obscure
the effect the endophenotype has on the phenotype. The two traits were generated from the
following model:

Y1:Y29+X6+81
Y2=Xy+£2

Here X is the standardized genotype of the causal SNPs, which are assumed to be shared between
the phenotype and endophenotype. We randomly selected 100 of the QC+ SNPs to be causal. The
effect sizes of the genotypes on the two traits, § = (&, ...,8100)" and y = (yq, ..., Y100)’ Were

of
—1 XI
simulated to be (i) ~N| o, 52 .o and ¢ are the variance parameters which affect
Xl =1
100

the heritability of ¥; and Y,. X is the covariance between §; and y; for i=1,...,100. For any §; and
Yj, L # J, the covariance is 0. Similarly, for any (6;, §;) or (y;, ;) where i # j, the covariance is 0.
The error terms &; and &, were simulated from independent normal distributions to set the overall
variance of the traits Y; and Y, to be 1. The overall heritability of ¥, is o and the total heritability

of Y, is 0 + 6%0Z + 20%. We specifically chose to use different notation for the variance
2
LSNP

nature of the heritability of ¥;. In fact, in some of our simulations the overall heritability of Y; is

parameter (o7 as opposed to h ) for this set of simulations to emphasize the more complicated

less than 2.

We fixed of to be 0.1 and o to be 0.5 for all simulations. We simulated three different
combinations of endophenotype-phenotype relationships by varying 8 and X (6 = —0.2&X =
0.1;6 =—-05&X=0.1; 8 = —0.5 & £ =0.2) (Table 3). Additionally, for each of the three genetic
frameworks, we simulated a binary phenotype with a prevalence 0.05 and 0.1, while keeping the
endophenotype as quantitative (Table 3). Each simulation setting was replicated 10 times.

Real Data Analysis

We then applied our endoPRS method to a real data analysis using eosinophil counts and
childhood onset asthma outcome from UK Biobank. Eosinophils are known to play a causal role
for the T2-high asthma endotype by producing inflammatory mediators that have effects on airway
remodeling and hyperresponsiveness [17-19]. However, information about endotype is not
available in UK Biobank, so we selected childhood onset asthma for analysis since it is known that
T2-high asthma is commonly associated with this sub-phenotype [19,27]. We hypothesize that by
using COA cases, we are enriching our study sample in the T2-high asthma endotype, thus
retaining the causal role of eosinophils.
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Classification of Asthma Cases

We identified 67,632 asthma cases in UK Biobank based on the presence of either a doctor
diagnosis of asthma (Field 6152 8), self-reported asthma (Field 20002 1111), or an asthma
International Classification of Diseases (ICD) code (ICD9 493,ICD10_J45,ICD10_J46). We then
excluded 15,222 individuals if (1) they were missing both a self-reported and doctor-determined
asthma age of diagnosis (Field 3786 and Field 22147) or (2) the self-reported and doctor-
determined asthma age-of-diagnosis disagreed by more than 10 years. Additionally, non-asthma
controls were removed from analysis if they had a self-reported or doctor-determined asthma age
of diagnosis. Lastly, all individuals with either self-reported, doctor diagnosed, or ICD code for
chronic obstructive pulmonary disease, emphysema, or chronic bronchitis were excluded from all
analysis (Supplementary Table 1).

We limited our study population to the 342,270 unrelated individuals of European ancestry
that passed the sample level QC described in the previous section. We defined childhood onset
asthma (COA) as an asthma case with a first diagnosis before 12.5 years of age (the minimum of
Field 3786 and Field 22147 was used when both were available) Using this definition and
exclusion criteria, we identified 8,346 COA cases and 287,897 non-asthma controls.

Classification of Eosinophil Counts

Eosinophil counts of UK Biobank participants were assayed as previously described [38].
The eosinophil counts were initially log10(x + 1) transformed, then adjusted for age, age?, top 10
genotype PCs, center, genotyping array, and sex. The eosinophil count values used for analysis
were the inverse normal transformed residuals from this regression. Individuals were excluded
following the exclusion criteria specified in Rowland et al 2022 [39]. We limited our study
population to the 342,270 unrelated individuals of European ancestry that passed the sample level
QC described in the previous section, met the inclusion criteria, and contained complete data for
all covariates and phenotypes. There were 290,713 individuals that satistied these criteria.

Training, Testing, Split

Only the individuals that passed QC for both eosinophil counts and COA status were used
for PRS analysis. For the COA analysis, there were 7,459 cases and 255,900 controls. 72%, 8%,
and 20% of individuals were randomly assigned to training, validation, and testing respectively.
This split was repeated 10 times to create 10 independent training, validation, and testing sets. For
PRS methods that do not require a validation set, the combined training and validation set (80%
of individuals) was used for training. The COA and eosinophil count GWAS analysis were run
using REGENIE [40]. The first 15 genetic PCs, sex, age, BMI, assessment center, and genotype
array were included as covariates in the GWAS and in all PRS methods that allow for the
incorporation of covariates. We constrained the real data analysis to imputed dosages of the
European HapMap3 variants used in PRS-CS [3] with a minor allele count (MAC) > 20 in the
training set and an INFO score > 0.8.
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Alternate PRS Methods for Comparison

We compared the performance of our endoPRS method to existing methods. Specifically,
we considered individual level data single-trait PRS methods (lasso models fit using the
bigstatsr [35] package with various p-value thresholds), summary statistics level single-trait PRS
methods (pruning and thresholding via PRSice-2 [1], LDpred2-grid [2], PRS-CS [3]), individual
level multi-trait PRS method (wMT-BLUP) [8], and summary level multi-trait PRS methods
(MTAG + LDpred2-grid) [7]. More detailed descriptions of the PRS methods used are available
in the supplementary materials (Supplementary Methods, Supplementary Table 2).
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Table 1: Simulation parameters for mediator-only framework with quantitative phenotype.

For all, h3

is set to 0.5.

2sNP
(7] h? syvp | Total Heritability of Y, | Heritability of Y, due to causal effect of Y,

0.1 0.105 0.005
0.2 0.1 0.12 0.02
0.5 0.225 0.125

0.01 0.03 0.02
02 1 0.5 0.07

0.01 0.135
051 0.5 0.175 0125

0.2 0.325

Table 2: Simulation parameters for mediator only framework with binary phenotype. The

endophenotype is simulated to be quantitative.

] hicyp h3 ¢y Prevalence of Y,
0.5 0.1 0.5 0.05
0.5 0.1 0.5 0.1
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Table 3: Simulation parameters for mediator with non-independent effect size framework.
For all, % = 0.1 and o3 = 0.5.

0 X | Total Genetic Correlation Y, and | Y, Trait Type
Heritability of | Y,
Y,
Quantitative,
-0.2 | 0.1 0.08 0 Binary: Prevalence 0.05,

Binary: Prevalence 0.1

Quantitative,
-0.5 | 0.1 0.125 -0.6 Binary: Prevalence 0.05,

Binary: Prevalence 0.1

Quantitative,
-0.5 | 0.2 0.025 -0.447 Binary: Prevalence 0.05,

Binary: Prevalence 0.1
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