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Abstract 
Polygenic risk score (PRS) prediction of complex diseases can be improved by leveraging 

related phenotypes. This has motivated the development of several multi-trait PRS methods that 
jointly model information from genetically correlated traits. However, these methods do not 
account for vertical pleiotropy between traits, in which one trait acts as a mediator for another. 
Here, we introduce endoPRS, a weighted lasso model that incorporates information from relevant 
endophenotypes to improve disease risk prediction without making assumptions about the genetic 
architecture underlying the endophenotype-disease relationship. Through extensive simulation 
analysis, we demonstrate the robustness of endoPRS in a variety of complex genetic frameworks. 
We also apply endoPRS to predict the risk of childhood onset asthma in UK Biobank by leveraging 
a paired GWAS of eosinophil count, a relevant endophenotype. We find that endoPRS significantly 
improves prediction compared to many existing PRS methods, including multi-trait PRS methods, 
MTAG and wMT-BLUP, which suggests advantages of endoPRS in real-life clinical settings. 

 

 

Introduction 
Many methods have been developed for calculating polygenic risk scores (PRS), such as 

pruning and thresholding (P+T) [1], LDpred2 [2], and PRS-CS [3]. Despite this, current PRS for 
complex diseases still largely suffer from poor predictive performance [4]. This is partially due to 
the limited number of cases available for genome wide association studies (GWAS) [5]. The low 
power of these analyses limits the identification of disease-causing genetic variants [6]. Several 
multi-trait PRS methods, such as MTAG [7] and wMT-BLUP [8], have increased PRS power 
through the incorporation of information from additional phenotypes. These multi-trait PRS 
models are particularly advantageous for genetically correlated traits due to their assumption that 
the effects of single nucleotide polymorphisms (SNPs) on these traits are correlated. However, 
these models assume that the correlation of effect sizes is constant for all SNPs, which is not always 
the case. More complex trait relationships, such as vertical pleiotropy where one trait acts as a 
mediator for the other [9,10], can result in the varying correlation between SNPs, which these 
multi-trait PRS methods do not account for.  

Vertical pleiotropy is common between blood cell traits and diseases, as blood cell traits 
often mediate disease progression through inflammatory and immune responses [11–16]. For 
example, eosinophils are known to play a causal role in the most common form of allergic asthma, 
so called “T2-high” asthma, by producing a variety of inflammatory mediators that affect airway 
remodeling and hyperresponsiveness [17–19]. Studies have established a genetic link between the 
two traits through the colocalization of eosinophil count quantitative trait loci and known asthma 
GWAS loci [20,21]. Further, monoclonal antibodies targeting the eosinophil chemoattractant IL-5 
have become key therapeutic approaches for treating asthma. As such, blood cell traits and other 
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biomarkers can act as endophenotypes, i.e., surrogate markers with genetic links to disease 
progression [22,23]. These endophenotypes are quantitative, so their GWAS are typically more 
well powered than GWAS for binary disease outcomes. Thus, we hypothesize that PRS constructed 
from SNPs associated with relevant endophenotypes can be predictive of diseases, even if the 
individual SNPs have not yet been shown to be associated with the disease. However, no PRS 
method has been developed for this endophenotype-disease relationship. 

 To address this gap in PRS methods, we developed endoPRS, a weighted lasso model that 
uses SNPs associated with both the phenotype of interest and a relevant endophenotype to improve 
PRS prediction. Our method differs from previous multi-trait PRS methods because it does not 
explicitly assume that the effects genetic variants have on the phenotype and endophenotype 
exhibit the same correlation for all variants. Additionally, our method integrates SNPs from the 
endophenotype GWAS summary statistics directly into the PRS for the desired phenotype without 
generating a separate PRS for the endophenotype.  

We show through simulations that our endoPRS method outperforms existing PRS methods, 
particularly for endophenotype-disease pairs whose genetic architecture does not follow the 
commonly assumed genetic correlation model [24]. Additionally, we demonstrate the utility of our 
method in a real-data example using eosinophil count as an endophenotype for childhood onset 
asthma (COA) in UK Biobank [25,26]. We choose to use COA as a proxy for T2-high asthma, the 
subtype in which eosinophils are known to play a causal role. This decision was made because 
information about asthma endotype is not available in UK Biobank, but T2-high asthma commonly 
presents as COA [27]. Additionally, eosinophil count has been demonstrated to explain 6% of the 
PRS risk for COA [28]. We find that our endoPRS method improves the prediction performance 
of the COA PRS compared to existing single- and multi-trait PRS methods. This example 
demonstrates the advantages of incorporating endophenotype in PRS prediction for clinical 
endpoints, indicating the potential clinical utility of our endoPRS method. 

 

 

Results  
EndoPRS Overview 

Our endoPRS method consists of three main steps: variant selection, parameter tuning, and 
effect size estimation (Figure 1). Consider a phenotype of interest and a corresponding 
endophenotype. In the first step, we select variants associated with either the phenotype or 
endophenotype based on a certain GWAS p-value threshold 𝛼𝛼, and split them into three distinct 
sets: variants solely associated with the phenotype, variants solely associated with the 
endophenotype, and variants associated with both the phenotype and the endophenotype. Note that 
GWAS can be external (e.g., from previous studies) or run on the training set.  
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For the second step, a series of weighted lasso models with penalty terms 
(𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3) applied to each of the three sets is fit using the selected variants. Covariates, such as 
genetic principal components (PCs), can be included in the model and are not penalized. Penalized 
linear regression is used for quantitative traits and penalized logistic regression is used for binary 
traits. The models are fit using a 5-fold cross validation model selection and averaging 
procedure [29] on the training set over the following grid of tuning parameters {𝑐𝑐1: 1} , 
{ 𝑐𝑐2: 0.1, 0.5, 1, 2, 10}, {𝑐𝑐3: 0.1, 0.5, 1, 2, 10},  {𝛼𝛼: 0.01, 10−4, 10−6} (Details in Methods). The 
obtained lasso models are then applied to the validation set, where tuning parameters with the 
largest validation R2 for quantitative traits and AUC for binary traits are selected 
(𝑐𝑐1𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑐𝑐2𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐3𝑜𝑜𝑜𝑜𝑜𝑜 ,𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜).  

For the last step, the weighted lasso model with the selected tuning parameters is refit to 
the combined training and validation set. This refitting method is often recommended for methods 
with tuning parameters to maximize the utility of the validation set [30]. We then calculate the PRS 
for individuals in the held-out test set using the final effect size estimates obtained from the refitted 
model.  

 

Simulation Study 

 We performed simulation studies to evaluate the performance of endoPRS. We simulated 
endophenotypes and phenotypes using imputed dosages at 1,118,716 HapMap3 variants for a 
random subset of 60,000 unrelated European ancestry individuals from UK Biobank (Methods). 
30,000 individuals were used for training and an independent 30,000 were used for testing. 10% 
of the training individuals were set aside for validation for PRS methods that require a tuning 
cohort (endoPRS, LDpred2-grid [2], MTAG [7]). We compared our endoPRS method to traditional 
lasso models fit using all the available SNPs and fit using subsets of SNPs determined to be 
associated with the phenotype based on three GWAS p-value thresholds. Additionally, we 
compared endoPRS to a common single-trait PRS method, LDpred2-grid, and a multi-trait PRS 
method, MTAG fit using LDpred2-grid. 

 In the first set of simulations, we simulated the endophenotype acting on the phenotype 
through a mediator framework. We initially set the heritability of the phenotype due to direct SNP 
effects (ℎ1𝑆𝑆𝑆𝑆𝑆𝑆

2 ) to 0.1 and varied the causal effect of the endophenotype on the phenotype (𝜃𝜃). As 
𝜃𝜃 increased, the improvement in testing R2 of endoPRS compared to the other PRS methods also 
increased (Supplementary Figure S1). Next, we evaluated how endoPRS performs for 
phenotypes with different heritabilities by fixing 𝜃𝜃  and varying ℎ1𝑆𝑆𝑆𝑆𝑆𝑆

2   (Figure 2A, 
Supplementary Figure S2). In all seven of these simulation scenarios, our endoPRS method 
outperformed the traditional lasso models, improving the average testing R2 by up to 73% (ℎ1𝑆𝑆𝑆𝑆𝑆𝑆

2 = 
0.01 and 𝜃𝜃 = 0.2) compared to the best lasso model. This demonstrated that prioritization of SNP 
sets via different penalty factors in endoPRS improves prediction compared to the standard lasso 
model.   
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At very low phenotype heritability (ℎ1𝑆𝑆𝑆𝑆𝑆𝑆
2 =  0.01), MTAG performs similarly to or 

outperforms endoPRS (𝜃𝜃 = 0.2 and 𝜃𝜃 = 0.5) (Figure 2A, Supp Figure S2). However, in these 
scenarios, endoPRS is the second-best PRS method, and the difference in testing R2 is less than 
12%. For almost all other scenarios, endoPRS outperforms MTAG. For example, when 𝜃𝜃 = 0.2 
and ℎ1𝑆𝑆𝑆𝑆𝑆𝑆

2 =  0.05, endoPRS outperforms MTAG by an average of 63%. The lower prediction 
accuracy of MTAG compared to endoPRS may be due to MTAG’s assumption that all SNP effects 
share the same correlation across both traits, which is not satisfied by the mediator framework. We 
also simulated binary phenotypes to determine how endoPRS performs in case-control scenarios 
(Figure 2B). Notably, at a prevalence of 0.05, the two best PRS methods were the two multi-trait 
methods, endoPRS and MTAG. This was expected, since as phenotype GWAS case counts 
decrease, the benefit of incorporating information from the better powered endophenotype GWAS 
increases. Ultimately, in both binary phenotype simulations, endoPRS resulted in the highest 
average testing AUC. 

For the second set of simulations, we assumed that in addition to the endophenotype acting 
as a mediator to the phenotype, the direct effects of the SNPs on the simulated phenotype and 
endophenotype are correlated. We simulated quantitative and binary traits with varying 
endophenotype mediator effect sizes (𝜃𝜃) and genetic covariances (Σ) (Table 3). In all but one of 
the nine scenarios, endoPRS had the best average testing prediction improving the average testing 
R2 by up to 46% and the average absolute AUC by up to 2.7% compared to the second best 
performing PRS method (Figure 3, Supplementary Figure S3). In the only exception scenario 
where MTAG outperformed endoPRS (𝜃𝜃 = -0.5 and Σ  = 0.2, prevalence 0.05), the phenotype had 
a very low heritability. This is consistent with the results from the mediator only simulations. 
However, in this scenario, MTAG PRS construction failed for five of the replicates due to the 
estimated heritability (measured using LDpred2) being negative. Although endoPRS was second 
best in terms of average AUC in this simulation scenario, unlike MTAG and LDpred2, endoPRS 
was able to generate a PRS for all ten simulation replicates.  

As a summary, endoPRS resulted in the best test prediction for the largest number of 
simulation replicates in all but one of the simulation frameworks (Supplementary Figure S4 & 
S5). In the replicates where endoPRS was not the best method, it was second best 24 out of 29 
times (Supplementary Figures S6). Overall, the results of the simulation studies demonstrate that 
endoPRS robustly improves testing cohort prediction across various genetic co-architectures 
between the primary phenotype and endophenotype.  

 

Real Data Analysis for Eosinophil-Aided Asthma PRS Construction  

Next, we evaluated the performance of endoPRS compared to nine other PRS method 
(traditional lasso models with different SNP subsets, LDpred2-grid [2], P+T [1], PRS-CS [3], 
wMT-BLUP [8], and MTAG [7] fit using LDpred2-grid) in an analysis of childhood onset asthma 
(COA) and the endophenotype of eosinophil counts in UK Biobank. We limited our analysis to 
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unrelated European ancestry individuals in UK Biobank whose genotypes passed the QC measures 
(Methods). There were 7,459 COA cases and 255,900 non-asthma controls (Supplementary 
Table S3). We included the top 15 genetic PCs, sex, age, BMI, assessment center, and genotype 
array as covariates in the GWAS and PRS analyses (Supplementary Table S3). We first examined 
the relationship between COA and eosinophil count and found a significant genetic correlation (r 
= 0.345, p-value <0.0001) (Supplementary Methods, Supplementary Table S4). Next, we 
performed a Mendelian randomization analysis and found that eosinophils have a significant 
putative causal effect on COA (OR = 4.74, p-value <0.0001) (Supplementary Methods, 
Supplementary Figure S7, Supplementary Table S4). This provided evidence to support our 
choice of using COA as a proxy for T2-high asthma in UK Biobank. It confirmed that COA, in 
our study samples, has a strong phenotype-endophenotype relationship with eosinophil counts, 
corroborating earlier genetic studies [20,28]. 

Briefly, we randomly assigned 80% of the individuals to training and 20% to testing. 10% 
of the individuals in the training set were set aside for validation for methods that require a tuning 
cohort, such as endoPRS. Other multi-trait PRS methods (wMT-BLUP and MTAG) also used 
eosinophil counts as the second trait. We limited our analysis to imputed dosages of European 
HapMap3 variants with a minor allele count (MAC) > 20 in the training set and an INFO score > 
0.8.  

We evaluated performance in the test set based on AUC and the correlation between PRS 
and COA adjusted for the covariates (Figure 4). Based on both metrics, the predicted scores from 
endoPRS exhibited the best performance to identify COA. EndoPRS significantly improved 
testing AUC compared to the other PRS methods (paired t-test p-value 0.0072: endoPRS vs MTAG, 
the second-best performer in terms of AUC). The endoPRS scores were also significantly more 
correlated with the covariate-adjusted phenotype than the other PRS scores (paired t-test p-value 
0.0002: endoPRS vs all SNPs lasso, the second-best performer in terms of correlation). MTAG 
had the second largest testing AUC. This is consistent with the results in our simulation studies, 
which demonstrated that MTAG performed well for binary phenotypes with low prevalences. 
Surprisingly, the multi-trait PRS method, wMT-BLUP, performed particularly poorly. It 
performed worse in terms of both AUC and correlation than several single-trait PRS methods, 
including LDpred2 and the lasso models. This may be because wMT-BLUP assumes an 
infinitesimal genetic architecture model for both traits, which can lead to decreases in performance 
when the assumption is not met.   

We also examined the average size of the fitted models, defined by the number of SNPs 
with nonzero estimated effect sizes (Supplementary Figure S8). The endoPRS models were 
ranked the 4th sparsest among the 10 models, with an average of 3910 variants. In particular, 
endoPRS models were on average almost three times smaller than the all SNPs lasso model and 
over 100 times smaller than the MTAG and LDpred2 models. Thus, our real data analysis 
demonstrates that endoPRS improves PRS prediction performance compared to existing methods 
with a highly sparse final model.  
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Discussion 
Our study demonstrated that incorporating information from relevant endophenotypes 

using a weighted lasso framework increases the prediction accuracy of PRS for a primary 
phenotype of interest. EndoPRS uses only a subset of possible predictors that are likely to be 
associated with the trait for model fitting. It improves upon single-trait lasso models by introducing 
SNPs associated with the endophenotype into the model. Our simulation studies suggest that the 
benefit of using endoPRS increases as the effect of the endophenotype on the phenotype also 
increases. In addition, we find that endoPRS performs particularly well for binary phenotypes with 
low prevalence. With low case numbers, the disease GWAS is likely to be underpowered, so not 
all disease-causing variants can be identified. Thus, it is not surprising that these scenarios benefit 
more from introducing SNPs associated with the quantitative endophenotype. These SNPs are 
likely to also be associated with the disease, although potentially indirectly, however only the 
quantitative endophenotype GWAS is powerful enough to identify them.  

Most multi-trait PRS methods, including MTAG and wMT-BLUP, borrow trait information 
in both directions to improve prediction for both traits. EndoPRS, on the other hand, only uses 
information from the endophenotype for prediction of the primary phenotype; no endophenotype 
PRS is constructed. Additionally, a unique feature of endoPRS is that it incorporates information 
from the endophenotype without making assumptions of the genetic architecture underlying the 
endophenotype-phenotype relationship. EndoPRS penalizes the sets of SNPs associated with only 
the phenotype, only the endophenotype, or both differently based on empirical performance in the 
validation set. In contrast to endoPRS, other multi-trait PRS methods assume that correlated traits 
arise from SNP effects that have a consistent correlation genome-wide. This may explain why in 
cases of complicated genetic relationships, such as a mediator effects which result in complicated 
local genetic correlation patterns, endoPRS outperforms existing multi-trait PRS methods. 

Our endoPRS method yields sparse models. This is a beneficial property as sparse models 
often offer better interpretability, robustness, and transferability than larger models [31]. For COA, 
the lasso models fit on SNPs with GWAS p-value less than 1x10-4 resulted in an even sparser 
model than endoPRS, while maintaining decent testing performance. However, it is difficult to 
know in advance the optimal threshold. For COA, p-value thresholds of 1 and 0.01 resulted in 
larger models than endoPRS. While the p-value threshold of 1x10-6 resulted in a smaller model, it 
was only the 6th best performing PRS model in terms of both AUC and correlation with covariate-
adjusted COA. Our endoPRS method avoids making the user guess a p-value threshold by 
incorporating this question into its tuning parameter grid search. It is important to note that 
although the endoPRS model is sparse, there is no guarantee that the genetic variants included in 
the model are the true causal variants. One characteristic of lasso-based models is that in cases of 
highly correlated predictors, they will randomly select one predictor while leaving out the 
others [32]. Thus, a future direction is to incorporate functional annotations into our endoPRS 
method so that it can prioritize the inclusion of disease-causing variants.  
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One caveat of our real data analysis is the use of COA as a proxy for T2-high asthma 
subtype. Asthma subtypes are known to be very heterogenous. Therefore, the improvement in 
endoPRS risk prediction for COA is likely to vary in different cohorts based on the distribution of 
asthma endotypes in the population of interest. In order to truly test our method in a T2-high 
population, molecular phenotyping of asthma patients with available genotype data needs to be 
studied. [33]  

A limitation of endoPRS is that its current design can handle only one endophenotype. 
Thus, a future direction is to expand endoPRS to incorporate multiple endophenotypes. One 
question that arises from this is whether to include all putative endophenotypes or only carefully 
selected endophenotypes with known causal effects on the phenotype. Further studies are 
warranted to explore the resulting trade-off between more information and more noise. Another 
limitation of our endoPRS approach is that it currently requires individual-level genotype-
phenotype data. Another future research direction is to extend our endoPRS method to perform 
model fitting on summary-statistic level data. However, despite this current limitation, the number 
of available large individual-level data sets is growing, for example NIH’s recent All of Us research 
program [34]. Thus, we believe that there are current opportunities to use endoPRS to aid with 
PRS prediction, particularly as more endophenotype-phenotype relationships are identified. 

 

 

Methods 
EndoPRS Framework 

 The endoPRS method performs variant selection using results from two separate GWAS 
studies, one for the phenotype of interest (𝑌𝑌1 ) and the other for the endophenotype (𝑌𝑌2 ). We 
performed GWAS on the training samples, however, an external GWAS can be used as long as 
there is no overlap between the GWAS samples and samples in the validation set. For any given 
genetic variant, let the GWAS p-value for association with the trait 𝑌𝑌𝑖𝑖 be 𝑝𝑝𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 2. This is 
used to derive three distinct sets of SNPs: 𝜃𝜃�1,𝛼𝛼 , 𝜃𝜃�2,𝛼𝛼,𝜃𝜃�3,𝛼𝛼. 𝜃𝜃�1,𝛼𝛼 is the set of SNPs with 𝑝𝑝𝑦𝑦1 < 𝛼𝛼 and 
𝑝𝑝𝑦𝑦2 ≥ 𝛼𝛼. In other words, 𝜃𝜃�1,𝛼𝛼 is the set of SNPs that are associated with the phenotype, but not the 
endophenotype at the threshold 𝛼𝛼. Similarly, 𝜃𝜃�2,𝛼𝛼 is the set of genetic variants with 𝑝𝑝𝑦𝑦1 ≥ 𝛼𝛼 and 
𝑝𝑝𝑦𝑦2 <  𝛼𝛼.𝜃𝜃�3,𝛼𝛼  is the set of genetic variants with 𝑝𝑝𝑦𝑦1 < 𝛼𝛼  and 𝑝𝑝𝑦𝑦2 < 𝛼𝛼 , i.e., the set of SNPs 
associated with both the phenotype of interest and the corresponding endophenotype. The number 
of variants in set 𝜃𝜃�𝑗𝑗,𝛼𝛼 is denoted as 𝑚𝑚𝑗𝑗 for j = 1,2,3.  

The endoPRS method fits a weighted lasso model on these selected variants from the three 
sets 𝜃𝜃�1,𝛼𝛼 ,𝜃𝜃�2,𝛼𝛼 ,𝜃𝜃�3,𝛼𝛼 with a separate penalty assigned to each set. 𝒀𝒀𝟏𝟏 is the n-length vector of the 
phenotype for n individuals. 𝑿𝑿𝜽𝜽𝒋𝒋,𝜶𝜶 is the (n x 𝑚𝑚𝑗𝑗) matrix of standardized genotypes of the set 𝜃𝜃�𝑗𝑗,𝛼𝛼. 
𝜷𝜷𝒋𝒋 is the 𝑚𝑚𝑗𝑗-length vector of the true effects of 𝑿𝑿𝜽𝜽𝒋𝒋,𝜶𝜶 on 𝒀𝒀𝟏𝟏. 𝜷𝜷 is the vector (𝜷𝜷𝟏𝟏′,𝜷𝜷𝟐𝟐′,𝜷𝜷𝟑𝟑′)′. 𝒁𝒁 is 
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the (n x 𝑚𝑚𝑧𝑧) matrix of covariates, such as genetic principal components, including the intercept. 𝚪𝚪 
is the 𝑚𝑚𝑧𝑧-length vector of the true effects of 𝒁𝒁 on 𝒀𝒀𝟏𝟏. 𝒈𝒈(𝒀𝒀𝟏𝟏) is the link function used for fitting 
the model. The identity link is used for quantitative phenotypes and the logit link is used for binary 
phenotypes. The estimated effect sizes are obtained by solving the following minimization model: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝛽𝛽,Γ

��𝒈𝒈(𝒀𝒀𝟏𝟏) −  𝑿𝑿𝜽𝜽𝟏𝟏,𝜶𝜶𝜷𝜷𝟏𝟏 − 𝑿𝑿𝜽𝜽𝟐𝟐,𝜶𝜶𝜷𝜷𝟐𝟐 − 𝑿𝑿𝜽𝜽𝟑𝟑,𝜶𝜶𝜷𝜷𝟑𝟑 − 𝒁𝒁𝚪𝚪��
2

2
+

�|𝑐𝑐1𝜆𝜆𝜷𝜷𝟏𝟏|�
1

+ �|𝑐𝑐2𝜆𝜆𝜷𝜷2|�
1

+ �|𝑐𝑐3𝜆𝜆𝜷𝜷𝟑𝟑|�
1

  

This model is fit on the training set using the `big_spLinReg()` and `big_spLogReg()` 
functions from the bigstatsr package [35] for quantitative and binary phenotypes, respectively. The 
optimal value of 𝜆𝜆 is determined from a grid of 100 possible values through a 5-fold Cross-Model 
Selection and Averaging procedure [29], which is repeated over a grid of different weights and p-
value thresholds (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3,𝛼𝛼). The weights (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3) are multiplicative penalties applied to all 
the variants. Therefore, if the weights are all scaled by a factor 𝑠𝑠  to obtain new weights 
(𝑠𝑠𝑐𝑐1, 𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑐𝑐3), this will result in the same model as when (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3) was used. In order to avoid 
this identifiability issue in our grid search, we set 𝑐𝑐1  to be 1 and fit the model for 
{𝑐𝑐2: 0.1, 0.5, 1, 2, 10},   {𝑐𝑐3: 0.1, 0.5, 1, 2, 10},  {𝛼𝛼: 0.01, 10−4, 10−6}.  The covariate effects are not 
penalized.  

For each model, we apply the obtained estimates for (𝜷𝜷𝟏𝟏� ,𝜷𝜷𝟐𝟐� ,𝜷𝜷𝟑𝟑� , 𝚪𝚪�) to the validation set to 
obtain 𝒀𝒀�𝟏𝟏,𝒗𝒗𝒗𝒗𝒗𝒗.  We compare the estimated 𝒀𝒀�𝟏𝟏,𝒗𝒗𝒗𝒗𝒗𝒗  to the true 𝒀𝒀𝟏𝟏,𝒗𝒗𝒗𝒗𝒗𝒗  and calculate the R2 for 
quantitative traits or AUC for binary traits. The tuning parameters (𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑐𝑐2𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑐𝑐3𝑜𝑜𝑜𝑜𝑜𝑜) with the 
largest validation R2/AUC are selected. Lastly, the above lasso model using 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑐𝑐2𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑐𝑐3𝑜𝑜𝑜𝑜𝑜𝑜 is 

refit on the combined training and validation set to obtain the final set of estimates, 𝜷𝜷�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . These 
estimated coefficients are used to calculate the genetic risk scores for the held-out test set using 
𝑃𝑃𝑃𝑃𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑋𝑋𝜃𝜃1,𝛼𝛼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽1�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑋𝑋𝜃𝜃2,𝛼𝛼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽2�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑋𝑋𝜃𝜃3,𝛼𝛼,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽3�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 

 

Simulations 

We simulated phenotypes and endophenotypes using real genotype data from unrelated 
European ancestry individuals from UK Biobank who provided informed consent. Unrelatedness 
was defined at a 𝜋𝜋� < 0.025 , where 𝜋𝜋�  is the kinship coefficient estimated using GCTA [36]. 
European ancestry was defined using a combination of self-reported ancestry and k-means 
clustering of genetic principal components (PCs) following the procedure described in Sun et al 
2022 [37]. Individuals with mismatching self-reported and genetically inferred sex and individuals 
whose heterozygosity score was more than three standard deviations from the mean were removed. 
From the 342,270 remaining individuals, we randomly assigned 27,000, 3,000, and 30,000 
individuals to the training, validation, and testing set, respectively. For PRS methods that do not 
require a validation set, the combined training and validation set (n = 30,000) was used for both 
GWAS and model fitting. We constrained the simulations to the imputed dosages of 1,118,716 
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European HapMap3 variants used in PRS-CS [3] with a minor allele frequency (MAF) > 0.1% and 
an INFO score > 0.8. 

Mediator-Only Simulations 

We simulated endophenotype-phenotype pairs using two frameworks. In the first, we 
assumed that the endophenotype (𝑌𝑌2) acts as a mediator on the phenotype (𝑌𝑌1). The endophenotype 
and phenotype were generated from the following model: 

𝑌𝑌1 = 𝑌𝑌2𝜃𝜃 + (𝑋𝑋1,𝑋𝑋3)𝛿𝛿 + 𝜀𝜀1 

𝑌𝑌2 = (𝑋𝑋2,𝑋𝑋3)𝛾𝛾 + 𝜀𝜀2 

Here 𝑋𝑋1/𝑋𝑋2 are the standardized genotype of the phenotype-specific and endophenotype-specific 
causal SNPs, respectively, and 𝑋𝑋3 is the standardized genotype of the causal SNPs shared between 
the phenotype and endophenotype. We randomly selected 50 of the quality controlled (QC+) SNPs 
to be 𝑋𝑋1, and repeated this for 𝑋𝑋2 and 𝑋𝑋3, ensuring no overlap between the three sets. 𝛿𝛿 and 𝛾𝛾 are 
the effect sizes of the SNPs on the traits, which were simulated to be 

�𝛿𝛿𝛾𝛾�~ 𝑁𝑁

⎝

⎛0,�

ℎ1𝑆𝑆𝑆𝑆𝑆𝑆
2

100
𝐼𝐼 0

0
ℎ2𝑆𝑆𝑆𝑆𝑆𝑆
2

100
𝐼𝐼
�

⎠

⎞. ℎ1𝑆𝑆𝑆𝑆𝑆𝑆
2  and ℎ22𝑆𝑆𝑆𝑆𝑆𝑆 are the variance parameters, which account 

for the heritability of 𝑌𝑌1 and 𝑌𝑌2 due to SNPs alone. 𝜃𝜃 is the causal effect of the endophenotype 𝑌𝑌2 
on the phenotype 𝑌𝑌1.  The error terms 𝜀𝜀1  and 𝜀𝜀2  were simulated from the following normal 

distribution: �
𝜀𝜀1
𝜀𝜀2�~ 𝑁𝑁�0,�

1 − ℎ1𝑆𝑆𝑆𝑆𝑆𝑆
2 − 𝜃𝜃 0
0 1 − ℎ22𝑆𝑆𝑆𝑆𝑆𝑆

�� . Thus, the traits 𝑌𝑌1  and 𝑌𝑌2  are 

simulated to have a mean of 0 and a variance of 1. So, the total heritability of 𝑌𝑌2 is ℎ22𝑆𝑆𝑆𝑆𝑆𝑆 and the 
total heritability of 𝑌𝑌1 is ℎ12𝑆𝑆𝑆𝑆𝑆𝑆 +  𝜃𝜃2ℎ22𝑆𝑆𝑆𝑆𝑆𝑆 . 

We fixed the heritability of the endophenotype (ℎ22𝑆𝑆𝑆𝑆𝑆𝑆)  to be 0.5 for all simulations. 
Initially, we fixed the variance parameter of the phenotype 𝑌𝑌1 (ℎ12𝑆𝑆𝑆𝑆𝑆𝑆) to be 0.1 and varied 𝜃𝜃 over 
0.1, 0.2, and 0.5 to examine how increasing the effect of 𝑌𝑌2 on 𝑌𝑌1 affects the performance of the 
endoPRS model. Next, we varied 𝜃𝜃 to be 0.2 or 0.5 and varied ℎ12𝑆𝑆𝑆𝑆𝑆𝑆 over 0.01, 0.05, 0.1, and 0.2. 
Lastly, we simulated a binary phenotype with a prevalence of 0.05 and 0.1, while keeping the 
endophenotype as quantitative. This was accomplished by simulating a quantitative 𝑌𝑌1 for ℎ12𝑆𝑆𝑆𝑆𝑆𝑆 
= 0.1 and 𝜃𝜃 = 0.5 and assigning the bottom 0.05 and 0.1 quantiles as cases and the rest as controls. 
Tables 1 and 2 contain details on all the parameters used for simulations. Each simulation setting 
was repeated 10 times.  

Mediator-Correlated Effects Simulations 

In the first simulation framework, we assumed that the direct effects a SNP has on the 
phenotype and endophenotype are independent. In the second simulation framework we relaxed 
this assumption by introducing a correlation of SNP effect sizes for the two traits. Further, we 
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assumed that this correlation is in the opposite direction of the mediator relationship to obscure 
the effect the endophenotype has on the phenotype. The two traits were generated from the 
following model: 

𝑌𝑌1 = 𝑌𝑌2𝜃𝜃 + 𝑋𝑋𝑋𝑋 + 𝜀𝜀1 

𝑌𝑌2 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀2 

Here 𝑋𝑋 is the standardized genotype of the causal SNPs, which are assumed to be shared between 
the phenotype and endophenotype. We randomly selected 100 of the QC+ SNPs to be causal. The 
effect sizes of the genotypes on the two traits, 𝛿𝛿 = (𝛿𝛿1, … , 𝛿𝛿100)′  and 𝛾𝛾 = (𝛾𝛾1, … , 𝛾𝛾100)′  were 

simulated to be �𝛿𝛿𝛾𝛾�~ 𝑁𝑁�0,�
𝜎𝜎12

100
𝐼𝐼 Σ 𝐼𝐼

Σ 𝐼𝐼 𝜎𝜎22

100
𝐼𝐼
��. 𝜎𝜎12 and 𝜎𝜎22 are the variance parameters which affect 

the heritability of 𝑌𝑌1 and 𝑌𝑌2. Σ is the covariance between 𝛿𝛿𝑖𝑖 and 𝛾𝛾𝑖𝑖 for i=1,…,100. For any 𝛿𝛿𝑖𝑖 and 
𝛾𝛾𝑗𝑗 , 𝑖𝑖 ≠ 𝑗𝑗, the covariance is 0. Similarly, for any (𝛿𝛿𝑖𝑖 , 𝛿𝛿𝑗𝑗) or (𝛾𝛾𝑖𝑖, 𝛾𝛾𝑗𝑗) where  𝑖𝑖 ≠ 𝑗𝑗, the covariance is 0. 
The error terms 𝜀𝜀1 and 𝜀𝜀2 were simulated from independent normal distributions to set the overall 
variance of the traits 𝑌𝑌1 and 𝑌𝑌2 to be 1. The overall heritability of 𝑌𝑌2 is 𝜎𝜎22 and the total heritability 
of 𝑌𝑌1  is 𝜎𝜎12 +  𝜃𝜃2𝜎𝜎22 + 2𝜃𝜃Σ.  We specifically chose to use different notation for the variance 
parameter (𝜎𝜎𝑖𝑖2 as opposed to ℎ𝑖𝑖2𝑆𝑆𝑆𝑆𝑆𝑆) for this set of simulations to emphasize the more complicated 
nature of the heritability of 𝑌𝑌1. In fact, in some of our simulations the overall heritability of 𝑌𝑌1 is 
less than 𝜎𝜎12.  

We fixed 𝜎𝜎12 to be 0.1 and 𝜎𝜎22 to be 0.5 for all simulations. We simulated three different 
combinations of endophenotype-phenotype relationships by varying 𝜃𝜃  and Σ  (𝜃𝜃 = −0.2 & Σ  = 
0.1; 𝜃𝜃 = −0.5 & Σ = 0.1; 𝜃𝜃 = −0.5 & Σ = 0.2) (Table 3). Additionally, for each of the three genetic 
frameworks, we simulated a binary phenotype with a prevalence 0.05 and 0.1, while keeping the 
endophenotype as quantitative (Table 3). Each simulation setting was replicated 10 times.  

 

Real Data Analysis 

We then applied our endoPRS method to a real data analysis using eosinophil counts and 
childhood onset asthma outcome from UK Biobank. Eosinophils are known to play a causal role 
for the T2-high asthma endotype by producing inflammatory mediators that have effects on airway 
remodeling and hyperresponsiveness [17–19]. However, information about endotype is not 
available in UK Biobank, so we selected childhood onset asthma for analysis since it is known that 
T2-high asthma is commonly associated with this sub-phenotype [19,27]. We hypothesize that by 
using COA cases, we are enriching our study sample in the T2-high asthma endotype, thus 
retaining the causal role of eosinophils.  
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Classification of Asthma Cases 

We identified 67,632 asthma cases in UK Biobank based on the presence of either a doctor 
diagnosis of asthma (Field 6152_8), self-reported asthma (Field 20002_1111), or an asthma 
International Classification of Diseases (ICD) code (ICD9_493, ICD10_J45, ICD10_J46). We then 
excluded 15,222 individuals if (1) they were missing both a self-reported and doctor-determined 
asthma age of diagnosis (Field 3786 and Field 22147) or (2) the self-reported and doctor-
determined asthma age-of-diagnosis disagreed by more than 10 years. Additionally, non-asthma 
controls were removed from analysis if they had a self-reported or doctor-determined asthma age 
of diagnosis. Lastly, all individuals with either self-reported, doctor diagnosed, or ICD code for 
chronic obstructive pulmonary disease, emphysema, or chronic bronchitis were excluded from all 
analysis (Supplementary Table 1).  

We limited our study population to the 342,270 unrelated individuals of European ancestry 
that passed the sample level QC described in the previous section. We defined childhood onset 
asthma (COA) as an asthma case with a first diagnosis before 12.5 years of age (the minimum of 
Field 3786 and Field 22147 was used when both were available) Using this definition and 
exclusion criteria, we identified 8,346 COA cases and 287,897 non-asthma controls. 

Classification of Eosinophil Counts 

 Eosinophil counts of UK Biobank participants were assayed as previously described [38]. 
The eosinophil counts were initially log10(x + 1) transformed, then adjusted for age, age2, top 10 
genotype PCs, center, genotyping array, and sex. The eosinophil count values used for analysis 
were the inverse normal transformed residuals from this regression. Individuals were excluded 
following the exclusion criteria specified in Rowland et al 2022 [39]. We limited our study 
population to the 342,270 unrelated individuals of European ancestry that passed the sample level 
QC described in the previous section, met the inclusion criteria, and contained complete data for 
all covariates and phenotypes. There were 290,713 individuals that satisfied these criteria.  

Training, Testing, Split 

Only the individuals that passed QC for both eosinophil counts and COA status were used 
for PRS analysis. For the COA analysis, there were 7,459 cases and 255,900 controls. 72%, 8%, 
and 20% of individuals were randomly assigned to training, validation, and testing respectively. 
This split was repeated 10 times to create 10 independent training, validation, and testing sets. For 
PRS methods that do not require a validation set, the combined training and validation set (80% 
of individuals) was used for training. The COA and eosinophil count GWAS analysis were run 
using REGENIE [40]. The first 15 genetic PCs, sex, age, BMI, assessment center, and genotype 
array were included as covariates in the GWAS and in all PRS methods that allow for the 
incorporation of covariates. We constrained the real data analysis to imputed dosages of the 
European HapMap3 variants used in PRS-CS [3] with a minor allele count (MAC) > 20 in the 
training set and an INFO score > 0.8. 
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Alternate PRS Methods for Comparison 

We compared the performance of our endoPRS method to existing methods. Specifically, 
we considered individual level data single-trait PRS methods (lasso models fit using the 
bigstatsr [35] package with various p-value thresholds), summary statistics level single-trait PRS 
methods (pruning and thresholding via PRSice-2 [1], LDpred2-grid [2], PRS-CS [3]), individual 
level multi-trait PRS method (wMT-BLUP) [8], and summary level multi-trait PRS methods  
(MTAG + LDpred2-grid) [7]. More detailed descriptions of the PRS methods used are available 
in the supplementary materials (Supplementary Methods, Supplementary Table 2). 
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Tables  
 
Table 1: Simulation parameters for mediator-only framework with quantitative phenotype. 
For all, 𝒉𝒉𝟐𝟐𝟐𝟐𝑺𝑺𝑺𝑺𝑺𝑺 is set to 0.5. 

𝜽𝜽 𝒉𝒉𝟏𝟏𝟐𝟐𝑺𝑺𝑺𝑺𝑺𝑺 Total Heritability of 𝒀𝒀𝟏𝟏 Heritability of 𝒀𝒀𝟏𝟏 due to causal effect of 𝒀𝒀𝟐𝟐  

0.1  
0.1 

 

0.105 0.005 

0.2 0.12 0.02 

0.5 0.225 0.125 

 
0.2 

0.01 0.03 0.02 

0.05 0.07 

 
0.5 

0.01 0.135  
0.125 0.05 0.175 

0.2 0.325 

 
 
 
 
 
 
Table 2: Simulation parameters for mediator only framework with binary phenotype. The 
endophenotype is simulated to be quantitative.  

𝜽𝜽 𝒉𝒉𝟏𝟏𝟐𝟐𝑺𝑺𝑺𝑺𝑺𝑺 𝒉𝒉𝟐𝟐𝟐𝟐𝑺𝑺𝑺𝑺𝑺𝑺 Prevalence of 𝒀𝒀𝟏𝟏 

0.5 0.1 0.5 0.05 

0.5 0.1 0.5 0.1 
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Table 3: Simulation parameters for mediator with non-independent effect size framework. 
For all, 𝝈𝝈𝟏𝟏𝟐𝟐 = 0.1 and 𝝈𝝈𝟐𝟐𝟐𝟐 = 0.5. 

𝜽𝜽 𝚺𝚺 Total 
Heritability of 
𝒀𝒀𝟏𝟏 

Genetic Correlation 𝒀𝒀𝟏𝟏 and 
𝒀𝒀𝟐𝟐  

𝒀𝒀𝟏𝟏 Trait Type 

 
-0.2 

 
0.1 

 
0.08 

 
0 

Quantitative,  
Binary: Prevalence 0.05, 
Binary: Prevalence 0.1 

 
-0.5 

 
0.1 

 
0.125 

 
-0.6 

Quantitative,  
Binary: Prevalence 0.05, 
Binary: Prevalence 0.1 

 
-0.5 

 
0.2 

 
0.025 

 
-0.447 

Quantitative,  
Binary: Prevalence 0.05, 
Binary: Prevalence 0.1 
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