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Abstract:

Housing infrastructure and quality is a major determinant of infectious disease risk 
and other health outcomes in regions of the world where vector borne, waterborne and 
neglected tropical diseases are endemic. It is important to quantify the geographical 
distribution of improvements to the major dwelling components to identify and target 
resources towards populations at risk. The aim of this study was to model the sub-national 
spatial variation in housing materials using covariates with quasi-global coverage and use 
the resulting estimates to map the predicted coverage across the world’s low- and middle-
income countries (LMICs). Data relating to the materials used in dwelling construction 
were sourced from nationally representative household surveys conducted since 2005. 
Materials used for construction of flooring, walls, and roof were reclassified as improved or 
unimproved. Households lacking location information were georeferenced using a novel 
methodology, and a suite of environmental and demographic spatial covariates were 
extracted at those locations for use as model predictors. Integrated nested Laplace 
approximation (INLA) models were fitted to obtain and map predicted probabilities for 
each dwelling component. The dataset compiled included information from households in 
283,000 clusters from 350 surveys. Low coverage of improved housing was predicted 
across the Sahel and southern Sahara regions of Africa, much of inland Amazonia, and areas 
of the Tibetan plateau. Coverage of improved roofs and walls was high in the Central Asia, 
East Asia and Pacific and Latin America and the Caribbean regions, while improvements in 
all three components, but most notably floors, was low in Sub-Saharan Africa. Human 
development was by far the strongest determinant of dwelling component quality, though 
vegetation greenness and land use were also relevant markers These findings are made 
available to the reader as files that can be imported into a GIS for integration into relevant 
analysis to derive improved estimates of preventable health burdens attributed to housing.
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1 Introduction:

2 The United Nations’ Sustainable Development Goals (SDGs) include ambitious 

3 commitments to fight communicable diseases (target 3.3) and provide adequate, safe and 

4 affordable housing (target 11.1) throughout its member states [1]. Although they fall under 

5 separate goals, housing quality has long been recognized as a social determinant of health 

6 and epidemiological evidence is now elucidating the mechanisms by which this 

7 relationship operates [2]. Many endemic infectious diseases of global public health concern, 

8 including several named in SDG3, are transmitted within and between households with the 

9 majority of infections occurring while the susceptible individual is at home [3], and 

10 consequently features of the built peridomestic environment and infrastructure play a role 

11 in promoting or impeding the spread of pathogens and their insect vectors [4]. This is 

12 particularly true of tropical and rural regions of Africa, Asia and Latin America where 

13 numerous vector borne and neglected tropical diseases circulate and where dwellings are 

14 often constructed using locally available, naturally occurring materials and traditional 

15 techniques such as wattle and daub, dried or burnt bricks, adobe, woven reed or bamboo 

16 and thatch [4]. These construction methods often require great skill and community 

17 mobilization to implement and are adapted over generations to suit local climate, ecology 

18 and topography, however numerous disease-causing insects and microbes are also well 

19 adapted to take advantage of the ecological niches that such buildings provide [5,6].

20 Infants and young children are particularly vulnerable to the health effects of 

21 housing construction material due to the high proportion of time spent in the family 

22 dwelling and behaviors common to early life such as crawling or playing on the floor [7–9]. 

23 Floors that are finished with wood, tiles or cement may protect against transmission of 
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24 some diarrhea-causing enteric pathogens compared to those made of packed earth or sand 

25 either because they are easier to clean, or because they are less hospitable to pathogen 

26 survival outside the host [9].

27 As childhood mortality continues to decline globally, becoming concentrated in 

28 subnational hotspots it will be increasingly necessary to target interventions ever more 

29 specifically both geographically and to particular causes [10]. Several household-level 

30 determinants of health have been mapped at continental or global scale using survey data 

31 and spatial interpolation methods including water source and sanitation facility type [11], 

32 crowded living space [12], educational attainment [13], and relative wealth [14]. Tusting 

33 and colleagues have applied a similar approach to mapping houses built with finished 

34 materials across Sub-Saharan Africa for 2000 and 2015, defining such households as those 

35 having at least two out of three of the materials for the walls, roof and floor were finished, 

36 though they did not separate out these three components [15]. Building on these efforts, 

37 the aim of this study, a project of the Planetary Child Health & Enterics Observatory (Plan-

38 EO, www.planeo.earth) [16] was to model the sub-national spatial variation in housing 

39 materials using covariates with quasi-global coverage and use the resulting estimates to 

40 map the predicted coverage across low- and middle-income countries (LMICs). The guiding 

41 hypothesis was that coverage of improved housing materials varies spatially as a function 

42 of environmental, and socio-demographic factors in a way that can be modelled using 

43 publicly available global datasets and state-of-the-art geostatistical methods.
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44 Materials and Methods:

45 Objective and scope:

46 The objective of this analysis was to estimate the percent coverage of each category 

47 of materials used in dwelling component construction at all locations throughout the 

48 world’s LMICs (as defined by the Organisation for Economic Co-operation and 

49 Development [17], excluding those in Europe). 

50 Outcome variables:

51 The categories of housing materials used in this analysis were those proposed by 

52 Florey and Taylor, who classify materials used for construction of flooring, walls, and roofs 

53 into natural, rudimentary, and finished types, and then further into improved and 

54 unimproved [18]. Data relating to these variables were compiled from nationally 

55 representative, population-based household surveys with two-stage cluster-randomized 

56 sample designs such as the Demographic and Health Surveys (DHS) [19], the Multiple 

57 Indicator Cluster Surveys (MICS) [20] and others. These programs collect information on 

58 coverage of health and development indicators and make the resulting microdata publicly 

59 available through their websites. All Standard DHSs, Malaria and AIDS Indicator Surveys 

60 (MIS and AIS) and MICS that collected information on housing material dating back to 2005 

61 from all LMICs were included. For countries where no such surveys were available, either 

62 similar surveys from the 2000-2004 period or country-specific surveys were sourced 

63 where available. The unit of analysis was the household, and these were classified into 

64 three, mutually exclusive categories (natural, rudimentary, and finished) based on the 
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65 housing material recorded by the survey interviewer for each of the three dwelling 

66 components (floors, walls, and roof) as shown in Table 1.

Table 1: Classification of construction materials for the three components of the dwelling 
used as three-category outcome variables (adapted from Florey and Taylor 2016 [18])
Category Flooring Walls Roof

Natural Earth, sand, dung 
etc.

Mud, sticks, cane, 
palm, tin, 
cardboard, paper, 
thatch, straw etc.
No walls

Grass, thatch, palm 
leaves, sod, straw 
etc.
No roof

U
ni

m
pr

ov
ed

Rudimentary Wood planks, palm, 
bamboo etc.

Bamboo, stone, or 
trunks with mud, 
uncovered adobe, 
plywood, 
cardboard, reused 
wood, unburnt 
bricks etc.

Palm, bamboo, 
wood planks, 
cardboard, 
tarpaulin, plastic 
etc.

Im
pr

ov
ed

Finished

Parquet or 
polished wood, 
vinyl or asphalt 
strips, cement, 
carpet etc.

Cement or cement 
blocks, stone with 
lime or cement, 
bricks, covered 
adobe, wood 
planks/shingles, 
burnt bricks etc.

Metal, wood, 
ceramic tiles, 
cement, shingles, 
slate etc.

67 Georeferencing households: For this spatial analysis it was necessary to assign 

68 coordinates to each household representing its approximate location. Cluster-randomized 

69 surveys have a hierarchical design such that households are nested within clusters, the 

70 census enumeration areas that serve as the primary sampling unit, which are in turn 

71 nested within survey strata (sub-national region and urban/rural status). The DHS 

72 Program provides coordinates of the cluster centroids for most of the surveys they carry 

73 out [21] (though these are randomly “displaced” – systematically shifted up to a certain 

74 distance to preserve confidentiality [22]). However, these are not available for all clusters 

75 and surveys and equivalent coordinates have been made available only for a handful of 
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76 MICS and no country-specific surveys. For this analysis, households were georeferenced to 

77 their displaced cluster centroid coordinates where available, otherwise their clusters were 

78 randomly assigned to populated settlement locations taken from the Humanitarian 

79 OpenStreetMap database [23] that fell within the same survey stratum (sub-national region 

80 and urban/rural status) with probability proportional to the population density of the 

81 settlement (extracted from the WorldPop [24] database at settlement coordinates). 

82 OpenStreetMap settlements were reclassified such that cities and towns were categorized 

83 as urban, and villages, hamlets, and isolated dwellings as rural. This novel cluster location 

84 assignment process was automated in ArcGIS Pro ModelBuilder [25] and Stata 18 [26].

85 Covariates:

86 A suite of time-static environmental and demographic spatial covariates available in 

87 raster format were compiled based on their hypothesized associations with the outcome 

88 variables. Definitions and sources of each covariate are shown in Table 2. Variable values 

89 were extracted at the georeferenced cluster locations in Python. In addition, time was 

90 calculated in continuous months since January 1st, 2005, based on the date of survey 

91 interview and log-transformed based on the assumption that changes in household 

92 material over time would be non-linear but unidirectional. Countries were grouped into the 

93 six regions used for administrative purposes by the World Bank [27], and this categorical 

94 variable was also treated as a covariate so that, for countries with no available survey data, 

95 estimates would be based partly on regional averages.

96 Analysis:
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97 To reduce the database size and computational demands, and to neutralize the issue 

98 of within-cluster correlation, one household with non-missing outcome value was 

99 randomly sampled per cluster and retained for analysis (this selection was done separately 

100 for each of the three outcomes). Due to the computational demands of performing 

101 geospatial analysis at the global scale, we recoded all outcomes to be binary, by collapsing 

102 two of the response categories together ( “rudimentary” was grouped with “natural”) to 

103 give “improved” / “unimproved” response categories as shown in Table 1, and in a 

104 modification of the schema proposed by Florey and Taylor (those authors grouped 

105 rudimentary and finished walls and roofs into the improved category, but not floors, 

106 however we opted for a consistent categorization across components to facilitate 

107 comparison between outcome variables [18]).

108 Exploratory spatial data analysis: We first assessed the presence of spatial 

109 autocorrelation by generating semi-variograms of the Pearson residuals from a non-spatial 

110 logistic regression that included all explanatory variables listed in Table 2 (Supplementary 

111 Figure S1). We fit spherical spatial correlation models to each semi-variogram and 

112 estimated the nugget, range, and sill for each outcome. The semi-variograms and respective 

113 models were estimated using the gstat R package [28]. Together with the nugget:sill ratio 

114 and the estimated range, we determined that an explicitly spatial modeling approach was 

115 required to account for the non-trivial spatial correlation in the Pearson residuals.

116 Model fitting: Given the massive spatial scale of the database, with hundreds of 

117 thousands of points spanning most of the globe, incorporating spatial correlation into the 

118 models presented computational challenges. We used the inlabru R package to implement 
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119 an integrated nested Laplace approximation (INLA) modeling approach in which all 

120 locations are projected onto a coarsened grid or “mesh” containing several thousand 

121 vertices that carry the spatial information and can be reprojected onto the observed data 

122 [29,30]. INLA models approximate Bayesian models by constructing the posterior 

123 distribution and then applying Laplace approximations, thus bypassing the need for time-

124 consuming Markov chain Monte Carlo sampling and making global-scale computation 

125 feasible. All coordinates were transformed via the Mollweide projection and scaled into 

126 kilometers prior to analysis. The mesh used for modelling had 18,352 vertices, placed 

127 within continental boundaries. Further details on the implementation of the INLA model 

128 are provided in Supplementary File 1.

129 Model predictions: Predicted probabilities for each outcome were made for all 

130 locations in the domain of interest (the LMICs) at 5 km2 resolution and exported in 

131 Georeferenced Tag Image File format (GeoTIFF). The spatial covariates from Table 2 along 

132 with the time variable were used to generate predicted logistic distribution probability of 

133 the finished class of each building material from the INLA model. A value for time 

134 corresponding to the first of January 2023 was used for making predictions. Missing pixel 

135 values were filled by performing imputation using k-Nearest Neighbors method by Python 

136 Scikit-learn package [31].

137 Model evaluation: The predictive performance of the spatial models was assessed 

138 by calculating common metrics of recall (sensitivity), precision (positive predictive value), 

139 accuracy (the proportion correctly classified), F1-score (mean of precision and recall), and 

140 area under the receiver operating characteristic curve (ROC-AUC). For each performance 
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141 metric, two multiclass averaging metrics (macro and weighted average) were calculated, 

142 including macro averaging and weighted macro averaging, given by:

𝑃𝑟𝑚𝑎𝑐𝑟𝑜 =  
1
𝑛

𝑛

𝑖=1
𝑃𝑟𝑖 (1)

𝑃𝑟𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑―𝑚𝑎𝑐𝑟𝑜 =  
1
𝑛

𝑛

𝑖=1
𝑃𝑟𝑖 ∗ 𝑂𝑏𝑠𝑖 (2)

143 Where 𝑃𝑟𝑖 is the precision calculated from the multiple class predictions and 𝑂𝑏𝑠𝑖 is 

144 the number of observations of one class. 𝑛 is the total number of observations of all classes. 

145 To assess the relative contribution of each covariate to the models, feature importance 

146 values for the input raster covariates were calculated by running parallel non-spatial linear 

147 regression models (since the inlabru package does not provide feature importance output) 

148 that were otherwise identically specified and scaling the output coefficients to the 0 – 1 

149 range using the Scikit-learn Python package. These feature importance values can be 

150 interpreted as conditional associations, quantifying the responded variation of the output 

151 when only the given feature is allowed to vary while all other features are held constant.

152 Ethics statement:

153 All human subject information used in this analysis was anonymized, publicly 

154 available secondary data, and therefore ethical approval was not required or sought. For 

155 data provided by the DHS Program, data access requests (including for the displaced 

156 cluster coordinates) were submitted and authorized through the Program’s website. A 

157 completed checklist of Guidelines for Accurate and Transparent Health Estimates 

158 Reporting (GATHER [32]) is included in Supplementary File S1.
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Table 2: Definitions and sources of variables included as covariate predictors in the model

Variable Definition Units/
Categories1 Source

Accessibility to 
cities

Travel time to nearest 
settlement of >50,000 
inhabitants.

Minutes MAP [33]

Aridity index
Mean annual precipitation / 
Mean annual reference 
evapotranspiration, 1970-2000.

Ratio CGIAR-CSI 
[34]

Climate zone First level Köppen-Geiger 
climate classification.

Tropical; arid; 
temperate; cold; polar

Beck et al. 
2018 [35]

Cropland areas Proportion of land given over to 
cropland, 2000. Proportion CIESIN [36]

Distance to major 
river

Distance to major perennial 
river (derived from rivers and 
lakes centerlines database).

Decimal degrees Natural 
Earth [37]

Elevation Elevation above sea level. Meters NOAA [38]

Economic 
development

Sub-national unit-level Gross 
Domestic Production (GDP) per 
capita, 2015

Constant 2011 int. USD
Kummu et 
al. 2018 
[39]

Enhanced 
Vegetation Index

Vegetation greenness corrected 
for atmospheric conditions and 
canopy background noise.

Ratio USGS [40]

Growing season 
length

Reference length of annual 
agricultural growing period 
(baseline period 1961-1990).

Days FAO, IIASA 
[41]

Human 
development

Sub-national unit-level Human 
Development Index (HDI), 2015 Scale from 0 to 1

Kummu et 
al. 2018 
[39]

Human Footprint 
Index

Human Influence Index (HII) 
normalized by biome and realm. Percentage CIESIN [42]

Irrigated areas Percentage of land equipped for 
irrigation around the year, 2000. Percentage FAO [43]

Land cover and use

General class of vegetation, tree, 
and ice cover or purpose of land 
use, 2020 (resampled and 
reclassified from Global Land 
Cover and Land Use)

Built up; cropland; 
desert; semi-arid; short 
vegetation; snow or ice; 
tree cover; wetland

GLAD [44]

Land Surface 
Temperature

Interannual averages of daily 
land surface temperature 
estimates for daytime, 
nighttime, and day/nighttime 
range, 2003-2020.

K
MOD21A1N 
v006 
[45,46]
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Table 2: Definitions and sources of variables included as covariate predictors in the model

Variable Definition Units/
Categories1 Source

Nighttime light

The surface upward radiance 
from artificial light emissions 
extracted from at-sensor 
nighttime radiances at top-of-
atmosphere.

nWatts·cm−2·sr−1 NASA Black 
Marble [47]

Pasture areas Proportion of land given over to 
pasture, 2000. Proportion CIESIN [36]

Population density Human population density per 
1km2. Inhabitants per km2 WorldPop 

[24]

Potential 
evapotranspiration

8-day sum of the water vapor 
flux under ideal conditions of 
complete ground cover by 
plants.

kg/m²/8-day NASA 
EOSDIS [48]

Region Region of the globe as defined by 
the World Bank

East Asia & Pacific; 
Europe & Central Asia; 
Latin America & the 
Caribbean; Middle East & 
North Africa; South Asia

World Bank 
[27]

Urbanicity

Urbanicity status at 
georeferenced location 
(reclassified from Global Human 
Settlement database).

Urban; peri-urban; rural; 
remote GHS [49]
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159 Results:

160 350 nationally representative household surveys (together containing data from more than 

161 6 million households in 283,000 clusters) met the inclusion criteria, reported information 

162 on construction material types for one or more of the dwelling components and were 

163 included in the model training dataset. Figure 1 shows the number of surveys contributed 

164 by each LMIC, while Supplementary File S2 gives the national level distribution of each of 

165 the three housing construction variables in each survey (before within-cluster sub-

166 sampling, and without sample weights applied). All eligible surveys included information 

167 on floor material; however, wall and roof material information were only available from 

168 328 and 324 surveys respectively. No relevant data from household surveys could be found 

169 for several LMICs with large geographies and populations, most notably China, Iran, 

170 Venezuela, Libya, and Malaysia, as well as the smaller countries of Eritrea, North Korea, 

171 Lebanon, Equatorial Guinea, and numerous island nations such as Sri Lanka.

172 Figure 1: Number of nationally representative household surveys included in input 

173 dataset by country for included LMICs (small countries represented by circles). Base map 

174 compiled from shapefiles obtained from U.S. Department of State—Humanitarian 

175 Information Unit [50] and Natural Earth free vector map data @ naturalearthdata.com that 

176 are made available in the public domain with no restrictions.

177 Figure 2 shows the geographical distribution of the coverage of improved 

178 materials predicted by the INLA models for each of the three binary dwelling component 

179 variables across the domain of included LMICs. These predictions are also provided as 

180 raster TIFF files available on the Dryad data repository. There are some similarities across 
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181 the variables, with low coverage predicted for all three across a wide belt of the Sahel and 

182 southern Sahara regions of Africa, much of inland Amazonia, and areas of the Tibetan 

183 plateau, as well as individual countries including the Democratic Republic of the Congo, 

184 Mozambique, Madagascar, Pakistan, and Papua New Guinea. High coverage of all three 

185 improved components coincided across much of the Middle East, Mediterranean North 

186 Africa, the coast of the Bight of Benin, the Caribbean, sub-Amazonian Brazil, southern 

187 Argentina, and South Africa. However, divergence in coverage of the three variables is 

188 evident across many locations. Across Kazakhstan, Mongolia, Azerbaijan, Cambodia and 

189 Laos, low coverage of improved floors, but high coverage of walls and roofs were predicted, 

190 while in Afghanistan, the reverse was the case. Yemen has mostly high improved floor 

191 coverage predicted, but low improved roof and mixed improved wall coverage, while on 

192 the island of Borneo, that pattern is reversed. Importantly, sub-national patterns are clearly 

193 visible, for example, with respect to improved floors, walls, and roofs in India, China, 

194 Mexico, and Brazil.

195 Figure 2: Coverage of improved material for three dwelling components - a. floors, b. 

196 walls, c. roofs – in LMICs predicted by integrated nested Laplace approximation (INLA) 

197 models fitted to household survey data. Base maps compiled from shapefiles obtained from 

198 U.S. Department of State—Humanitarian Information Unit [50] and Natural Earth free vector 

199 map data @ naturalearthdata.com that are made available in the public domain with no 

200 restrictions.

201 Figure 3 shows ridge plots visualizing the distribution of predicted values for the 

202 coverage of improved status for each of the three dwelling components and stratified by 
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203 the six world regions. The distribution of improved roofs was highly concentrated at values 

204 very close to 100% in the Central Asia region, findings which are borne out by the input 

205 data, in which most surveys recorded a coverage of finished roofs greater than 97% 

206 (Supplementary File S2). This was true to a far lesser extent for other regions - with the 

207 exception of Sub-Saharan Africa, which had predicted values much more evenly dispersed 

208 along the range of values – and for improved walls, though the South Asia region and had a 

209 much more dispersed, bimodal distribution for the latter variable. For improved floors, 

210 predicted values were highly concentrated at the low extreme of Sub-Saharan Africa.

211 Figure 3: Distribution of values predicted for coverage of improved dwelling 

212 components by INLA models, stratified by component and world region.

213 Figure 4 visualizes the feature importance values for each covariate in each of the 

214 three models. More than half (eleven) of the variables did not contribute to any of the 

215 models. Feature importance was dominated by the same single variable (human 

216 development index), accounting for more than 50% of the variation in all three models. For 

217 the walls and to a lesser extent the floors models, the next most important feature was 

218 provided by the enhanced vegetation index (EVI), whereas for the roofs model, cropland 

219 and pasture areas contributed more to the model prediction, with EVI ranking fourth.

220 Figure 4: Feature importance for each covariate included in the final model for each 

221 of the dwelling components (HDI – Human Development Index; EVI – Enhanced Vegetation 

222 Index; LST – Land Surface Temperature; ET – Evapotranspiration; GDP – Gross Domestic 

223 Product).
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224 Table 3 gives statistics that evaluate the models’ performance in classifying 

225 household construction material types for the three dwelling components.  Across the 

226 whole database, floors were the dwelling component for which coverage of improved 

227 construction material was lowest at 57.9%, the equivalent coverage for walls and roofs 

228 being 67.1% and 80.3% respectively. While precision, recall and F1-score statistics were 

229 generally high for the unimproved category in all models, they varied considerably for the 

230 improved category, particularly for the roofs model, for which recall, and F1-score were 

231 just 0.4 and 0.5 respectively. However, the roofs model was the one with the highest 

232 weighted average for those three statistics (a precision of 0.84, recall of 0.85 and F1-score 

233 of 0.83, compared with 0.78, 0.79, and 0.78 respectively for the walls and 0.77 for all three 

234 statistics for the floors model). All three models demonstrated similarly strong 

235 discriminatory power and performance in distinguishing between households with 

236 improved and unimproved construction materials in the respective dwelling components, 

237 with ROC-AUC statistics of 0.85 – 0.87.

238
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Table 3: Evaluation statistics for models of construction materials for three dwelling 
components

Observations (%) Precision Recall F1-score ROC-AUC
Total 258,472 (100.0) - - - 0.85
Unimproved 108,931 (42.1) 0.73 0.74 0.73 -
Improved 149,541 (57.9) 0.81 0.80 0.80 -
Macro-average - 0.77 0.77 0.77 -Fl

oo
rs

Weighted average - 0.77 0.77 0.77 -
Total 248,421 (100.0) - - - 0.85
Unimproved 81,621 (32.9) 0.71 0.59 0.65 -
Improved 166,800 (67.1) 0.82 0.88 0.85 -
Macro-average - 0.77 0.74 0.75 -W

al
ls

Weighted average - 0.78 0.79 0.78 -
Total 235,024 (100.0) - - - 0.87
Unimproved 46,272 (19.7) 0.76 0.38 0.50 -
Improved 188,752 (80.3) 0.86 0.97 0.91 -
Macro-average - 0.81 0.67 0.71 -Ro

of
s

Weighted average - 0.84 0.85 0.83 -
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Discussion:

239 Housing infrastructure and quality are major determinants of infectious disease risk and 

240 other health outcomes, particularly in regions of the world where vector borne, 

241 waterborne and neglected tropical diseases are endemic. Although, the nature of this 

242 relationship is complex and multifaceted and varies depending on the specific pathogen 

243 and vector species, it highlights the importance of targeting interventions to mitigate these 

244 adverse health outcomes, particularly in LMICs where the overwhelming majority of 

245 childhood mortality occurs. As attention turns to improving housing quality in low-

246 resource settings as a strategy for controlling infectious diseases, it is important to quantify 

247 the geographical distribution of improvements to the major dwelling components to 

248 identify and target resources towards populations at risk. This study is the first attempt to 

249 meet this objective.

250 The importance of housing materials is clearly not restricted to vectorborne 

251 diseases. Finished floors have been associated with decreases of 0.89 in Log10 E. coli 

252 contamination in Peru [51], 78% in intestinal parasite prevalence in Mexican children [52], 

253 and 9% for diarrheal disease risk, 11% for both enteric bacteria and enteric protozoa risk 

254 [8], and 17% for Shigella spp. infection probability in meta-analyses of children under 5 

255 years across multiple LMIC surveillance sites [53]. Traditional roof material has also been 

256 shown to be associated with childhood diarrhea [54], even after adjusting for floor material 

257 [55]. Pooled analyses of household survey data from multiple countries have found 

258 associations of living in improved housing on numerous child health outcomes, including 

259 cognitive and social-emotional development [7], and nutritional status [56], in addition to 

260 malaria infection [18,57]. Additionally, there is evidence of increased acute respiratory 
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261 illness (ARI) in children in Pakistan, with unimproved flooring increasing ARI risk by 18%, 

262 and unimproved walling materials also increasing the risk of ARI in children under the age 

263 of five [58]. These findings are supported by similar findings with different studies in India, 

264 Nigeria, ad Lao PDR [59–61].

265 This study is subject to several limitations. Our characterization of housing was 

266 constrained by the availability of data from household surveys, which generally only ask 

267 about just three components, and don’t include questions about other relevant features of 

268 the built household environment, such as screens covering openings [62] elevation of 

269 sleeping areas or improvements to windows and ventilation [63]. Although the variables 

270 were originally in three-class ordinal categorical format, we had to combine categories and 

271 model them as dichotomous, because there is currently no way to address adjacent 

272 categories and parallel odds using the INLA modeling approach. Additionally, our spatial 

273 models assume a stationary (i.e., global) covariance structure that does not vary across the 

274 globe. This is likely an oversimplification of the latent spatial effects; however, estimating a 

275 non-stationary spatial model at the global scale falls outside the scope of the current article 

276 and presents a worthwhile future direction. Likewise, improving the precision of the mesh 

277 used by INLA may improve predictions, but with ROC-AUC values already relatively high, 

278 this is likely to yield only marginal gains.

279 Despite these limitations, the product developed fills an important gap in spatially 

280 characterizing determinants of the principal causes of infectious disease burden in LMICs. 

281 Many types of mosquitoes such as those that transmit malaria (Anopheles spp.), dengue 

282 (Aedes spp.), filariasis and Japanese encephalitis (Culex spp.) enter the home through eaves 
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283 and other openings [64] and rest on walls and ceilings after ingesting a blood meal (the 

284 basis behind indoor residual spraying [IRS] of these surfaces as a malaria control 

285 intervention). Indeed, in Africa, 80% of malaria transmission occurs indoors [3] and houses 

286 with roofs and walls constructed of natural material provide more points of entry [64,65] 

287 and preferred resting places [66] for malaria-transmitting mosquitoes, insights which are 

288 increasingly putting housing improvements on the research agendas as potential disease 

289 control strategies [63,65]. In rural Gambia, studies have found reductions in 

290 intradomiciliary mosquito vector abundance and survival through installing plywood 

291 ceilings [67], closing eaves in thatched roofs [68,69], and replacing thatch with ventilated 

292 metal roofing [70]. In rural Uganda, living in a house constructed of traditional materials 

293 (thatched roof, mud walls, earth floor etc.) has been associated with increased clinical 

294 malaria incidence [71] and parasitemia in children [72] and pregnant women [73], and 

295 decreased effectiveness of IRS in reducing Anopheles biting rates [72]. Similar protective 

296 effects of improved housing construction material on entomological and clinical malaria 

297 outcomes have been documented separately in Burkina Faso [74], Ethiopia [75], Laos [76], 

298 Malawi [77], South Africa [78], and Tanzania [79], while pooled effects from systematic 

299 reviews have been reported on the order of a 32% reduction in mosquito-borne diseases, 

300 47% for malaria infection and 85% for indoor vector densities [65,80]. Aside from 

301 mosquito-borne illnesses, living in households with walls made of mud or thatch carries an 

302 increased risk of leishmaniasis infection and indoor abundance of sandfly vectors [81], 

303 while in the Americas, Chagas Disease vectors (triatomine bugs) are drawn to houses with 

304 thatched palm roofs and mud walls [82]. In a Guatemalan community, for example, the 

305 odds of triatomine presence were 3.85 times higher in houses with walls that lacked 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307833doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307833
http://creativecommons.org/licenses/by/4.0/


21

306 plastering [83], while in rural Paraguay, an intervention to provide houses with smooth, 

307 flat and crack-free walls, reduced triatomine infestation by 96.4%, a comparable effect to 

308 that of fumigation [84].

Conclusions:

309 In conclusion, this study applies a relatively computationally efficient and spatially 

310 explicit modeling approach to a very large dataset, representative of but standardized 

311 across diverse geographies, and collected through rigorous and standardized 

312 methodologies. The findings allow us to assess the predictive performance of the models as 

313 well as the relative contribution of particular covariate variables, and the resulting 

314 predictions are made available to the reader in a readily useable format (available from 

315 www.datadryad/org). Human development is by far the strongest determinant of dwelling 

316 component quality, though vegetation greenness and land use (cropland and pasture) are 

317 also relevant markers. Prevalence of improved roofs and walls is high in the Central Asia, 

318 East Asia and Pacific and Latin America and the Caribbean regions, while coverage of 

319 improvements in all three components, but most notably floors, is low in Sub-Saharan 

320 Africa.
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