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Abstract 

Background

Accurate prediction of tumor microenvironment is crucial for optimizing decision making throughout 

cancer treatment process. Current biopsy or surgical-based approaches to assess tumor 

microenvironment are limited by their invasiveness and tumor heterogeneity. The present study aimed 

to investigate the association of computed tomography radiomics features and CD8+ lymphocyte 

infiltration levels for patients with non-small cell lung cancer.

Materials and Methods 

283 patients with CT imaging and RNA-Seq data were collected from open-source data repositories. The 

study included three independent cohorts of non-small cell lung cancer patients, with one serving as the 

training set and the other two as external test sets. 1246 CT radiomics features were extracted. Three 

discriminative texture features were used to train the AI model. 

Results 

The model, trained on discriminative features, achieved a mean area under the curve AUC-ROC of 

0.71(±0.17 std) on the training data. The AUC-ROC of the model on the two independent test sets is 0.67 

(95% CI: 51%, 80%) on TCGA and 0.64 (95% CI: 51%, 74%) on LUNG3. 

Conclusion 
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CT texture features can differentiate patients with high from low CD8+ lymphocyte infiltration levels. 

These features can non-invasively analyze the whole tumor and aid in the identification of patients that 

can respond to immunotherapy.  
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Tweetable abstract

Texture radiomics features on CT scans can aid in stratifying CD8+ lymphocyte infiltration levels for 

patients with NSCLC. 
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Introduction

Lung cancer stands as the foremost cause of cancer-related mortality worldwide. Despite the progress in 

non-small cell lung cancer (NSCLC) treatments, surgical resection continues to be the primary choice for 

NSCLC patients. Nevertheless, surgery is not applicable for all patients, especially patients with metastasis 

outside the lungs (1). Treatment options for late-stage patients are diverse and prone to resistance and 

recurrence, hence, there is an urgent need for additional novel and compelling biomarkers that can aid in 

indicating the diagnosis and prognosis of lung cancer. 

The progression of lung cancer involves both the tumor and the surrounding biological system, which is 

influenced by a combination of genetic factors and multiple cell interactions such as tumor host immune 

cells and stromal in case of metastasis (1). Immune evasion plays a pivotal role in the development of lung 

cancer, by hiding from or suppressing the immune response of the host cell. Therefore, the presence of 

tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment serves as an indicator of the host 

immune response to tumor antigens (2). TILs are composed of diverse immune cell types such as natural 

killer (NK) cells, macrophages, and T cells including CD3+, CD4+, CD8+ lymphocytes, regulatory T cells, and 

others (3). Immunotherapeutic agents have been shown to improve survival in NSCLC (4,5). Depending on 

the distribution and frequency of immune cells, tumors can be classified into three main categories 

notably immune-inflamed, immune-desert, and immune-excluded (6). Tumors characterized by immune 

inflammation exhibit dense and active infiltration of CD8+ cells, indicating the presence of immune 

checkpoint inhibitors, like PD-L1, and an elevated mutational burden. Currently the gold standard for TILs 

quantification is the assessment of surgical or biopsy specimens via immunohistochemistry, 

transcriptomics, and cytometry. This approach, however, is limited by its invasiveness, limited 

reproducibility, and inability to reflect intra- and intertumoral heterogeneity. In addition to that many 
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patients experience immune-related adverse effects. These effects can impact their quality of life, 

increases healthcare expenses, and in severe cases, can cause impairment or death (7). Therefore, 

noninvasive predictive biomarkers are needed to identify patients likely to benefit from immunotherapy, 

minimizing risks and enhancing treatment efficacy.  

Quantitative imaging is a rapidly evolving field centered around the high throughput feature extraction 

from medical imaging, also known as radiomics features. Computed tomography (CT) image based 

radiomics is a non-invasive approach, allowing comprehensive analysis of the entire tumoral tissue, 

microenvironment, and its surroundings. Therefore, radiomics features facilitate the characterization of 

tumor spatial heterogeneity and enable the longitudinal evaluation of disease progression, evolution, and 

response to treatment.  

Our study aims to investigate the ability of radiomics features alone to stratify patients based on CD8+ 

lymphocyte infiltration levels and identify relevant radiomics features associated with these levels. 

Material and methods

Data 

Three publicly available datasets containing CT images and gene expression data (RNA-Seq or Micro-Array) 

for patients with non-small cell lung cancer (NSCLC) were used to train and test the model. Only patients 

with both CT imaging and RNA-Seq (N=273) were eligible for further analysis. A flow chart describing the 

data flow of the study is shown in Fig 1.

One dataset (referred to as Radiogenomics) was used for model training(8–10). The two other datasets 

were used for model testing. The first test set is radiomics-genomics, referred to as Lung3(11,12). Both 

were collected from The Cancer Imaging Archive (TCIA, http://cancerimagingarchive.net/) (13). The 
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second test set consisted of two subsets from The Cancer Genome Atlas (TCGA), which included both 

squamous cell carcinoma and adenocarcinoma cases, namely TCGA-LUSC dataset and TCGA-LUAD 

respectively (14,15).  

Among the 273 patients, 50 identified with multiple tumors (Radiogenomics N=31, Lung3 N=6, TCGA 

N=13). Only the tumor corresponding to the biopsied tumor description was retained for each patient, 

while any additional tumors were excluded. 

Fig 1. data flow 

Immune microenvironment estimation

The TILs data was collected directly from the TIMER platform which calculated the immune profiles of 

each of the patients in the TCGA library. The TILs data for Radiogenomics and Lung3 datasets were not 

available. However, the RNA sequencing data was available and were collected from the Gene Expression 

Omnibus (GEO) (16,17). For Radiogenomics patients we calculated the immune profiles using the TIMER 

software platform from the raw data (18).  We collected the RNA sequencing data for LUNG3 dataset, 

normalized using Robust Microarray Analysis (RMA) with default parameters. The normalized RNA 

sequencing data is then used to extract gene expression matrix using Bioconductor package (V3.18). 

Furthermore, TME composition was estimated using deconvolution methods(Immunedeconv R package) 

(V2.1) followed by tumor infiltration subtypes estimation. Distributions of CD8+ subtype are depicted in 

Fig 2.  

Fig 2. Distribution of CD8+ subtype of the Radiogenomics, Lung3, LUAD, and LUSC cohorts

Binary outcome estimation

We computed the mean CD8+ levels for each dataset (Radiogenomics, Lung3, and TCGA) and utilized this 

average as a cut-off value to stratify patients into two groups: high CD8+ and low CD8+. As illustrated in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307791doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307791
http://creativecommons.org/licenses/by/4.0/


7

Fig 2, the distribution of CD8+ levels varies among the different datasets. Consequently, we applied a 

distinct cut-off value for each set instead of a universal cut-off for all datasets combined. A high CD8+ 

expression was determined if it exceeded the cut-off point specific to the dataset in question; otherwise, 

it was considered low. The patient distribution for each group is detailed in Table 1.

Radiomics feature extraction

Radiomics refers to the extraction of large amounts of quantitative features from medical images, 

allowing for a thorough quantification and description of tumor phenotypes. The underlying concept of 

radiomics is that there are unique quantifiable features in medical imaging that can shed vital insights into 

tumor physiology, which could be leveraged to improve cancer diagnosis and prognosis.

Lesion delineation is required prior extracting the radiomics features. An in-house semi-automatic tool 

was used to segment lung lesions. The segmentations were reviewed and if needed edited by an 

experienced radiologist with 20+ years of experience. In this study, we did not implement any volume cut-

off criteria for patient inclusion. The same software was used to convert DICOM objects to nifty arrays to 

be used for further processing. We employed the open-source PyRadiomics library (V3.1) for the 

extraction of radiomic features. Prior radiomics feature extraction all CT images were resampled to an 

isotropic grid of 1×1×1 mm3 using B-spline interpolation to consistently calculate the three-dimensional 

features. A fixed bin width of 25 Hounsfield units was used for image intensity discretization, therefore 

reducing noise and computational load. A multi-scale wavelet filter that computes eight decompositions 

(HHH, HHL, HLH, HLL, LHH, LHL, LLH, LLL) per level and Laplacian of Gaussian (LoG) filter (σ = 1.0, 2.0, 3.0, 

4.0, 5.0mm) were applied to the images to extract filter features.  For each lesion, 1246 radiomics features 

were extracted. The extracted features comprised 102 original features (18 first-order statistics, 70 

texture (or otherwise known as second-order statistics), and 14 shape features) and 1144 filtered features 

(704 wavelet and 440 LoG features). The radiomics process applied in this study is depicted in Fig 3.   
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Fig 3. Schematic representation of the radiomics workflow: Data collection: CT and RNA-Seq data for patients with NSCLC 
collected from opensource repositories. Image segmentation: Tumors segmented using a semi-automatic tool. Feature 
extraction: Radiomics features were extracted from the segmented tumors. Feature selection: The robust radiomics features 
were selected, univariate analysis applied to the remaining features to test their ability to stratify patients with high CD8+ vs low 
CD8+, then feature importance analysis were applied to keep only important features for the model. Modeling: The discriminative 
radiomics features were selected and used to train the AI model and the performances were validated on the test sets.

Statistical analysis

Univariate analysis

Before evaluating the associations between the radiomics features, we initially reduced the feature space, 

aiming to eliminate any redundant features. Features with near zero variance were first discarded. Then 

the highly correlated features with Pearson correlation coefficient above 0.8 and features with linear 

combinations between features were eliminated from further analysis. Then, patients were split into two 

groups (high CD8+/ low CD8+). The normality of each feature from the remaining features was assessed 

using Shapiro-Wilk test. A Student’s t-test was used to compare groups with normal distributions, while 

the Wilcoxon rank sum test was used to compare features with non-normal distributions. A p-value under 

0.05 was considered statistically significant. The features with significant discrimination of CD8+ patient 

groups were used for further analysis.

Feature importance 

Hundred times repeated 10-fold cross validation was used to fit a logistic regression model. A different 

random estate was used at each iteration to ensure the uniqueness of the data subsets used to train and 

validate the models. Feature regression coefficient was saved at each iteration, and compared to the rest 

after training was over. The features with positive coefficients at every iteration were saved to train the 

final model.

Multivariate analysis 
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A logistic regression model (LR) was performed in the training data using a ten-fold cross validation to 

classify CD8+ cell infiltration level (high vs low). Model parameters were optimized prior training using the 

python GridSearchCV pipeline. All features were standardized before model training. Additionally, to 

correct class imbalance, and reduce overfitting risk to the most representative class, radiomics features 

were randomly oversampled before modelling. Model performance was validated in test data from TCGA 

and LUNG3 datasets. Here, the area under the receiver operating characteristic curve (AUC) was used to 

assess model performance in discriminating between high CD8+ and low CD8+ cell infiltration levels in 

patients with NSCLC. All statistical analysis were performed in Python V3.9.

Results 

Data characteristics 

The patient demographic characteristics are detailed in Table 1. A total number of 129 patients were used 

for model development 88, and 56 patients from LUNG3 and TCGA were respectively used for 

independent model testing. 

Table 1 patient characteristics 

TCGA

Radiogenomics N = 130 Lung3 N = 89 LUAD N = 29 LUSC N = 35
N selected 
patients 129 88 24 32

Mean age 68.5 67.58 66.82 68.25
Gender (% 
Male) 0.74 0.67 0.69 0.55
Low CD8+ 
(%) 74.22 51.14 58.33 56.25
High CD8+ 
(%) 25.78  48.86 41.66 43.75

Mean CD8+ 0.03 0.09 0.01

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307791doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307791
http://creativecommons.org/licenses/by/4.0/


10

Median 
CD8+ 0.0001 0.09 0.006

CD8+ infiltration prediction

The univariate and features importance analysis yielded three discriminative texture type radiomics 

features with significant differences between the two groups (high and low CD8+). The discriminative 

features consisted of 1) log-sigma-4-0-mm-3D_firstorder_Skewness, 2) wavelet-

LHH_firstorder_Skewness, and 3) wavelet-LHH_glcm_MCC, with p-val = 0.028239, p-val = 0.026691, p-val 

= 0.016508 respectively. We conducted a univariate analysis of the discriminative features on both 

external test sets to evaluate the distinction between the two groups, respectively. The results are 

presented in violin box plots and quantile plots, as shown in Fig 4.

Fig 4. Violin box plots and quantile plots comparing the discriminative features for patients with high and low CD8+ infiltration 
levels; (A) TCGA test set, (B) LUNG3 test set. 

Given that the imaging biomarker profile was able to discriminate CD8+ infiltration levels, we trained a 

logistic regression model to evaluate whether this imaging biomarker retained predictive ability for CD8+ 

patient groups. The mean AUC of the radiomics in the training set was 0.71(±0.17 std), 0.67 (95% CI: 51%, 

80%) on the TCGA independent test set, and 0.64 (95% CI: 51%, 74%) on the LUNG3 test set. The Receiver 

operating characteristic curve ROC curve for the training data is depicted in Fig 5A. Whereas the ROC 

curves for the independent test sets are shown in Fig 5B. 

Fig 5. (A) AUC ROC curves of the 10-fold cross validation radiomics-based models; (B) AUC ROC curves for CD8+ infiltration high 
and low patient prediction in the independent test sets.  

We compiled Kaplan-Meier curves for overall survival for Radiogenomics and TCGA datasets. survival 

curves are depicted in Fig 6. Within each cohort the patients were stratified into two groups (high CD8+ 

and low CD8+). LUNG3 dataset did not have event timepoint, therefore we did not conduct survival 

analysis for this dataset. 
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Fig 6. Kaplan–Meier curves demonstrating performance of the radiomic signature on (A) the training cohort and (B) the TCGA 
cohort

Discussions 

Cancer treatment is increasingly relying on immunotherapy (19). Tumor microenvironment, in particular, 

tumor-infiltrating immune cells analysis have previously unveiled connections between immunogenic 

markers and treatment response factors, such as survival or tumor growth, and other clinical outcomes 

(20–22). Despite the extensive research in this domain, the relationship between tumors and their 

microenvironment is not yet fully unraveled. Moreover, the prevailing studies often rely solely on 

immunohistochemistry-based analyses to assess tumor-infiltrating immune cells. The limitations of these 

approaches are evident when it comes to capturing tumor heterogeneity, mainly due to their reliance on 

small biopsy samples or surgical resection. Consequently, the absence of a valid noninvasive method 

capturing the entirety of the tumor microenvironment stresses the urgent requirement for the 

development of new biomarkers to predict and characterize the tumor microenvironment accurately. 

While CT image based radiomics is a non-invasive approach, allowing comprehensive analysis of the entire 

tumoral tissue, it stands as a potential alternative in addressing these challenges (11). Nevertheless, the 

literature linking the physiological tumor context, like radiomics, to immune response assessment is 

limited due to data heterogeneity and lack of reproducibility (23). 

CD8+ is predominantly expressed on cytotoxic T lymphocytes (CTLs), which eliminates tumor cells through 

the release of perforin and the mediation of immune suppression (24,25). Therefore, they stand as the 

most dominant effect in the anticancer immune response and constitute the foundation of current 

successful cancer immunotherapies (26). CD8+ infiltration in tumor tissue and the surrounding stroma 

measured via pathology and cytology has been shown to be a strong predictor of ICI response (23,27). 

Accurate and fast prediction CD8+ infiltration levels could significantly enhance clinicians’ decision-making 
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process, mainly by facilitating reaching personalized therapeutic consensus, since patients with high CD8+ 

infiltration levels are most likely to respond well to immunotherapy. 

In this study, we examined the ability radiomics features extracted from CT images to discriminate CD8+ 

infiltration levels in patients with NSCLC. The data originated from three opensource cohorts. A total of 

1246 radiomics features were extracted from each lesion. We identified three first order and textural 

features that were able to discriminate CD8+ infiltration levels in both the training and independent test 

cohorts. Our findings indicate that radiomics texture features can play a significant role in capturing tumor 

immune phenotypes. This suggests that radiomics features have the capacity to unveil a more complex 

range of phenotypic characteristics compared to conventional clinical factors. 

Several other studies have shown that CD8+ infiltration levels significantly correlated with CT texture 

features for patients with NSCLC. Zhou et.al., reported that texture heterogeneity (NGLDM contrast) had 

a strong correlation with CD8+ infiltration levels (28). Another study reported that texture radiomics 

features (First-order, GLCM, GLRLM, and GLDM) correlate with not only CD8 infiltration levels but also 

with CD3 and PD-L1 (29). Similarly, Chen et.al., reported that six radiomics features (first order and five 

wavelet flittered texture features) significantly correlated with CD8 TILs (30). Min et.al., demonstrated 

that homogeneity and high grey-level values (GLCM and GLDM) correlate with CD8 and CD103 markers 

(31). However, reproducing the results reported throughout all those studies is not trivial due to the 

sensitivity of radiomics features to acquisition parameters and scanner types. Despite the heterogeneity 

of the data we used in our study, our findings validated the results presented in the previously published 

articles. This validation pertains specifically to the feature group, in this case, first order and texture 

features, rather than extending to individual feature sets. All the datasets used in the current study are 

publicly available, easing reproducibility of the results reported. 
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Despite the increased exploration of CT radiomics in clinical practice, substantial standardization 

challenges persist in the form of variations in study design and analysis methods. In addition to data 

variance is susceptibility to multiple parameters, including image acquisitions, reconstructions, and 

segmentations. Another limitation we observed when conducting this study is the variety of the TILs 

quantification methods used across the datasets, for example Illumina Hiseq 2500 (RNA-Seq) was used in 

Radiogenomics dataset, whereas Affymetrix FS450 (micro-array) for LUNG3 dataset. This variation might 

begin to explain the wide difference in the generated data distributions (Fig 2). Moreover, there is 

considerable variation in preparation protocols and histopathological assessment of specimens among 

different institutions. On top of this, the challenge of inter-tumor heterogeneity exists, as histological and 

cellular heterogeneity in lung cancer is also well documented with tumors having more than one type of 

differentiation (32). In the other hand clear stratification guidelines for tumor-infiltrating immune cells into 

high and low groups are not yet established.  Consequently, we utilized the mean value to categorize our 

data into high or low levels of CD8+. Both mean and median counts are often used for categorizing high 

or low expression levels of tumor-infiltrating lymphocytes (TILs), yet neither is an optimal approach for 

individual decision-making, as these are specific population-based metrics (33). 

In consequence, it is essential to implement standardized data acquisition and post processing protocols 

for both radiomics analysis and TILs expression to enhance the accuracy of prediction and facilitate 

reproducibility of the results. Additionally, the small size and heterogeneity of training data affected the 

generalizability of the model. This is in part because the distribution of the training data was different 

from the independent test sets (Appendices Fig S1, S2, and S3), and in the other hand, the acquisition and 

reconstruction parameters are different in all the cohorts making each subset poorly represented and 

therefore affected the reproducibility of the radiomics features. Increasing the sample size in addition to 

CT intensity harmonization using more advanced techniques such as generative adversarial networks 

(GAN) (34), may significantly help mitigate this limitation. In the future, defining clear stratification 
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guidelines for TILs subtypes may greatly affect AI model development and ease reproducibility of the 

results. 

Conclusions 

Texture radiomics features on CT scans can aid in distinguishing between patients with CD8+ lymphocyte 

infiltration levels below the mean (low) and those above the mean (high). Even if these features offer 

promise as surrogate predictors for patient responses to immunotherapy and aiding clinical decision-

making, the lack of a consensus threshold for defining low and high infiltration levels hampers result 

generalizability and practical applicability.
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