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Tuberculosis (TB) remains a significant global health issue; making early, accurate, and
inexpensive point-of-care detection critical for effective treatment. This paper presents a clinical
demonstration of an electrochemical sensor that detects methyl-nicotinate (MN), a volatile organic
biomarker associated with active pulmonary tuberculosis. The sensor was initially tested on a
patient cohort comprised of 57 adults in Kampala, Uganda, of whom 42 were microbiologically
confirmed TB-positive and 15 TB-negative. The sensor employed a copper(ll) liquid metal salt
solution with a square wave voltammetry method tailored for MN detection using commercially
available screen-printed electrodes. An exploratory machine learning analysis was performed
using XGBOOST. Utilizing this approach, the sensor was 78% accurate with 71% sensitivity and
100% specificity. These initial results suggest the sensing methodology is effective in identifying
TB from complex breath samples, providing a promising tool for non-invasive and rapid TB
detection in clinical settings.

Keywords: electrochemical sensor, machine learning, point-of-care detection, triage test, square

wave voltammetry, volatile organic biomarker, XGBoost
Introduction

The World Health Organization’s Global Tuberculosis Report revealed that approximately 1.3
million people died of tuberculosis (TB) in 2023, and is the leading cause of death by a single
infectious agent [1]. Although often treatable, many people lack access to diagnosis, resulting in
an estimated one-third of TB cases going unreported [1]. In high-income countries, the time from
symptom onset to treatment initiation averages 25 days, while in low-income countries, the time
to treatment averages 56 days. Numerous healthcare provider visits and diagnostic tests are often

required before patients receive a diagnosis [1]. Additionally, drug-resistant TB has emerged as a
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growing health concern since 2020, increasing morbidity, mortality, and the urgency for prompt
treatment to prevent disease transmission [1].

To address this public health emergency, the World Health Organization (WHO) launched the
“End TB” initiative, aiming to reduce the global average time from TB symptom onset to treatment
to less than one month by 2025. A key factor in achieving this goal is improving diagnostic access.
However, current diagnostic methods, including molecular testing, require extensive laboratory
infrastructure and are expensive and time-consuming to administer [1].

Researchers are now focusing on developing affordable, non-sputum, biomarker-based, point-
of-care devices, aiming to meet the WHO target product profile for a diagnostic at >66% sensitivity
and >98% specificity, or a triage test reaching >90% sensitivity and >70% specificity [2]. There is
growing interest in developing diagnostics that detect volatile organic biomarkers (VOBs) in
breath, as collection is non-invasive and pulmonary TB is the most common type of TB disease.
While current commercial products show promise, they have yet to meet the WHO’s sensitivity
and specificity requirements and are not targeted for the detection of specific VOBs [1].

Traditionally, techniques such as gas chromatography-mass spectrometry (GC-MS) have been
used to identify and correlate VOBs to disease states [3]. Portable sensors can be designed by
modeling electrochemical reactions between a biomarker and a metal salt solution containing a
supporting electrolyte and a transition metal, using approaches like dynamic functional modeling
(DFT) [4],[5]. Ray et al. demonstrated that four TB biomarkers, methyl phenylacetate, methyl p-
anisate, methyl nicotinate and o-phenyl anisole; selectively bind with transition metals, particularly
cobalt (IT) and copper (II), allowing for the specific detection of electrochemical signals associated
with these biomarkers [5]. However, further refinement of detection methods is needed in order to

meet the WHO’s sensitivity and specificity targets for TB diagnostics.
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FWe previously reported the successful detection of the TB biomarker methyl-nicotinate (MN)
using copper as the electroactive solution (EAS) [6]. MN is semi-volatile and thus liquid phase
detection, rather than gas phase detection, is preferable [7]. This approach offers more consistent
results due to the presence of a counter electrode, which reduces the impact of production
variability from the working electrode [7]. For VOB detection, square wave voltammetry (SWV)
is an electroanalytical technique that applies a series of square wave potentials to an electrode,
resulting in improved sensitivity and selectivity [8]. This method detects trace amounts of analytes,
such as VOBs, while minimizing background interference, making it a promising approach for TB
diagnosis [8]. The result is a unique electrochemical pattern for a given analyte. Machine learning
can then be utilized to automate detection of these patterns for disease classification.

In this work, we applied a square wave voltammetry method using Copper (II) metal salts to
detect MN from adults being evaluated for pulmonary TB in Uganda. We then applied a machine
learning model, specifically XGBoost, to correlate the extracted features from the electrochemical

data with the TB status of the patients.
Methods
An experimental flow of the research is shown in Figure 1.

A. Preparation of Aqueous Solutions

Aqueous solutions were prepared using deionized water (= 18MQcm—1 type 1 ultrapure,
PURELAB Classic). Base electroactive solutions consisted of aqueous copper(ll) chloride (Alfa
Aesar, anhydrous, 98% min) as the active metal and sodium chloride (Fisher Chemical, > 99.0%)
as the supporting electrolyte with concentrations of 1mM copper chloride and 100mM sodium

chloride.
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B. Preparation of Spiked Breath Mimics Containing MN

A stock solution containing 10 mM of methyl-nicotinate (MN) (Sigma-Aldrich > 99.9%)
dissolved in deionized water was prepared for examining the effects of known concentrations of
MN in mimic breath samples. Spiked mimics were created by collecting 24 healthy breath samples
in 10 liter Tedlar bags. The breath was then transferred to the metal salt solution using the breath
transfer device using a flow rate of 1L/min. The MN stock solution was diluted and added to the

solution to achieve a concentration of 0.1mM MN in the resulting spiked breath solutions.

C. Collection and Processing of TB Patient Breath Samples

We analyzed breath samples from 57 adults from Kampala, Uganda, who presented to care at
Mulago National Referral hospital and Kisenyi Health Centre IV with at least 2 weeks of cough
and were evaluated for TB with sputum-based molecular testing (Xpert MTB/RIF Ultra, Cepheid,
Sunnyvale) and mycobacterial culture. Of the 57 participants, 42 (74%) had microbiologically
confirmed TB, and 15 (26%) had negative microbiological TB testing. Participants were asked to
exhale into 10-liter Tedlar® Breath Analysis Bags (CEL Scientific), which were then collected
and pumped through the copper salt solution at a rate of approximately 1 L/min. This breath-
solution transfer device was designed to eliminate sample contamination by pulling gas from the
bag into the solution. This was accomplished by placing the pump at the end of the flow path after

the breath sample had been pulled into the salt solution, as seen in Figures 2 and 3.

D. Electrochemical Analysis of Spiked Mimics and Clinical Breath Samples

Liquid solutions were electrochemically analyzed using a hand-held potentiostat (PalmSens,
EmStat) and screen-printed electrodes (SPE) with unmodified carbon working/counter electrodes

and a silver reference electrode (DRP110, 4mm diameter WE, Metrohm-DropSens). The salt
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solution with dissolved breath for the spiked mimics and clinical samples was applied to the SPE

surface with a volume of 150uL. A SWV method was then run with the settings seen in Table I.

E. Data Analysis and Feature Extraction

Key peaks for redox reactions between MN and Cu were previously identified using SWV from
our prior work [6]. Utilizing spiked samples containing 0.1mM MN, we examined the changes in
more detail and measured differences between daily blanks and clinical samples. Features
associated with redox reactions between MN and copper in the spiked mimics were identified and
normalized to the salt blank by assigning a percentage to each current value relative to the max
current in the daily salt blank.

The peak features observed in the SWV were normalized and extracted, and the data was split
into training and test sets, with 75% of the data used for training and 25% used for validation.
We applied an Extreme Gradient Boosting (i.e., XGBoost) model to the training data, a gradient-
boosted machine learning algoriothm ideal for handling imbalanced data sets like ours. The
XGBoost model parameters were optimized using Optuna, an automatic hyperparameter
optimization software as seen in Table Il [7]. Python 3.6.9, with the XGBoost, Scikit learn and
Optuna packages were used.

These values were found by conducting 50 trials and minimizing the loss function for each. In
the independent test set, we evaluated the performance of the trained XGBoost model by
calculating the Area under the ROC (Receiver Operating Characteristic) curve (AUC-ROC), and

then sensitivity and specificity metrics with 95% confidence intervals (CIs).
Results

An examination of the current response of the spiked breath mimics, showed a distinct

‘Shoulder peak’ at a low concentration of MN (0.1 mM) along with three other peaks (Figure 4).
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These features represent specific oxidation/reduction reactions that occur for Cu under SWV as
published in our prior work [6]. For example, Peak 1 is theorized to represent Cu** <> Cu”, Peak
2 is Cu?" <> Cu’and Peak 3, Cu* <> Cu’. We observed in our prior work and in our breath mimics
that the current associated with these peaks vary in relation to MN concentration, with reductions
in relative current values in both the ’Shoulder Peak’ and ‘Peak 2’ exceeding 25% and 20%,
respectively [6]. While the mimic data was used to guide the feature extraction process, this data
was not used to train or test the patient data.

Similar current behavior was seen in the breath samples of Ugandan participants. The majority
of samples were from people with Confirmed TB (74%). A consistent reduction in current was
seen for Peak 2 as well as a reduced ‘Shoulder’ current value in participants with confirmed TB
relative to symptomatic participants without TB. Figures 5-7 show typical responses for Ugandan
participants with and without TB normalized to the maximum current in a daily salt blank. TB
negative patients tended to display either the response seen in Figure 6, where no ‘Shoulder’ could
be seen, or a response with a ‘Shoulder’ but little relative current reduction as seen in Figure 7.
The relative current values for peaks 1,2, and 3 as well as the Shoulder value when present were
then extracted from the training data set as features for the XGBOOST model.

In comparison to a microbiological reference standard, the sensor response was shown to have
an accuracy of 77.8% in the test set, and an area under the curve (AUC) value of 0.964 as shown
in the receiver operator characteristic (ROC) curve in Figure 8. In addition to the AUC, we also
computed sensitivity and selectivity for both the training and test data, seen in Table III.

For the training data, the model achieved a sensitivity of 96.4% and a specificity of 90.9%. When
applied to the testing data, the model yielded a sensitivity of 71.43% (95% CI 61.2% to 95.1%)

and a specificity of 100% (95% CI 39.8% to 100%). The XGBoost feature importance analysis
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results showed that Peak 1 appeared to have the greatest impact on status classification followed

by Peak 2 as seen in Figure 9.

Discussion

This study demonstrates the potential of square wave voltammetry (SWV) with our copper(Il)
EAS sensing platform for the detection of MN, a TB biomarker, in breath samples. Given these
initial results, this clinical demonstration shows the applicability of this approach to advancements
in TB disease diagnostics, with promising performance metrics that approach the WHO’s target
product profile for TB diagnostic tests. These results suggest that this electrochemical technique
may have the potential to detect MN at the range of concentration levels typically present in the
breath of TB patients.

Human breath contains large amounts of VOCs in complex mixtures and biomarkers related to
TB are expected to appear in relatively low amounts, thus limiting the applicability of GC-MS
analysis for diagnostic purposes [8]. Our method circumvents this difficulty by leveraging the
ability of MN to preferentially dissolve in aqueous solution and tailoring our metal salt solution
and electrochemical method to produce a detectable elec trochemical response even at low
concentrations.

Our breath mimics spiked with low concentrations of MN validate the response seen in our patient
data by showing similar current responses.

Xpert MTB/RIF, the initial test for TB as recommended by the WHO for all people exhibiting
TB symptoms [9], requires expensive equipment [10] and sputum samples. However, sputum can
be difficult or impossible for some populations to produce, including children and people living
with the human immunodeficiency virus (PLWH) [11]. Therefore, the WHO recommended the

development of non-sputum based testing. In this context, tests that use samples such as breath or
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urine are being prioritized. A comparison of approaches that utilize these samples is shown in
Table I'V.

The technology presented in this work can potentially provide an early, rapid, and cost-effective
diagnosis to millions who otherwise would not receive treatment. Relative to other non-sputum
TB testing methods, this approach costs a few dollars, uses well established electrochemical
methods, is portable using low-cost instrumentation (< $50), and requires no specialized
equipment and training to operate. Current results with the limited number of patients show a
sensitivity of 71.4% (CI: 61.2-91.5%) and specificity of 100% (CI: 39.8-100%). To compare, GC-
MS analysis of breath with Monte-Carlo simulations has been used to correlate biomarkers of TB
[12] and in a study of 251 patients, 130 with active pulmonary TB, the approach achieved a
sensitivity of 71.2% and a specificity of 72.0%. However, the cost of one GC-MS system is over
$100,000 and requires infrastructure making it not useful in point-of-care applications.

In other breath based approaches using e-nose (Diagnose, C-it BV), Bruins et al. conducted a
validation study of 148 participants. While sensitivity and specificity was high for classifying
breath profiles between healthy and TB samples, 95.9% and 98.5%, respectively; these values fell
to 76.5% and 97.2% when distinguishing participants with TB relative to the full testing population
[15]. Recent search on the Diagnose, C-it BV platform shows no development as of 2024. Another
study in 2019, used an advanced eNose device to detect pulmonary TB in 287 patients after
calibrating the device with 182 individuals. They found sensitivity and specificity values of 78%
and 42%, respectively, in the validation phase [16]. When compared to the EAS approach, E-nose
platforms are expensive and use a non-targeted VOC detection approach to produce a full-
spectrum electronic signal that is fed into an algorithmic classifier [13]. While interesting,

currently the lack of using a targeted biomarker contributes to their lower performance.
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Finally when comparing the EAS sensing approach to urine based tests such as AlereLAM, the
test falls short in sensitivity at 18% in people without HIV and 42% in PLWH according to two
studies [14].

While the initial results of our study are promising, limitations include our small sample size
and TB classification imbalance. The small sample size also contributes to model overfitting, as
seen with the drop in performance from training to test set, although we sought to mitigate this risk
by reducing the ratio of features used (Colsample Bytree), the number of estimators, and the max
depth. As such, our sensitivity and specificity metrics should be taken as preliminary results. As
the cohort expands, more data and class balance will improve model training and validation
estimates.

In order to enhance the sensitivity of the method, further investigation of possible biomarker
amplification in the SWV method is needed. As seen in our feature examples above, the
incompletely resolved feature identified as the ‘Shoulder’ in our evaluation metrics appeared to
have a significant impact on the performance of the model predictions. We theorize that a separate
reaction with MN may be occurring here. Further resolution of the ‘Shoulder’ from both ‘Peak 1’
and ’Peak 2’ could provide a fuller characterization of this possible reaction. Possible approaches
to this could be leveraging the various solubilities of breath compounds to eliminate those that
produce competing reactions in the salt solution. By modifying these processes, the
electrochemical signal can be optimized to detect lower concentrations of TB biomarkers,
potentially improving diagnostic accuracy. As noted in Figure 9, Peak 1 appears to be most
significant. Peak 1 is theorized to represent Cu?* «» Cu” which represents a very unstable valent

state of Cu, making it less likely to occur and may explain why the peak is typically lower in
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comparison to the others. Peak 1 may indicate specific interactions between MN and copper which
may be diagnostically significant.

Future work will involve systematic studies exploring signal amplification, a detailed
investigation of the Shoulder Peak phenomenon, and specific reactions that contribute to Peak 1.
Understanding the electrochemical reactions responsible for this peak could provide valuable
insights into the sensor’s reaction mechanism; guiding the development of more selective and
sensitive diagnostic tools. Further studies will also include the collection of more samples to
validate the model, as well as the exploration of other machine learning models and feature

engineering techniques to enhance performance.

Conclusions

This study demonstrates that our SWV method combined with a Copper (II) EAS sensing
platform shows promise as a point-of-care diagnostic test for detecting pulmonary tuberculosis
biomarkers in patient breath. In future work, these preliminary results will be built upon by further
optimization; particularly in method parameters; and exploring ways to boost biomarker
concentration in the EAS solution. More work is needed to understand the electrochemical
processes driving peak formation and widening the sensor’s range to detect more TB biomarkers.
With further refinement of our approach, we will move closer to achieving the global priority of
creating a rapid, non-invasive, and cost-effective point-of-care device for TB diagnosis.
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TABLE |
METHOD SETTINGS

Parameter Value

t equilibration 5 seconds

E begin -05V
E end 04V
E step 0.005V
Amplitude 0.025V

Frequency 2 Hz
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TABLE II
BEST HYPERPARAMETERS FOR ACCURACY
Hyperparameter  Value
hiax Depth k
Gamma 0.1368533602533
him Child Waight 1
Learning Eate 0.0145452437099
Subzampls 1.0
n estimators El
Colzamypla Bytree 0.3

Fez Alpha
Feaz Lambda
Seed

1.187354054]1 a-06
64358499897 a-04
3
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TABLE 1l
PERFORMANCE METRICS FOR THE OPTIMIZED MODEL.

Metric Train Test 95% Cl for

Testing Data

Accuracy 94.9% 77.8% 68.7% to
96.8%
61.2% to
Sensitivity 96.4% 71.4%
95.1%
Specificity 90.9% 100% 39.8% to
100%

AUC-ROC  96.7% 96.4% N/A
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TABLE |V: SUMMARY OF EMERGING TB DIAGNOSTIC APPROACHES

rest | SENS. | SPEC. P(;)RC SPECIFIC SAI;E“PL "T%E‘
o o -
95%CD) | (95%CD | 0 [BIOMARKER | oo f o ociir

EAS MN 71.4% 100%
(61.2% to | 39.8% to | POC - breath | =10
95.1%) | 100%)
ALERE 18-
95%
0,
LAM 4(23/;15/14] 89%to | POC yes urine | 25 min[14]
0~ 0,
ssoar17) | 207
LEARIOELD 765520)3['13] 36.4%[13]
g (12.4% to | POC no breath |<1 min[18]
(39.6% to [+ oo
64.7%) H
GEMS 151 20121 | 72%012) | Lab Yes breath =60
minutes

EAS-MN: Electroactive Solutions Methyl Nicotinate
ALERE-LAM: ALERE- Lipoarabinomannan

E-NOSE: Electronic Nose

GC-MS: Gas Chromatography Mass Spectroscopy

Figure Captions

Fig. 1. Flow chart for data acquisition, feature extraction, and modeling in XGBoost with

Optuna to optimize hyperparameters.

Fig. 2. Breath transfer device schematic showing breath flow path. The device was specifically
designed to avoid sample contamination from the pump interior by pulling the sample directly

into the transfer device.

Fig. 3. Images of the Breath Transfer System: (A) Full System, (B) Transfer Device, (C)

Transfer Device Tubing
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Fig. 4. Healthy breath and spiked breath with 0.1 mM MN added. No shoulder present in
healthy breath and current reduction is <20%. When MN is added to the breath, a shoulder
appears and the relative current values of shoulder and peak 2 are >25% and >20%,

respectively.

Fig. 5. TB-Positive patient example. Shoulder present. Current reduction is <25% and <20%
at the shoulder and peak 2 apexes, respectively, relative to the maximum current of the salt
blank.

Fig. 6. TB-negative patient example. No shoulder peak present. Peak 2 apex current values

reduced by < 20% relative to the maximum current of the salt blank.

Fig. 7. TB-negative patient example. Shoulder present but the current reduction is <25% and
<20% at the shoulder and peak 2 apexes, respectively, relative to the maximum current of the

salt blank

Fig. 8. XGBoost Testing data ROC results. Sensitivity and specificity were found to be 0.7143

and 1.000, respectively.

Fig. 9. Feature Importance defined by XGBoost algorithm. The Peak 1 feature was assigned

the greatest weight in sample categorization, followed by Peak 2.
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Fig. 1. Flow chart for data acquisition,
feature extraction, and modeling in
XGBoost with Optuna to optimize
hyperparameters.

Fig. 3. Images of the Breath Transfer
System: (A) Full System, (B) Transfer
Device, (C) Transfer Device Tubing
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Fig. 2. Breath transfer device schematic
showing breath flow path. The device was
specifically designed to avoid sample
contamination from the pump interior by pulling
the sample directly into the transfer device.
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Fig. 4. Healthy breath and spiked breath with 0.1
mM MN added. No shoulder present in healthy
breath and current reduction is <20%. When MN
is added to the breath, a shoulder appears and the
relative current values of shoulder and peak 2 are
>25% and >20%, respectively.
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Fig. 5. TB-Positive patient example. Shoulder
present. Current reduction is <25% and <20%
at the shoulder and peak 2 apexes,

respectively, relative to the maximum current
of the salt blank.
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Fig. 6. TB-negative patient example. No
shoulder peak present. Peak 2 apex current
values reduced by < 20% relative to the
maximum current of the salt blank.
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Fig. 7. TB-negative patient example. Shoulder
present but the current reduction is <25% and
<20% at the shoulder and peak 2 apexes,
respectively, relative to the maximum current of the
salt blank
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Fig. 8. XGBoost Testing data ROC results.
Sensitivity and specificity were found to be
0.7143 and 1.000, respectively.
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Fig. 9. Feature Importance defined by XGBoost
algorithm. The Peak 1 feature was assigned the
greatest weight in sample categorization, followed by
Peak 2.
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