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Tuberculosis (TB) remains a significant global health issue; making early, accurate, and 

inexpensive point-of-care detection critical for effective treatment. This paper presents a clinical 

demonstration of an electrochemical sensor that detects methyl-nicotinate (MN), a volatile organic 

biomarker associated with active pulmonary tuberculosis. The sensor was initially tested on a 

patient cohort comprised of 57 adults in Kampala, Uganda, of whom 42 were microbiologically 

confirmed TB-positive and 15 TB-negative. The sensor employed a copper(II) liquid metal salt 

solution with a square wave voltammetry method tailored for MN detection using commercially 

available screen-printed electrodes. An exploratory machine learning analysis was performed 

using XGBOOST.  Utilizing this approach, the sensor was 78% accurate with 71% sensitivity and 

100% specificity. These initial results suggest the sensing methodology is effective in identifying 

TB from complex breath samples, providing a promising tool for non-invasive and rapid TB 

detection in clinical settings. 

Keywords:  electrochemical sensor, machine learning, point-of-care detection, triage test, square 

wave voltammetry, volatile organic biomarker, XGBoost 

 Introduction 

The World Health Organization’s Global Tuberculosis Report revealed that approximately 1.3 

million people died of tuberculosis (TB) in 2023, and is the leading cause of death by a single 

infectious agent [1]. Although often treatable, many people lack access to diagnosis, resulting in 

an estimated one-third of TB cases going unreported [1]. In high-income countries, the time from 

symptom onset to treatment initiation averages 25 days, while in low-income countries, the time 

to treatment averages 56 days. Numerous healthcare provider visits and diagnostic tests are often 

required before patients receive a diagnosis [1]. Additionally, drug-resistant TB has emerged as a 
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growing health concern since 2020, increasing morbidity, mortality, and the urgency for prompt 

treatment to prevent disease transmission [1]. 

To address this public health emergency, the World Health Organization (WHO) launched the 

“End TB” initiative, aiming to reduce the global average time from TB symptom onset to treatment 

to less than one month by 2025. A key factor in achieving this goal is improving diagnostic access. 

However, current diagnostic methods, including molecular testing, require extensive laboratory 

infrastructure and are expensive and time-consuming to administer [1].  

Researchers are now focusing on developing affordable, non-sputum, biomarker-based, point-

of-care devices, aiming to meet the WHO target product profile for a diagnostic at ≥66% sensitivity 

and ≥98% specificity, or a triage test reaching ≥90% sensitivity and ≥70% specificity [2]. There is 

growing interest in developing diagnostics that detect volatile organic biomarkers (VOBs) in 

breath, as collection is non-invasive and pulmonary TB is the most common type of TB disease. 

While current commercial products show promise, they have yet to meet the WHO’s sensitivity 

and specificity requirements and are not targeted for the detection of specific VOBs [1]. 

Traditionally, techniques such as gas chromatography-mass spectrometry (GC-MS) have been 

used to identify and correlate VOBs to disease states [3]. Portable sensors can be designed by 

modeling electrochemical reactions between a biomarker and a metal salt solution containing a 

supporting electrolyte and a transition metal, using approaches like dynamic functional modeling 

(DFT) [4],[5]. Ray et al. demonstrated that four TB biomarkers, methyl phenylacetate, methyl p-

anisate, methyl nicotinate and o-phenyl anisole; selectively bind with transition metals, particularly 

cobalt (II) and copper (II), allowing for the specific detection of electrochemical signals associated 

with these biomarkers [5]. However, further refinement of detection methods is needed in order to 

meet the WHO’s sensitivity and specificity targets for TB diagnostics. 
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FWe previously reported the successful detection of the TB biomarker methyl-nicotinate (MN) 

using copper as the electroactive solution (EAS) [6]. MN is semi-volatile and thus liquid phase 

detection, rather than gas phase detection, is preferable [7]. This approach offers more consistent 

results due to the presence of a counter electrode, which reduces the impact of production 

variability from the working electrode [7]. For VOB detection, square wave voltammetry (SWV) 

is an electroanalytical technique that applies a series of square wave potentials to an electrode, 

resulting in improved sensitivity and selectivity [8]. This method detects trace amounts of analytes, 

such as VOBs, while minimizing background interference, making it a promising approach for TB 

diagnosis [8]. The result is a unique electrochemical pattern for a given analyte. Machine learning 

can then be utilized to automate detection of these patterns for disease classification.   

In this work, we applied a square wave voltammetry method using Copper (II) metal salts to 

detect MN from adults being evaluated for pulmonary TB in Uganda. We then applied a machine 

learning model, specifically XGBoost, to correlate the extracted features from the electrochemical 

data with the TB status of the patients. 

 Methods 

An experimental flow of the research is shown in Figure 1.  

A. Preparation of Aqueous Solutions  

Aqueous solutions were prepared using deionized water (≥ 18MΩcm−1 type 1 ultrapure, 

PURELAB Classic). Base electroactive solutions consisted of aqueous copper(II) chloride (Alfa 

Aesar, anhydrous, 98% min) as the active metal and sodium chloride (Fisher Chemical, ≥ 99.0%) 

as the supporting electrolyte with concentrations of 1mM copper chloride and 100mM sodium 

chloride.  
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B. Preparation of Spiked Breath Mimics Containing MN 

A stock solution containing 10 mM of methyl-nicotinate (MN) (Sigma-Aldrich ≥ 99.9%) 

dissolved in deionized water was prepared for examining the effects of known concentrations of 

MN in mimic breath samples. Spiked mimics were created by collecting 24 healthy breath samples 

in 10 liter Tedlar bags. The breath was then transferred to the metal salt solution using the breath 

transfer device using a flow rate of 1L/min.  The MN stock solution was diluted and added to the 

solution to achieve a concentration of 0.1mM MN in the resulting spiked breath solutions.  

C. Collection and Processing of TB Patient Breath Samples 

We analyzed breath samples from 57 adults from Kampala, Uganda, who presented to care at 

Mulago National Referral hospital and Kisenyi Health Centre IV with at least 2 weeks of cough 

and were evaluated for TB with sputum-based molecular testing (Xpert MTB/RIF Ultra, Cepheid, 

Sunnyvale) and mycobacterial culture. Of the 57 participants, 42 (74%) had microbiologically 

confirmed TB, and 15 (26%) had negative microbiological TB testing. Participants were asked to 

exhale into 10-liter Tedlar® Breath Analysis Bags (CEL Scientific), which were then collected 

and pumped through the copper salt solution at a rate of approximately 1 L/min. This breath-

solution transfer device was designed to eliminate sample contamination by pulling gas from the 

bag into the solution. This was accomplished by placing the pump at the end of the flow path after 

the breath sample had been pulled into the salt solution, as seen in Figures 2 and 3. 

D. Electrochemical Analysis of Spiked Mimics and Clinical Breath Samples 

Liquid solutions were electrochemically analyzed using a hand-held potentiostat (PalmSens, 

EmStat) and screen-printed electrodes (SPE) with unmodified carbon working/counter electrodes 

and a silver reference electrode (DRP110, 4mm diameter WE, Metrohm-DropSens). The salt 
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solution with dissolved breath for the spiked mimics and clinical samples was applied to the SPE 

surface with a volume of 150µL. A SWV method was then run with the settings seen in Table I. 

E. Data Analysis and Feature Extraction 

Key peaks for redox reactions between MN and Cu were previously identified using SWV from 

our prior work [6].  Utilizing spiked samples containing 0.1mM MN, we examined the changes in 

more detail and measured differences between daily blanks and clinical samples. Features 

associated with redox reactions between MN and copper in the spiked mimics were identified and 

normalized to the salt blank by assigning a percentage to each current value relative to the max 

current in the daily salt blank. 

The peak features observed in the SWV were normalized and extracted, and the data was split 

into training and test sets, with 75% of the data used for training and 25% used for validation.  

We applied an Extreme Gradient Boosting (i.e., XGBoost) model to the training data, a gradient-

boosted machine learning algoriothm ideal for handling imbalanced data sets like ours. The 

XGBoost model parameters were optimized using Optuna, an automatic hyperparameter 

optimization software as seen in Table II [7].  Python 3.6.9, with the XGBoost, Scikit learn and 

Optuna packages were used. 

These values were found by conducting 50 trials and minimizing the loss function for each. In 

the independent test set, we evaluated the performance of the trained XGBoost model by 

calculating the Area under the ROC (Receiver Operating Characteristic) curve (AUC-ROC), and 

then sensitivity and specificity metrics with 95% confidence intervals (CIs).  

Results 

 An examination of the current response of the spiked breath mimics, showed a distinct 

‘Shoulder peak’ at a low concentration of MN (0.1 mM) along with three other peaks (Figure 4). 
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These features represent specific oxidation/reduction reactions that occur for Cu under SWV as 

published in our prior work [6].  For example, Peak 1 is theorized to represent Cu2+ ↔ Cu+, Peak 

2 is Cu2+ ↔ Cu0 and Peak 3, Cu+ ↔ Cu0.  We observed in our prior work and in our breath mimics 

that the current associated with these peaks vary in relation to MN concentration, with reductions 

in relative current values in both the ’Shoulder Peak’ and ‘Peak 2’ exceeding 25% and 20%, 

respectively [6]. While the mimic data was used to guide the feature extraction process, this data 

was not used to train or test the patient data. 

Similar current behavior was seen in the breath samples of Ugandan participants. The majority 

of samples were from people with Confirmed TB (74%). A consistent reduction in current was 

seen for Peak 2 as well as a reduced ‘Shoulder’ current value in participants with confirmed TB 

relative to symptomatic participants without TB. Figures 5-7 show typical responses for Ugandan 

participants with and without TB normalized to the maximum current in a daily salt blank. TB 

negative patients tended to display either the response seen in Figure 6, where no ‘Shoulder’ could 

be seen, or a response with a ‘Shoulder’ but little relative current reduction as seen in Figure 7. 

The relative current values for peaks 1,2, and 3 as well as the Shoulder value when present were 

then extracted from the training data set as features for the XGBOOST model.  

In comparison to a microbiological reference standard, the sensor response was shown to have 

an accuracy of 77.8% in the test set, and an area under the curve (AUC) value of 0.964 as shown 

in the receiver operator characteristic (ROC) curve in Figure 8.  In addition to the AUC, we also 

computed sensitivity and selectivity for both the training and test data, seen in Table III.  

For the training data, the model achieved a sensitivity of 96.4% and a specificity of 90.9%. When 

applied to the testing data, the model yielded a sensitivity of 71.43% (95% CI 61.2% to 95.1%) 

and a specificity of 100% (95% CI 39.8% to 100%).  The XGBoost feature importance analysis 
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results showed that Peak 1 appeared to have the greatest impact on status classification followed 

by Peak 2 as seen in Figure 9. 

Discussion 

This study demonstrates the potential of square wave voltammetry (SWV) with our copper(II) 

EAS sensing platform for the detection of MN, a TB biomarker, in breath samples. Given these 

initial results, this clinical demonstration shows the applicability of this approach to advancements 

in TB disease diagnostics, with promising performance metrics that approach the WHO’s target 

product profile for TB diagnostic tests.  These results suggest that this electrochemical technique 

may have the potential to detect MN at the range of concentration levels typically present in the 

breath of TB patients.  

Human breath contains large amounts of VOCs in complex mixtures and biomarkers related to 

TB are expected to appear in relatively low amounts, thus limiting the applicability of GC-MS 

analysis for diagnostic purposes [8]. Our method circumvents this difficulty by leveraging the 

ability of MN to preferentially dissolve in aqueous solution and tailoring our metal salt solution 

and electrochemical method to produce a detectable elec trochemical response even at low 

concentrations.  

Our breath mimics spiked with low concentrations of MN validate the response seen in our patient 

data by showing similar current responses.  

 Xpert MTB/RIF, the initial test for TB as recommended by the WHO for all people exhibiting 

TB symptoms [9], requires expensive equipment [10] and sputum samples. However, sputum can 

be difficult or impossible for some populations to produce, including children and people living 

with the human immunodeficiency virus (PLWH) [11]. Therefore, the WHO recommended the 

development of non-sputum based testing. In this context, tests that use samples such as breath or 
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urine are being prioritized. A comparison of approaches that utilize these samples is shown in 

Table IV.   

The technology presented in this work can potentially provide an early, rapid, and cost-effective 

diagnosis to millions who otherwise would not receive treatment. Relative to other non-sputum 

TB testing methods, this approach costs a few dollars, uses well established electrochemical 

methods, is portable using low-cost instrumentation (< $50), and requires no specialized 

equipment and training to operate. Current results with the limited number of patients show a 

sensitivity of 71.4% (CI: 61.2-91.5%) and specificity of 100% (CI: 39.8-100%). To compare, GC-

MS analysis of breath with Monte-Carlo simulations has been used to correlate biomarkers of TB 

[12] and in a study of 251 patients, 130 with active pulmonary TB, the approach achieved a 

sensitivity of 71.2%  and a specificity of 72.0%. However, the cost of one GC-MS system is over 

$100,000 and requires infrastructure making it not useful in point-of-care applications.  

 In other breath based approaches using e-nose (Diagnose, C-it BV), Bruins et al. conducted a 

validation study of 148 participants. While sensitivity and specificity was high for classifying 

breath profiles between healthy and TB samples, 95.9% and 98.5%, respectively; these values fell 

to 76.5% and 97.2% when distinguishing participants with TB relative to the full testing population 

[15]. Recent search on the Diagnose, C-it BV platform shows no development as of 2024. Another 

study in 2019, used an advanced eNose device to detect pulmonary TB in 287 patients after 

calibrating the device with 182 individuals. They found sensitivity and specificity values of 78% 

and 42%, respectively, in the validation phase [16]. When compared to the EAS approach, E-nose 

platforms are expensive and use a non-targeted VOC detection approach to produce a full-

spectrum electronic signal that is fed into an algorithmic classifier [13]. While interesting, 

currently the lack of using a targeted biomarker contributes to their lower performance.  
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Finally when comparing the EAS sensing approach to urine based tests such as AlereLAM, the 

test falls short in sensitivity at 18% in people without HIV and 42% in PLWH  according to two 

studies  [14].   

While the initial results of our study are promising, limitations include our small sample size 

and TB classification imbalance. The small sample size also contributes to model overfitting, as 

seen with the drop in performance from training to test set, although we sought to mitigate this risk 

by reducing the ratio of features used (Colsample Bytree), the number of estimators, and the max 

depth. As such, our sensitivity and specificity metrics should be taken as preliminary results. As 

the cohort expands, more data and class balance will improve model training and validation 

estimates.  

In order to enhance the sensitivity of the method, further investigation of possible biomarker 

amplification in the SWV method is needed. As seen in our feature examples above, the 

incompletely resolved feature identified as the ‘Shoulder’ in our evaluation metrics appeared to 

have a significant impact on the performance of the model predictions. We theorize that a separate 

reaction with MN may be occurring here. Further resolution of the ‘Shoulder’  from both ‘Peak 1’ 

and ’Peak 2’ could provide a fuller characterization of this possible reaction. Possible approaches 

to this could be leveraging the various solubilities of breath compounds to eliminate those that 

produce competing reactions in the salt solution. By modifying these processes, the 

electrochemical signal can be optimized to detect lower concentrations of TB biomarkers, 

potentially improving diagnostic accuracy. As noted in Figure 9, Peak 1 appears to be most 

significant.  Peak 1 is theorized to represent Cu2+ ↔ Cu+ which represents a very unstable valent 

state of Cu, making it less likely to occur and may explain why the peak is typically lower in 
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comparison to the others.  Peak 1 may indicate specific interactions between MN and copper which 

may be diagnostically significant. 

Future work will involve systematic studies exploring signal amplification, a detailed 

investigation of the Shoulder Peak phenomenon, and specific reactions that contribute to Peak 1. 

Understanding the electrochemical reactions responsible for this peak could provide valuable 

insights into the sensor’s reaction mechanism; guiding the development of more selective and 

sensitive diagnostic tools. Further studies will also include the collection of more samples to 

validate the model, as well as the exploration of other machine learning models and feature 

engineering techniques to enhance performance. 

Conclusions 

This study demonstrates that our SWV method combined with a Copper (II) EAS sensing 

platform shows promise as a point-of-care diagnostic test for detecting pulmonary tuberculosis 

biomarkers in patient breath. In future work, these preliminary results will be built upon by further 

optimization; particularly in method parameters; and exploring ways to boost biomarker 

concentration in the EAS solution. More work is needed to understand the electrochemical 

processes driving peak formation and widening the sensor’s range to detect more TB biomarkers. 

With further refinement of our approach, we will move closer to achieving the global priority of 

creating a rapid, non-invasive, and cost-effective point-of-care device for TB diagnosis. 
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ValueParameter

5 secondst equilibration

-0.5 VE begin

0.4 VE end

0.005 VE step

0.025 VAmplitude

2 HzFrequency

TABLE I

METHOD SETTINGS

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.05.23.24307746doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307746


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.05.23.24307746doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307746


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95% CI for 

Testing Data

TestTrainMetric

68.7% to 

96.8%

77.8%94.9%Accuracy

61.2% to 

95.1%
71.4%96.4%Sensitivity

39.8% to 

100%

100%90.9%Specificity

N/A96.4%96.7%AUC-ROC

TABLE III

PERFORMANCE METRICS FOR THE OPTIMIZED MODEL.
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Figure Captions 

 

Fig. 1. Flow chart for data acquisition, feature extraction, and modeling in XGBoost with 

Optuna to optimize hyperparameters. 

 

Fig. 2. Breath transfer device schematic showing breath flow path. The device was specifically 

designed to avoid sample contamination from the pump interior by pulling the sample directly 

into the transfer device. 

 

Fig. 3. Images of the Breath Transfer System: (A) Full System, (B) Transfer Device, (C) 

Transfer Device Tubing 

 

EAS-MN: Electroactive Solutions Methyl Nicotinate
ALERE-LAM: ALERE- Lipoarabinomannan
E-NOSE: Electronic Nose
GC-MS:  Gas Chromatography Mass Spectroscopy

TIME-

TO-

RESULT

SAMPL

E

TYPE

SPECIFIC 

BIOMARKER

POC 

OR 

LAB

SPEC.

(95% CI)

SENS.

(95% CI)
TEST

<10 

minutes
breathyesPOC

100%

(39.8% to 
100%)

71.4%

(61.2% to 
95.1%)

EAS MN

25 min[14]urineyesPOC

95%

(89% to 

96%)

18-

42%[14]

(31%-

55%[17])

ALERE

LAM

<1 min[18]breathnoPOC

36.4%[13]

(12.4% to 

68.4%)

52.3-

76.5%[13]

(39.6% to 

64.7%)

E-NOSE

>60 

minutes
breathYesLab72%[12]71.2%[12]

GC-MS

TABLE IV: SUMMARY OF EMERGING TB DIAGNOSTIC APPROACHES
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Fig. 4. Healthy breath and spiked breath with 0.1 mM MN added. No shoulder present in 

healthy breath and current reduction is <20%. When MN is added to the breath, a shoulder 

appears and the relative current values of shoulder and peak 2 are >25% and >20%, 

respectively. 

 

Fig. 5. TB-Positive patient example. Shoulder present. Current reduction is <25% and <20% 

at the shoulder and peak 2 apexes, respectively, relative to the maximum current of the salt 

blank. 

Fig. 6. TB-negative patient example. No shoulder peak present. Peak 2 apex current values 

reduced by < 20% relative to the maximum current of the salt blank. 

 

Fig. 7. TB-negative patient example. Shoulder present but the current reduction is <25% and 

<20% at the shoulder and peak 2 apexes, respectively, relative to the maximum current of the 

salt blank 

 

Fig. 8. XGBoost Testing data ROC results. Sensitivity and specificity were found to be 0.7143 

and 1.000, respectively. 

 

Fig. 9. Feature Importance defined by XGBoost algorithm. The Peak 1 feature was assigned 

the greatest weight in sample categorization, followed by Peak 2. 
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Breath Bag 

Transfer Device 

Pump 

Fig. 3. Images of the Breath Transfer 
System: (A) Full System, (B) Transfer 
Device, (C) Transfer Device Tubing 

A 

B 

C 

Fig. 1. Flow chart for data acquisition, 

feature extraction, and modeling in 

XGBoost with Optuna to optimize 

hyperparameters. 
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Fig. 2. Breath transfer device schematic 

showing breath flow path. The device was 

specifically designed to avoid sample 

contamination from the pump interior by pulling 

the sample directly into the transfer device. 

0

20

 0

 0

80

100

 0.38  0.28  0.18  0.08 0.02 0.12 0.22

 
el
at
iv
e 
C
ur
re
nt
 (
%
)

Potential ( )

              

         

          

Peak 2

Peak 3

Shoulder

Peak 1

Fig. 4. Healthy breath and spiked breath with 0.1 

mM MN added. No shoulder present in healthy 

breath and current reduction is <20%. When MN 

is added to the breath, a shoulder appears and the 

relative current values of shoulder and peak 2 are 

>25% and >20%, respectively. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.05.23.24307746doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307746


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. TB-Positive patient example. Shoulder 

present. Current reduction is <25% and <20% 

at the shoulder and peak 2 apexes, 

respectively, relative to the maximum current 

of the salt blank. 

Fig. 6. TB-negative patient example. No 

shoulder peak present. Peak 2 apex current 

values reduced by < 20% relative to the 

maximum current of the salt blank. 
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Fig. 7. TB-negative patient example. Shoulder 

present but the current reduction is <25% and 

<20% at the shoulder and peak 2 apexes, 

respectively, relative to the maximum current of the 

salt blank 

Fig. 8. XGBoost Testing data ROC results. 
Sensitivity and specificity were found to be 
0.7143 and 1.000, respectively. 
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Fig. 9. Feature Importance defined by XGBoost 

algorithm. The Peak 1 feature was assigned the 

greatest weight in sample categorization, followed by 

Peak 2. 
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