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Abstract 

Purpose – Radiation pneumonitis (RP) is a major dose-limiting toxicity resulting from non-small-

cell lung cancer (NSCLC) radiotherapy. Multiomic features (radiomics and dosiomics) could 
provide additional predictive information as compared to traditionally used clinical and dose-
volume histogram (DVH) parameters. We aimed to investigate the utility of multiomic features to 
improve RP toxicity models. 
 
 
Methods – Out of 329 NSCLC patients considered, 85 patients (25.84%) were found to have 

toxicity ≥ grade 2 RP per CTCAE v5.0. A total of 422 radiomic and dosiomic features were 
extracted. Four toxicity prediction model types were created using clinical factors together with 
respective features from one of the following groups: (a) DVH (base model), (b) whole lung 
radiomics and dosiomics (WL-RD), (c) multi-region radiomics and dosiomics (MR - RD) and (d) 
multi-region DVH, radiomics and dosiomics (MR-DVHRD). Toxicity models were created using a 
random forest classifier with a Monte Carlo cross-validation approach of 100 iterations, and a 
training/test split of 80%/20%, respectively. Model predictive performance was evaluated by area 
under the receiver operating characteristic curve (AUC) and area under the precision-recall curve 
(AUPRC).  
 
 
Results –The AUC and AUPRC values (mean ± standard deviation) for the 4 model types were 

0.81±0.04/0.70±0.06 (base model), 0.82±0.05/0.73±0.08 (WL-RD, p<0.05), 0.83±0.06/0.75±0.08 
(MR–RD, p<0.05), and 0.82±0.05/0.72±0.08 (MR-DVHRD, p<0.05), respectively, wherein a 
paired test compared the performance metrics of omic models with the base model built on each 
iteration of cross validation.   
 
 
Conclusions – All multiomic model types outperformed the base DVH model. MR-RD model had 

the best performance among all model types. 
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Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide.1 Non-small-cell lung 

cancer (NSCLC) accounts for 85% of all lung cancer cases.2 Radiation therapy (RT) plays a 

crucial role in the management of unresectable and locally advanced NSCLC, as RT is the primary 

treatment modality for inoperable NSCLC. Radiation pneumonitis (RP) remains a dose-limiting 

toxicity that degrades patient quality-of-life, with symptomatic RP occurring in about 15–40% of 

lung RT patients.3 RP can lead to irreversible fibrosis and dyspnea, with possible mortality  in 

severe cases.3 Non-effective therapeutics and persistent RP remains one of the top dose-limiting 

toxicities that influences RT planning.4,5 Various clinical factors like age, gender, tumor location 

and smoking status have been studied in order to predict RP6, but the findings have been 

inconsistent due to sample size7 and the heterogeneity of patient populations.8 Metrics derived 

from dose-volume histograms (DVHs) have also been used to predict the incidence of RP with 

mean lung dose (MLD) and volume of lung receiving ≥20Gy (V20) being the most common metrics 

related to RP.9–12 However, clinical and DVH feature-based toxicity models have been shown to 

have suboptimal predictive performance.13 

Recently, machine learning has emerged in the field of radiation oncology for radiation-

induced toxicity outcome prediction modeling (OPM). A random forest machine learning 

classification approach has been shown to outperform other algorithms for outcome predictions 

with clinical data among some of the widely used machine learning classification approaches.14 

A process termed radiomics involves extracting quantitative features from medical images, such 

as computed tomography (CT) scans, and with the aid of a machine learning approach, these 

features are used to predict therapeutic responses15–17. Recently, dosiomics, which is similar to 

radiomic analyses, but instead uses 3D dose distributions as the feature space, has been 

introduced into OPM analyses. These omic features are derived from the extracted radiotherapy 
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dose distributions of patients to predict therapeutic responses. It is possible that dosiomic 

variables can better predict RP than DVH metrics since they retain the 3D information of the 

radiation dose distribution.18,19. Recent studies have also demonstrated the effectiveness of 

incorporating additional radiomic features derived from a very small region surrounding the tumor 

into OPM analyses, resulting in improved prediction accuracy20–22. Combining multi-region 

radiomics and dosiomics features into a multiomic OPM approach, based on shape, statistical, 

and textural patterns from CT Imaging and 3D dose distributions, could provide additional data 

that improves outcome prediction models.  

The aims of this work were to investigate the utility of radiomic and dosiomic features over 

traditional DVH features, as well as to examine the impact of using multiomic features from a 

subregion of normal lung to improve RP OPMs.  

 

Materials and Methods 

Patient Data 

We included 329 NSCLC patients treated at our institution between October 2006 to March 

2019 with either intensity modulated radiation therapy/volume-modulated arc therapy 

(IMRT/VMAT, n=190), passive-scatter proton therapy (PSPT, n=92), or intensity-modulated 

proton therapy (IMPT, n=47). The CT and dose grid spacing were 2.5 mm and 3×3×3 mm, 

respectively. All patients received fractionated doses between 1.8–3.0 Gy per fraction for total 

doses between 60–74 Gy. The study exclusion criteria were: (a) presence of acute lung infection, 

(b) prior thoracic surgery, (c) patients having <6-month follow-up period unless toxicity noted, (d) 

patients with a previous history of thoracic radiation therapy. All patients were treated with either 

induction, concurrent, or adjuvant chemotherapy in addition to RT.  
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Toxicity Evaluation 

Radiation Pneumonitis was graded from 0 to 5 according to the Common Terminology Criteria 

for Adverse Events (CTCAE v5.0).23 The approximate time for RP to develop in a patient after 

radiation therapy is between 1–6 months.24,25 A patient with an RP grade ≥2 was considered 

symptomatic for RP and used as the binary endpoint for this study.  

 

Data Analysis Workflow 

      The data analysis workflow is illustrated in Fig 1. Radiomic and dosiomic features were 

calculated using CT and dose images, respectively, focusing on two regions of interest (ROI). 

First was the total lung minus the gross tumor volume (GTV). To study the utility of incorporating 

additional information about tumor microenvironment in enhancing efficiency of RP OPMs, 

multomic features were also extracted from a 20mm ring structure created from normal lung 

surrounding the GTV (termed, “multi-region multiomic features”). Once all features were 

extracted, we conducted a Spearman correlation analysis to remove heavily correlated features 

with a correlation coefficient threshold of >0.85 for redundant features18. Next, we used a random 

forest classifier to create predictive toxicity models of 4 different types using the selected feature 

categories: (a) base DVH model, (b) whole lung based radiomic & dosiomic (WL-RD) model, (c) 

whole lung and ring (multi-region) based radiomic & dosiomic (MR-RD) model, and (d) multi-

region DVH + radiomic + dosiomic (MR-DVHRD) model. The performance metrics between the 

base and mulitomic models were then evaluated. Further details on each component of the study 

analysis are presented in the following subsections. 
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Figure 1 – Overall Study Workflow. DVH, radiomic and dosiomic features are extracted, followed 

by feature reductions for omic features in the first step. 4 OPM types are built and performance 

metrics between the DVH and omic model types are compared in the second step. Abbreviations: 

DVH, dose volume histograms; ROI, region of interest; AUC, area under the curve; AUPRC, area 

under precision recall curve; CV, cross validation; WL, whole lung; RD, radiomic & dosiomic; MR, 

multi-region. 

 

Feature Extraction and Selection 

A total of 422 data features were used for this study (13 clinical, 18 dosimetric, 182 dosiomic 

and 210 radiomic). The clinical features were gender, age, smoking status, cancer stage, 

histology, type of chemotherapy, tumor position, gross tumor volume (GTV), and performance 

status. The description of the clinical features is provided in the Supplemental Table S1. The 
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dosimetric, radiomic, and dosiomic features were first extracted from the whole-lung ROI. The 

dosimetric covariates include mean lung dose, max lung dose, the relative volume receiving at 

least a given dose (i.e. the value obtained for VxGy[%] refers to the percent volume of a structure 

receiving at least xGy) from rV5 to rV60 (in increments of 5 Gy). These metrics were extracted 

from the Raystation treatment planning system (RaySearch Laboratories; Stockholm, Sweden). 

In order to extract features, the DICOM files were first converted into nearly raw raster data (nrrd) 

using the 3D Slicer software.26 Radiomic and dosiomic features were then extracted based on the 

Imaging Biomarker Standardization Initiative (IBSI)27 using the pretreatment CT and dose image 

using Pyradiomics (v3.0.1) software. The extracted features included: 14 shape, 18 first-order, 

and 73 second-order features respectively for both ROI’s.28 All mulitomic features are described 

in the Supplemental Materials. For feature selection, a previously reported filter-based 

correlation approach was implemented.18. First, Spearman correlation coefficients (CC) were 

calculated for all features, with features showing a CC of >0.85 being excluded. The reduction 

criteria were that if two variables had a higher correlation coefficient than the cutoff, the variable 

with the highest mean absolute correlation was removed.  

 

Multi-region multiomics 

We assume that the greatest effect for normal tissue toxicities are observed closer to the tumor 

volume and therefore hypothesize that using a sub-region near the GTV could provide more 

informative multiomic measures. Unique characteristics captured by these features based on 

tumor-normal tissue interactions and spatial information could be imperative in enhancing the 

performance of OPMs. Thus, in this study, in addition to whole-lung multiomic features, we 

created a 20-mm ring subregion ROI of the normal lung around the GTV and extracted multiomic 

features to examine the added potential of the features close to the tumor in predicting RP. Figure 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307616doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307616


2 shows the sub-region multiomic feature delineation. Once the ring ROI multiomic features are 

extracted, the data analysis process is the same as depicted in Fig 1. 

 

 

 

 

 

 

 

Figure 2– Sub-region (ring) multiomic feature extraction. Radiomic and dosiomic features are 

extracted for a 20-mm ring around the GTV overlapping the whole-lung ROI, followed by feature 

reductions and analysis as described in Fig 1. 

 

 

Model Building 

The process of constructing the model and performance metric evaluation is illustrated in Fig 

1 and Fig 2. For this study, we created 4 toxicity prediction model types using the clinical factors, 

along with one of the following feature sets: (a) base DVH, (b) whole-lung based radiomic & 

dosiomic (WL-RD), (c) whole-lung and ring (multi-region) based radiomic & dosiomic (MR-RD), 

and (d) multi-region DVH + radiomic + dosiomic (MR-DVHRD). The random forest (RF) 

classification model has been shown to yield the best discriminative performance in radiotherapy 

outcomes and toxicity predictions and hence has been used in this study.14 Hence, to build our 

toxicity models, we used a random forest classifier. The hyperparameters for the random forest 
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modeling like mtry (controls how much randomness is added to the decision tree creation 

process), maxnodes (maximum number of terminal nodes allowed in a tree) and ntrees (number 

of decision trees that are combined to create the final prediction), were set depending on the 

number of covariates in each of the 4 models.29  

The toxicity models were created using a repeated cross-validation approach with 100 iterations. 

This type of cross-validation is a common method used to approximate the generalizability of the 

modeling process. 30–32 Each iteration of cross-validation creates a unique model, with the overall 

process creating 100 unique models for a given model type. This results in a paired comparison 

of individual models, where statistical significance of performance metrics can be derived from 

the distribution of models for each model type. For each iteration, the cohort was randomly split 

into a training set (80%) and test set (20%). Correlation-based feature reductions were performed 

for all features on the training set to find out optimal features. The remaining features were then 

used for RF modeling for the specific model type.  

 

Model Evaluation 

After selecting the optimal hyperparameters using the training set, the performance of the 

model was tested on the test set. The following metrics were used to assess each model’s 

performance on the held-out test set: accuracy, area under the receiver operating characteristic 

curve (AUC), area under the precision-recall curve (AUPRC), precision, and recall. Standard 

deviation was also computed for performance metric distributions from the repeated cross-

validation model building on both the training and test sets. All omic model types were compared 

to the base model to test the significance of each performance metrics distribution from repeated 

cross-validation using the paired Wilcoxon sign-rank test, with a p-value of <0.05 being 

considered as statistically significant. All statistical analyses were performed using R Studio 
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(4.2.1) (Posit, PBC; Boston, Massachusetts). The open-source R package “caret” with 

randomForest library was used to build all machine learning outcome prediction models. 

 

Results 

Patient Characteristics and Univariate Analysis 

A total of 329 patients were used for this study. The patients who developed a grade 2 or 

higher RP were 85/329 (25.84% patients positive for RP). The patient characteristics are 

summarized in Supplemental Table S1. The results for the Fisher’s exact test and Mann Whitney 

U-test for categorial, continuous, and DVH variables are provided in Supplemental Table S1.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 *p<0.05; **p<0.001; ***p<0.00001 – Significance level as compared to the base model 

Abbreviations: DVH, dose volume histogram; AUC, area under the curve; AUPRC, area under precision-

recall curve; WL, whole lung; RD, radiomic & dosiomic; MR, multi-region. 

 

Model 
Name 

Accuracy AUC AUPRC Precision Recall 

Base (DVH) 0.86±0.02 0.81±0.04 0.70±0.06 0.74±0.08 0.69±0.08 

WL-RD 0.86±0.03 0.82±0.05* 0.73±0.08* 0.73±0.12 0.69±0.09 

MR-RD 0.86±0.03 0.83±0.06** 0.75±0.08*** 0.72±0.12 0.73±0.10* 

MR-DVHRD 0.84±0.03 0.82±0.05* 0.72+0.08* 0.69+0.11 0.73±0.11* 

Table 1. Results of test set evaluation for different model types reported as mean of each metric 

with one standard deviation as the error. Model type comparison with the base model type (DVH 

metric) for WL-RD, MR-RD, and MR-DVHRD models is conducted with a one-sided Wilcoxon 

signed-rank test. Models with multiomic features had a better AUC and AUCPR as compared to the 

base model with MR-RD model type outperforming all the other model types. 
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Multivariate analysis 

The results of all the performance metrics for all models (test set) for predicting RP≥2 is 

reported in Table 1. The results for the training set are reported in Supplementary Table S3. All 

multiomic models outperformed the base model. Also, the MR-RD model type was the best 

performing model type among all model types. Boxplots comparing AUC and AUPRC for all the 

4 model types are also shown in Figure 2. These results show that model types with omic features 

are better than the base model and the MR-RD model type is the best performing model among 

all models. 

 

 

 

 

 

 

 

 

 

Figure 3 – Boxplots comparing performance metrics of all 4 model types. A, Area under the curve 

(AUC) comparison between model types; B, area under precision-recall curve (AUPRC) 

comparison between model types. In both comparisons, the performance metrics for the multi-

omic models are statistically significant as compared to the base model with the MR-RD being 

the best performing model. A one-sided Wilcoxon ranked significance test was used to check if 

the distribution of the other models is greater than that of the base model. 
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The most important (top 10) features are plotted as per rank for the base, WL-RD, MR-

RD and MR-DVHRD model types in Figure 3. The plots show that for the base model type (Fig 

3A), the relative V30 and V35 metrics are extremely important followed by relative V25 and mean 

lung dose. In the WL-RD model type (Fig. 3B), Kurtosis was found to be an important model 

feature, followed by dosiomic GLSZM Gray Level Variance, and dosiomic GLCM Inverse 

Variance. In the MR-RD model type (Fig. 3C), Kurtosis was once again shown to be the most 

important covariate followed by dosiomic GLSZM Gray Level Variance and Interquartile Range. 

Also, in the MR-DVHRD model type (Fig. 3D), dosiomic GLSZM Gray Level Variance was seen 

to be the most important covariate followed by rV60, dosiomic GLRLM Gray Level Non-Uniformity 

Normalized and others. Descriptions for all features are mentioned in the Supplemental 

Materials. 
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Figure 4 – Most Important features for each model type. A, DVH model type top features; B, 

WL-RD model type top features; C, MR-RD model type top features; D, MR-DVHRD model type 

top features. 

Discussion 

In this study, we compared the performance metrics (AUC, AUPRC, accuracy, precision, and 

recall) of the base model with the 3 omic model types (Table 1) to determine if multiomic features 

provided improved predictive value for OPMs of RP over using DVH metrics alone. A comparison 

of the base model with the WL-RD, MR-RD, and MR-DVHRD model types showed that all the 

multiomic model types outperformed base DVH models. Also, the MR-RD model type had the 

highest performance of the 4 model types. This shows that multiomic features, especially those 

extracted from a restricted area surrounding the GTV, has valuable information for predicting RP. 

To the best of our knowledge, this is the first study to use multi-region multiomic features to predict 

RP ≥grade 2 in NSCLC patients. 

Several studies have analyzed radiomic features from CT for predicting RP. A study by Krafft 

et al.33 demonstrated that when radiomic features were added to clinical and dosimetric features, 

the resultant model was able to better predict RP signifying the importance of radiomic features. 

Similarly, another study by Du et al.34 used a nomogram-based radiomics approach with 

esophageal cancer patients and found that adding radiomic features to clinical and DVH metrics 

enhances the model capability for predicting RP. Dosiomics has been used in various studies to 

predict RT related treatment efficacy35 and prognosis36 but few toxicity prediction-based studies 

exist. A study conducted by Liang et al.19 showed that the predictive power of dosiomic features 

were superior to DVH features; this study indicated that dosiomic features could possess more 

useful dose information than DVH metrics for predicting toxicity. A combined radiomic and 

dosiomic study by Zhang et al.37 used logistic regression based risk scores to predict RP using 

clinical, DVH, radiomic and dosiomic features. They found that the prediction model had the best 
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performance when combining, clinical, radiomic, and dosiomic features. However, the paper does 

not mention which feature set plays the most important role in enhancing model efficacy. In our 

study as well, the combined clinical, radiomic and dosiomic whole lung model outperformed the 

base DVH model. However, in our case, the performance of the combined radiomic+dosiomic 

model type relied mostly on the contributions of the dosiomic features in the model (as illustrated 

by the top 10 most important features in Fig. 3B). 

 Prior studies have also shown the utility of incorporating additional radiomic features derived 

from the tumor’s outer region, resulting in improved prediction accuracy20,21. A study by Kawahara 

et al.22 also used multi-region radiomic features to predict RP in NSCLC. However, this study did 

not include two very important aspects: clinicopathologic factors and dosiomic features which 

have been proven to be vital in predicting RP. In our study, we built two multiomic multi-region 

model types: (a) MR-RD (including clinical, and multi-region radiomic and dosiomic features) and 

(b) MR-DVHRD (including DVH, clinical, and multi-region radiomic and dosiomic features), and 

both these models outperformed the base model. The MR-RD was found to be the best model 

type among all models. This shows that additional 3-dimensional dose information especially from 

a finite area surrounding the GTV in terms of ROI geometry, first-order statistics (individual voxel 

based) and second-order statistics (based on relationship between voxels) have a lot more 

predictive power as conventional DVH metrics. Features extracted from a sub-region around GTV 

allows for a more nuanced assessment of normal tissue radiosensitivity and our results suggests 

that is vital to take these aspects into consideration in the OPMs while predicting RP. This does 

confirm our hypothesis that incorporating multi-region features into OPMs can identify patients 

who are at a greater risk of developing RP ≥grade 2, thus mitigating potential adverse effects for 

future patients. The best performing model types based on our results could be used to run toxicity 

predictions once the treatment is planned for a specific patient. This would provide the physician 

with a data-driven prediction of the patient developing grade 2 or above RP before the treatment 
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begins, allowing the physician either to amend the treatment plan or to discuss post-treatment RP 

risks more accurately with the patient. 

The figures for the top 10 most important features, as per Gini index, for the base, WL-RD, 

ML-RD, and MR-DVHRD model types are shown in Fig 3. In the WL-RD and MR-RD model types, 

it is seen that one first-order feature, kurtosis, is high on the importance scale. Statistically, 

kurtosis is used to describe the sharpness of the distribution. A study by Wang et al.38 discusses 

the potential kurtosis has for quantifying tumor heterogeneity and the progression of lung disease. 

Hence, it would be of interest to study the relationship between the occurrence of RP and kurtosis 

to better understand how this feature plays a role in predicting RP. In all the multiomic models, it 

was the dosiomic features that were dominant emphasizing the need to have dosiomic features 

in OPMs when predicting RP.  

There are a few limitations to our study. This study is a single institution, retrospective 

analysis. For this study, we have only used the original pretreatment CT and dose images for 

extracting features. There are studies that have examined the utility of various pre-processed 

(filtered) CT images, in addition to original CT image, to predict RP.39,40 A future scope of this 

work could be to test if features extracted from filtered images help in enhancing the models based 

out of original omic features; this is motivated by Demircioglu et al. whose study suggests that 

preprocessing filters can influence radiomic analysis, and they can improve predictive 

performance of models.41 Another limitation of this study is that we only use pretreatment CT for 

our omic analysis. A future scope of this study could be to determine if we can further enhance 

the performance for dosiomic-based toxicity models by introducing pretreatment PET radiomic 

features into our modeling scheme, similar to a study by Anthony et al.42 Due to the inclusion of 

many radiomic and dosiomic features in our analysis, a feature reduction technique was used to 

avoid overfitting, thereby potentially excluding features that could be having predictive value. 

However, given the data-driven nature of our feature reduction process, we were able to find 
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predictive features. In addition to radiomics and dosiomics, including other omic data, such as 

genomics and proteomics, could also provide insightful information and as a future scope, they 

could be introduced into the modeling scheme to improve model robustness. An efficient and 

effective way of utilizing these features during the treatment planning phase remains to be one 

goal of our future study.  

 

Conclusion 

In this work, we discovered that multiomic models are more efficient than DVH-only 

models at predicting ≥grade 2 RP. The best performing OPM included both whole-lung and multi-

region multiomic features, thereby demonstrating that a restricted region extracted proximal to the 

GTV has utility for improving RP-based OPMs. Dosiomic features were the most important in all 

multiomic RP toxicity model types, thereby demonstrating that these features add significant value 

to predictive models of RP toxicity. Future outcome prediction models of radiation pneumonitis 

should include both multi-region multiomic and dosiomic features for the highest performing 

OPMs. 
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Figure and Table Legend 

Table 1. Results of test set evaluation for different model types reported as mean of each metric 

with one standard deviation as the error. Model type comparison with the base model type (DVH 

metric) for WL-RD, MR-RD, and MR-DVHRD models is conducted with a one-sided Wilcoxon 

signed-rank test. Models with multiomic features had a better AUC and AUCPR as compared to 

the base model with MR-RD model type outperforming all the other model types. 

Figure 2 – Overall Study Workflow. DVH, radiomic and dosiomic features are extracted, followed 

by feature reductions for omic features in the first step. 4 OPM types are built and performance 

metrics between the DVH and omic model types are compared in the second step.  

Figure 2– Sub-region (ring) multiomic feature extraction. Radiomic and dosiomic features are 

extracted for a 20mm ring around the GTV overlapping the whole lung ROI, followed by feature 

reductions and analysis as described in Fig 1. 

Figure 3 - Boxplots comparing performance metrics of all 4 model types. A, Area under the curve 

(AUC) comparison between model types; B, area under precision-recall curve (AUPRC) 

comparison between model types. In both comparisons, the performance metrics for the multi-

omic models are statistically significant as compared to the base model with the MR-RD being 

the best performing model. A one-sided Wilcoxon ranked significance test was used to check if 

the distribution of the other models is greater than that of the base model. 
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Figure 4 – Most Important features for each model type. A, DVH model type top features; B, WL-

RD model type top features; C, MR-RD model type top features; D, MR-DVHRD model type top 

features. 
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