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HIGHLIGHTS 

Saliva anti-spike antibodies were present in > 90% of participants by spring 2022 

 

Saliva anti-spike IgA was driven by subclinical and clinically evident infections 
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COVID-19 mRNA vaccination alone was a weak inducer of saliva IgA antibodies 

 

HCoV immunity correlates with post-vaccine anti-spike saliva antibody levels 

  

SUMMARY 

This study characterized antibody responses induced by COVID-19 mRNA vaccination and 

SARS-CoV-2 infection in saliva. Utilizing multiplex microsphere-based immunoassays, we 

measured saliva anti-SARS-CoV-2 spike IgG, IgA, and secretory IgA in 1,224 saliva samples 

collected from healthcare workers in the Prospective Assessment of SARS-CoV-2 

Seroconversion study between August of 2020 through December of 2022. By spring of 2022, 

most individuals had detectable spike-specific antibodies in saliva. Longitudinal measurements 

of saliva anti-SARS-CoV-2 nucleocapsid IgG revealed that most spike-specific IgA and 

secretory IgA detected in saliva was driven by subclinical and clinically-evident infections, rather 

than by vaccination alone. In contrast, saliva anti-SARS-CoV-2 spike IgG was strongly induced 

by vaccination and exhibited improved durability with hybrid immunity. Baseline levels of saliva 

antibodies to the endemic human coronaviruses positively correlated with post-vaccination anti-

SARS-CoV-2 spike IgG levels. This study provides insights for development of vaccines that 

generate mucosal antibodies to respiratory pathogens. 
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INTRODUCTION 

Vaccines based on mRNA technology were the first approved for human use during the COVID-

19 pandemic1 and their implementation led to substantial reductions in mortality and morbidity 

during the pandemic.2 However, while intramuscular (IM) mRNA vaccines reduced the severity 

of SARS-CoV-2 infection in vaccine naïve recipients, protection against infection is incomplete, 

lacks durability against infection, and is not transmission-blocking.3-5 There were also concerns 

that pre-existing immunity to the endemic human coronaviruses (HCoVs) could impair vaccine 

efficacy due to cross-reactivity with SARS-CoV-2.6,7 

 

Effective vaccine platforms for SARS-CoV-2 interfere with critical elements of viral 

pathophysiology. SARS-CoV-2 initiates infection by binding angiotensin-converting enzyme 2 

(ACE2) receptors expressed throughout the mucosal surfaces of the respiratory tract.8 The 

mucosal-associated lymphoid tissues (MALT), and specifically, the nasal-associated lymphoid 

tissues (NALT), produce the first adaptive immune response in the upper respiratory tract.9 After 

exposure to viral antigens, the NALT seeds tissues in the upper respiratory tract with mature B 

cells capable of rapidly producing antibodies into the nasal and saliva secretions.9-12 The 

predominant antibody generated at mucosal sites is immunoglobulin A (IgA), produced as 

monomers (most common in the serum) or dimers (most common in mucosal secretions).13 

Dimeric IgA has been shown to neutralize the SARS-CoV-2 virus more potently than monomeric 

IgA14 and is moved across epithelial cells of the mucosa by the polymeric IgA receptor (pIgR), 

which is cleaved once reaching the apical side of the cell.15 Once the pIgR is cleaved, a 5-

domain protein remains, referred to as the secretory component (SC). The SC stabilizes the 

dimer contributing to agglutination and exclusion of pathogens.15  When the SC is bound to 

dimeric IgA, the molecule is referred to as secretory IgA (SIgA),16 11,15 and provides a total of 

four antigen-specific binding regions.15 The presence of dimeric IgA and SIgA in mucosal sites 

has been associated with early responses against viral pathogens, as well as lower viral load 
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and shorter duration of viral shedding.17,18 Consequently, mucosal antibody responses are likely 

integral to protective immunity against SARS-CoV-2 infections.19-22 

 

Understanding the predictors of mucosal immune responses in saliva and the kinetics of saliva 

antibody responses elicited by currently licensed IM COVID-19 mRNA vaccines is important for 

understanding vaccine control of viral shedding and transmission.5,23 This research is also 

central to the development of next generation COVID-19 vaccines which seek to block 

transmission and elicit robust mucosal immunity, including approaches which use a combination 

of IM and intranasal vaccines.4 

 

While many studies have investigated circulating antibody levels in blood specimens after 

COVID-19 mRNA vaccination, relatively few have measured the effects mRNA vaccines have 

on saliva antibodies. Of those that have, most have found that COVID-19 mRNA vaccines 

induce spike-specific IgG antibodies in saliva.24-29 In contrast, results regarding induction of 

saliva IgA by mRNA vaccines have been diverse, with some reporting measurable increases in 

saliva IgA after initial or booster vaccinations24-29  and while other report minimal saliva IgA 

responses.25,30,31   

 

One particular challenge in addressing the knowledge gap of how well IM mRNA vaccines 

induce saliva antibodies is accounting for subclinical infections that may confound vaccine study 

results. Thus, a key goal of this study was to determine how COVID-19 mRNA vaccination 

alone shapes mucosal antibody responses by identifying timepoints when study participants 

experienced clinical and subclinical SARS-CoV-2 infections and excluding these samples from 

longitudinal analyses. Another goal of this study was to determine whether pre-existing mucosal 

memory raised by prior endemic HCoV exposures influence saliva antibody responses induced 

by COVID-19 mRNA vaccination. 
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To achieve these goals, we characterized the patterns and predictors of longitudinal saliva 

antibody responses following COVID-19 mRNA vaccinations in a cohort of healthcare workers 

between August of 2020 through December of 2022. We incorporated evidence of both 

subclinical and clinical infections and observed remarkably different profiles of saliva antibody 

responses associated with infection alone, vaccination alone, and hybrid immunity. Additionally, 

we analyzed for predictors of vaccine elicited-saliva immunity by age, sex, and pre-vaccination 

(baseline) levels of saliva antibodies against the 4 major endemic HCoVs.  

 

METHODS 

Study Participants: Inclusion/Exclusion Criteria and COVID-19 testing 

Participants were enrolled between August of 2020 and March of 2021 into the Prospective 

Assessment of SARS-CoV-2 Seroconversion (PASS) study, an ongoing prospective study 

evaluating clinical and immune responses to SARS-CoV-2 infection and vaccination. In-depth 

details of the PASS study methods have been published previously.32 

 

At time of enrollment, all participants were employed at the Walter Reed National Military 

Medical Center (WRNMMC) and met the inclusion criteria of being ≥ 18 years of age and 

generally healthy. Participants were excluded at enrollment if they were immunocompromised, 

had history of COVID-19 prior to enrollment, or were SARS-CoV-2 seropositive. Additionally, for 

this analysis of saliva antibodies, participants were excluded from the analysis set if their initial 

COVID-19 2-dose vaccine series was not Pfizer BNT162b2.  

 

All participants were asked to test for SARS-CoV-2, by either PCR testing at the WRNMMC 

COVID-19 testing facility and/or by rapid antigen testing at home, whenever they experienced 

symptoms consistent with possible SARS-CoV-2 infection. Participants reported vaccination and 

infection events at study clinic visits held monthly between August of 2020 and August of 2021, 
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and then quarterly through December of 2022. Participants were classified as being uninfected 

until they either developed a positive SARS-CoV-2 test, or developed a doubling of their saliva 

IgG antibody levels against SARS-CoV-2 nucleocapsid (N) protein compared to their baseline 

level. Individuals that developed a doubling in saliva anti-SARS-CoV-2 (anti-SCV2) N IgG 

antibody levels, but had no history of a positive SARS-CoV-2 test, were categorized as having a 

“subclinical infection” based on a data-driven approach (see Results). 

 

Saliva Collection 

Saliva samples were collected at quarterly clinic visits until August of 2022, and semi-annually 

since. While the PASS study is still ongoing, for this analysis we evaluated saliva samples 

collected through December 6, 2022. Whole saliva samples were collected by the passive drool 

method33-36 using the Salimetrics Saliva Collection Aid in accordance with the package insert 

(Salimetrics, State College, PA, USA). Participants were instructed to rinse their mouth with 

water for 10-15 seconds followed by a 10-minute rest period before collection. Saliva was then 

pooled in the mouth and drooled into the saliva collection device. Samples were frozen 

immediately after collection at -20°C, and then transferred later that day to -80°C for long term 

storage.  

 

Saliva antibody testing 

On day of testing, saliva samples were thawed on ice and then centrifuged at 16,000 x g for 10 

minutes at 4°C. Supernatant was transferred to a new tube, heat-inactivated for 30 minutes at 

60°C, and then diluted 1:5 and 1:20 in phosphate buffered saline (PBS). Samples were tested 

for IgG, IgA, and SIgA using a well-described antigen-based multiplex microsphere 

immunoassay.37-39 Briefly, wild-type Wuhan-1 SARS-CoV-2 spike glycoprotein, expressed as 

native-like prefusion stabilized ectodomain trimer, hereafter referred to as ‘spike’, was sourced 
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from Curia (Albany, NY, USA) and expression of trimeric ectodomain spike protein antigens of 

the four endemic human coronaviruses (HCoV-OC43, -HKU1, -NL63, -229E) have been 

previously described.37,40 The N protein was sourced from RayBiotech (Peachtree, GA, USA). S 

and N antigens (15 µg) were coupled to 100 µl of magnetic carboxylated beads (Luminex, 

Austin, TX, USA) and stored in accordance with the manufacturer’s protocol. A master mix of 

1:100 beads to PBS ratio was prepared for each antibody plate. Antigen-coupled beads were 

incubated with 100 µl of each diluted saliva sample at room temperature for 45 minutes, under 

agitation at 700 rpm. Plates were then washed with PBS + 0.05% of Tween 20 a total of 3 

times. Biotinylated cross-adsorbed goat anti-human IgG (Invitrogen, Waltham, MA, USA) was 

then added at a 1:5000 dilution for detection of IgG, and biotinylated cross-adsorbed goat anti-

human IgA (Invitrogen) was used at a 1:5000 dilution for detection of IgA. Goat anti-human SIgA 

(MyBioSource, San Diego, CA, USA) was biotinylated using a biotinylation kit (Abcam, 

Cambridge, UK), and diluted at 1:5000 for SIgA detection. Plates were then incubated again at 

room temperature for 45 minutes, under agitation at 700 rpm. Plates were washed 3 times prior 

to incubation with a 1:1000 dilution of streptavidin-phycoerythrin (ThermoFisher, Waltham, MA, 

USA). After a final 3 washes, 100 µl of PBS + 0.05% of Tween 20 was added to each well and 

rocked at 700 rpm for 10 minutes prior to reading. Antigen-antibody levels were measured as a 

median fluorescence intensity (MFI) by a Bio-Plex 200 HTF multiplex system (BioRad, Hercules, 

CA, USA). Arbitrary binding units (AU/mL) for saliva antibodies were calculated by interpolating 

MFI values against in-house standard curves generated using microspheres conjugated with 

known concentrations of purified human IgG, IgA, or SIgA and serially diluted.  

 

Statistical Analysis 

Comparisons were made using log-transformed data, with the Mann Whitney test for unpaired 

comparisons, and the Wilcoxon test for paired comparisons. The Kruskal-Wallis test followed by 

the Dunn’s test were used for multiple comparisons of three or more groups. Correlations were 
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performed using Spearman's rank correlation. Geometric means (GM), medians and 

interquartile ranges (IQR) were calculated using Graph Pad Prism Software version 10.  

 

Ethics 

All participants provided informed consent and the protocol was approved by the Uniformed 

Services University Institutional Review Board in compliance with all applicable Federal 

regulations governing the protection of human participants. 

 

RESULTS 

Study demographics and vaccinations 

The PASS study enrolled 271 participants from August of 2020 through March of 2021. Of 

these, 4 participants were excluded from this analysis: 1 participant was unable to provide 

saliva, 2 participants received the Moderna mRNA vaccine as their initial 2-dose vaccine series, 

1 participant received the AstraZeneca vaccine, and 1 participant was found to be seropositive 

at baseline after repeat testing (Supplemental Figure 1). The self-reported demographics of the 

266 included participants are presented in Supplemental Table 1. The majority were female 

(69.5%), white (71.4%), and non-Hispanic (92.1%), with a median age of 41 years (range 21-71; 

IQR 33.0-51.3). The most common occupations were nurse (32.7%), physician (25.9%), and 

occupational/physical/speech therapist (11.7%).  

 

All participants who were vaccinated in this analysis received the Pfizer BNT162b2 WT spike 

COVID-19 mRNA vaccine as their initial 2-dose vaccination series (n=241). Of the 266 

participants in the study, 22 only provided baseline samples and 2 participants did not get 

vaccinated. For the 3rd vaccine dose, 163 participants received the BNT162b2 WT spike mRNA 

vaccine, and 2 received the Moderna WT spike mRNA-1273 vaccine. A total of 76 did not get a 

3rd dose during the study. Among the participants receiving a 4th dose of the vaccine, 29 
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received the ancestral monovalent WT Pfizer BNT162b2 vaccine, 22 received the bivalent 

(WT+BA.4/5) Pfizer mRNA vaccine, and 1 received the bivalent (WT+BA.4/5) Moderna mRNA 

vaccine.  

 

Longitudinal anti-SCV2 spike and anti-SCV2 N saliva antibody levels 

We evaluated the longitudinal kinetics of saliva IgG, IgA, and SIgA antibody responses to 

COVID-19 vaccination and SARS-CoV-2 infection over the course of the first 2 years of the 

pandemic (Figure 1). An increase in anti-SCV2 spike IgG was observed in the cohort around 

December of 2020 which aligned with the approval of the emergency use authorization for the 

first vaccines. By August of 2021, anti-SCV2 spike IgG levels in saliva declined, and continued 

to decline, until December of 2021 for those that had not yet received a 3rd dose of the vaccine. 

Anti-SCV2 spike IgG levels increased in December of 2021 for the participants that received a 

3rd dose, but declined again by the following spring. Throughout 2022, we observed that most of 

the cohort had saliva anti-SCV2 spike IgG levels that remained comparable to levels at 1 month 

after the initial 2-dose vaccine series (Figure 1A). 

 

In comparison, only modest increases in anti-SCV2 spike IgA levels were seen during the 

vaccine roll-out in late 2020 and throughout 2021. Substantially elevated levels of anti-SCV2 

spike IgA were not consistently observed until 2022, by which time many in the cohort had 

confirmed infections and many others likely had subclinical infections. Similar dynamics were 

seen in anti-SCV2 spike SIgA (Figure 1A), with increases observed starting in April of 2022. 

Increases in anti-SCV2 N IgG were most consistently observed in 2022 (Figure 1B). Overall, 

few changes were observed in the levels of anti-SCV2 N IgA and SIgA in saliva over the course 

of the study (Figure 1B). 
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Figure 1. Longitudinal observations of antibody levels in saliva among PASS participants 

A) Anti-SCV2 spike and B) anti-SCV2 N IgG, IgA and SIgA levels in saliva between August of 

2020 through December of 2022 for all participants. Blue = baseline saliva samples (n=261, n=5 

saliva quantity not sufficient for testing at baseline timepoint), orange = saliva samples after the 

2nd dose of mRNA vaccine (n=467), green = saliva samples after the 3rd dose of vaccine 

(n=263), pink = saliva samples after the 4th dose of vaccine (n=30), yellow = saliva samples 

tested after documented SARS-CoV-2 infection (n=199) 

 

Longitudinal assessment of subclinical SARS-CoV-2 infections  

We suspected that the longitudinal increases in saliva anti-SCV2 spike IgA and SIgA levels 

observed in participants without a known positive test for SARS-CoV-2, were due to subclinical 

infections that increased in frequency during the pandemic.  
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To determine a saliva antibody threshold to categorize individuals with a possible subclinical 

infection, we evaluated anti-SCV2 N IgG levels in saliva from participants who developed post-

vaccine SARS-CoV-2 infections (PVI) and compared their baseline levels of anti-N IgG to their 

levels 1-3 months after a PVI. Of these 68 participants with saliva samples collected between 1 

and 3 months after a confirmed PVI, 59 participants exhibited saliva anti-SCV2 N IgG levels at 

least 2-fold greater than their baseline values, resulting in a sensitivity of 86.8% (Supplemental 

Figure 2).  

 

On this basis, we then defined all participants who experienced at least a doubling in their saliva 

anti-SCV2 N IgG levels compared to baseline, as having a subclinical infection. Participants 

were thus ultimately categorized as follows: pre-vaccine infection (PreVI) (n=17), post-vaccine 

infection (PVI, n=73), subclinical post-vaccine infection (n=98), and no infection (n=59) 

(Supplemental Table 2). Because of participant attrition throughout the study, we next analyzed 

the percentage of participants that fit into each category at roughly quarterly intervals through 

December of 2022. By the fall of 2022, only 7.5% of participants evaluated had never tested 

positive for SARS-CoV-2 and never had saliva antibody evidence of a subclinical infection 

(Table 1).   
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COVID-19 mRNA vaccinations induce detectable saliva levels of anti-SCV2 spike IgG 

antibodies but minimal anti-SCV2 spike IgA and SIgA antibody levels  

Saliva antibody levels at specific timepoints after COVID-19 mRNA vaccination are shown in 

Figure 2. In analysis of all participants without a prior positive SARS-CoV-2 test at 1 month after 

the 2-dose initial vaccination series (1M PV2), we observed a substantial increase in anti-SCV2 

spike IgG (15.2-fold increase compared to baseline), a modest increase in anti-SCV2 spike IgA 

(1.8-fold increase compared to baseline), and no measurable increase in anti-SCV2 spike SIgA 

(Figure 2A). Furthermore, we observed higher levels of anti-SCV2 spike IgG levels after the 3rd 

vaccine dose (PV3) compared to the 2nd vaccine dose (PV2). Additionally, the rate of decline in 

saliva anti-SCV2 spike IgG levels appeared to decrease after the 3rd dose (PV3) compared to 

the 2nd dose (PV2). We also observed no appreciable increase in anti-SCV2 spike IgA or SIgA 

at 1 month after the 3rd dose (1M PV3) (Figure 2A). Because we observed increases in anti-

SCV2 spike IgA and SIgA levels at later timepoints after the 3rd vaccine dose (4-6M PV3 and 6-

9M PV3), we posited that some participants were likely experiencing subclinical infections. In 

line with this, we also observed anti-SCV2 N IgG levels increase 2.4-fold in the 4-6M PV3 and 

2.4-fold in the 6-9M PV3 groups (Supplemental Figure 3A).  

 

Figure 2B shows saliva anti-SCV2 spike antibody responses to vaccination after removal of 

participants with known prior SARS-CoV-2 infection and participants with subclinical infections 

defined by doubling in anti-SCV2 N IgG. Overall, we observed only minor changes to anti-SCV2 

spike IgA levels in saliva. A modest increase (1.6-fold increase compared to baseline) was 

observed in anti-SCV2 spike IgA levels in the 1M PV2 group, and the late (4-6M PV3 and 6-9M 

PV3) increases in anti-SCV2 spike IgA and SIgA were no longer present. In contrast, anti-SCV2 

spike IgG levels remained markedly increased by vaccination with levels 14.7-fold greater than 

baseline at 1M PV2 and 23.4-fold greater at 1M PV3 (Figure 2B). These results demonstrate 
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that while COVID-19 mRNA vaccination induces marked increases in saliva anti-SCV2 spike 

IgG, it induces only minimal increases in saliva anti-SCV2 spike IgA and SIgA.  

 

 

Figure 2. COVID-19 mRNA vaccinations induce detectable saliva levels of anti-SCV2 

spike IgG antibodies but minimal anti-SCV2 spike IgA and SIgA antibody levels 

A) Anti-SCV2 spike IgG, IgA and SIgA saliva antibody responses at each timepoint after 

vaccination compared to baseline levels in samples of participants with no prior documented 

SARS-CoV-2 infection (BSL n=261, ≤14D PV2 n=17, 1M PV2 n=205, 4-6M PV2 n=174, 6-9M 

PV2 n=41, 9-12M PV2 n=30, 1M PV3 n=110, 4-6M PV3 n=93, 6-9M PV3 n=49, 9-12M PV3 

n=12, 1M PV4 n=30). B) Anti-SCV2 N IgG, IgA and SIgA saliva antibody responses at each 

timepoint after vaccination compared to baseline levels after removal of participants with a 

subclinical infection as well as those with prior documented SARS-COV-2 infection (BSL n=261,  

≤14D PV2 n=10, 1M PV2 n=129, 4-6M PV2 n=104, 6-9M PV2 n=23, 9-12M PV2 n=16, 1M PV3 

n=61, 4-6M PV3 n=30, 6-9M PV3 n=12, 9-12M PV3 n=3, 1M PV4 n=3). Comparisons made 

using log-transformed data and Kruskal-Wallis analysis with Dunn’s multiple comparison test. 
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Fold-change in geometric mean compared to baseline levels is indicated in the text above box 

and whisker plots. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Red dotted line 

represents lower limit of the assay. (BSL = baseline, D = days, M = months, PV2 = post-2nd 

vaccine dose, PV3 = post-3rd vaccine dose, PV4 = post-4th vaccine dose).  

 

Boosting increases magnitude and durability of saliva anti-SCV2 spike IgG, but does not 

result in increases to saliva IgA or SIgA  

To optimally compare the effect that additional vaccine doses have on saliva antibody levels, we 

removed saliva samples from participants with any prior positive SARS-CoV-2 test or evidence 

of prior subclinical infection. Anti-SCV2 spike IgG levels at 1 month after the 3rd dose (1M PV3 = 

GM 747.1 AU/mL) were not statistically greater (p = 0.1579) than those obtained at 1 month 

after the 2nd dose (1M PV2 = 469.1 AU/mL, Supplemental Figure 4). However, after a 3rd dose, 

anti-SCV2 spike IgG levels in the 4-6M (4-6M PV3, GM = 471.4 AU/mL,) and 6-9M (6-9M PV3, 

GM = 413.3 AU/mL) groups were significantly greater (p < 0.0001 and p=0.0008, respectively) 

than those obtained at the same timepoints after initial 2-dose series (4-6M PV2 GM= 135.5 

AU/mL and 6-9M PV2 GM = 95.31 AU/mL) (Figure 2B and Supplemental Figure 4). The trend 

showing improved durability over time in saliva anti-SCV2 spike IgG levels after a 3rd dose was 

observed up to 9-12 months (9-12M PV3 vs 9-12M PV2, Supplemental Figure 4), though the 

comparison did not reach statistical significance. These differences were also observed using 

one-phase decay modeling. We determined the half-life of saliva anti-SCV2 spike IgG after 2 

doses to be 92.7 days, 95% CI (71.1-121.5) while the half-life after 3 doses was 159.5 days, 

95% CI (75.6-621.4) (Supplemental Figure 5). No appreciable differences were observed in 

anti-SCV2 spike IgA and SIgA levels at any timepoints after the 3rd (PV3) and 4th (PV4) doses 

(Figure 2B, Supplemental Figure 4). 
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Females produce higher levels of vaccine elicited anti-SCV2 spike IgG and IgA in saliva 

than males, whereas antibody levels do not differ across age groups  

To analyze saliva antibody levels between sexes and age groups at 1 month after a 2nd vaccine 

dose (1M PV2), we again removed saliva samples from participants with any prior positive 

SARS-CoV-2 test or evidence of subclinical infection. Both anti-SCV2 S IgG and anti-SCV2 

spike IgA levels were significantly greater in females compared to males (anti-SCV2 spike IgG 

GM = 525.4 AU/mL in females, GM = 364.5 AU/mL in males, p = 0.0023; anti-SCV2 spike IgA 

GM = 97.1 AU/mL in females, GM = 58.7 AU/mL in males, p = 0.0118, Figure 3A). No 

differences in saliva antibody levels were observed between age groups (Figure 3B). 

 

 

Figure 3. Females produce higher levels of vaccine elicited anti-SCV2 spike IgG and IgA 

in saliva than males, whereas antibody levels do not differ across age groups 

A) Comparison of female (n=89) and male (n=40) saliva anti-SCV2 spike IgG, IgA and SIgA 

antibody responses 1 month after the 2nd vaccine dose (1M PV2) in individuals with no prior 

documented or subclinical infection. Mann Whitney analysis performed on log-transformed data. 
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Fold-change in geometric mean is indicated in the text above box and whisker plots. Red dotted 

line represents lower limit of the assay. B) Anti-SCV2 spike IgG, IgA and SIgA saliva antibody 

responses across age groups 1 month after the 2nd vaccine dose (1M PV2) in individuals with 

no prior documented or subclinical SARS-CoV-2 infection. Comparisons made using log-

transformed data and Kruskal-Wallis analysis with Dunn’s multiple comparison test. Red dotted 

line represents lower limit of the assay. (Age groups: 20-29, n=13; 30-39, n=31; 40-49, n=37; 

50-59, n=31; 60 and above, n=17). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.  

 

Pre-vaccine infection induces significantly greater levels of anti-SCV2 spike IgA and SIgA 

in saliva than two doses of mRNA vaccine 

To assess the effects SARS-CoV-2 infection had on saliva antibody levels in the absence of 

pre-existing immunity, we conducted paired analyses of saliva antibody levels in all participants 

that developed pre-vaccination infections (PreVI) and had saliva samples available both at 

baseline and 1 month after infection (n=14). Significant increases from baseline were observed 

in anti-SCV2 spike IgG levels with a 9.4-fold increase (p = 0.0002), anti-SCV2 spike IgA with a 

4.4-fold increase (p = 0.0023), and anti-SCV2 spike SIgA with a 1.7-fold increase (p = 0.0039) 

(Figure 4A). A modest, but significant, increase (1.9-fold, p = 0.0203) was also observed in 

saliva anti-SCV2 N IgG levels while no increases were observed in saliva anti-SCV2 N IgA or 

SIgA in the pre-vaccine infection group (Figure 4B).  

 

We next compared saliva antibody levels measured 1 month after pre-vaccine infection (1M 

PreVI) with saliva antibody levels measured at 1 month after 2 vaccine doses (1M PV2) in 

individuals that had no prior positive SARS-CoV-2 test or evidence of subclinical infection. While 

vaccination and infection induced comparable levels of saliva anti-SCV2 spike IgG, the levels of 

anti-SCV2 spike IgA and SIgA were significantly greater after infection (anti-SCV2 spike IgA GM 

= 254.7 AU/mL in 1M PreVI, GM = 83.1 AU/mL in 1M PV2, p < 0.001; anti-SCV2 spike SIgA GM 
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= 391.9 AU/mL in 1M PreVI, GM = 238.6 AU/mL in 1M PV2, p < 0.0001) (Figure 4C). As 

expected, saliva anti-SCV2 N IgG levels were greater after infection than after vaccination 

(Figure 4D). 

 

 

Figure 4: Pre-vaccine infection induces significantly greater levels of anti-SCV2 spike IgA 

and SIgA in saliva than two doses of mRNA vaccine 

A) Anti-SCV2 spike and B) anti-SCV2 N IgG, IgA and SIgA responses in saliva at baseline 

(BSL) and 1 month after pre-vaccine infection (1M PreVI). Analysis performed on log-

transformed data using Wilcoxson paired test (n=14). Fold-change in geometric mean 

compared to baseline levels is indicated in the text above box and whisker plots. * p < 0.05; ** p 

< 0.01; *** p < 0.001; **** p < 0.0001. Red dotted line represents lower limit of the assay. 

Comparisons of C) anti-SCV2 spike and D) anti-SCV2 N saliva antibody levels in saliva 1 month 

after 2nd dose of vaccine (1M PV2, n=129) and 1 month after pre-vaccine infection (1M PreVI, 

n=15). All PV2 samples were from participants with no prior documented or subclinical SARS-

CoV-2 infection. Analysis performed on log-transformed data using Mann-Whitney test. Fold-

change in geometric mean is indicated in the text above box and whisker plots. * p < 0.05; ** p < 

0.01; *** p < 0.001; **** p < 0.0001. Red dotted line represents lower limit of the assay. 
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Hybrid immunity induces higher anti-SCV2 spike IgA and SIgA levels than 3rd vaccine 

dose 

To evaluate the impact hybrid immunity has on mucosal antibody levels, we compared saliva 

antibody responses in uninfected participants at 1 month after a 3rd dose (1M PV3) to 

participants that had received 2 doses of vaccine and then developed a PVI (PV2+1M PVI) 

(Figure 5). A 3rd dose induced the same saliva levels of anti-SCV2 spike IgG as 2 doses 

followed by a PVI. In contrast, anti-SCV2 spike IgA and SIgA levels were markedly higher in the 

hybrid immune group than in the 1M PV3 group. (anti-SCV2 spike IgA = 50.1 AU/mL in 1M PV3, 

and 328.3 AU/mL in PV2+1M PVI, p < 0.0001; anti-SCV2 spike SIgA = 246.0 AU/mL in 1M PV3, 

and 755.0 AU/mL in PV2+1M PVI, p < 0.0001) (Figure 5A). Anti-SCV2 N IgG and IgA levels 

were also significantly greater in the hybrid immunity group (Figure 5B).  

 

Additionally, we also examined hybrid immunity by comparing uninfected participants that 

received a 4th dose of vaccine (1M PV4) with participants that received a 3rd dose of vaccine 

and then had a PVI (PV3+1M PVI) (Supplemental Figure 6). Individuals with hybrid immunity 

(PV3+1M PVI) exhibited greater saliva IgA responses compared to individuals that had received 

a 4th vaccine dose, but the differences were not statistically significant, likely due to the very 

small number of uninfected participants who received a 4th dose of vaccine (1M PV4). Of note, 

both anti-SCV2 spike IgG and IgA levels in saliva were 3.6-fold and 2.2-fold greater, 

respectively, at 1 month after last antigen exposure in hybrid immune participants when 

vaccination was followed by infection (VVVI = 3 vaccine doses then infection) than when 

infection was followed by vaccination (IVVV = infection followed by 3 vaccine doses) 

(Supplemental Figure 7). 
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Figure 5: Hybrid immunity induces higher anti-SCV2 spike IgA and SIgA levels than 3rd 

vaccine dose 

A) Anti-SCV2 spike and B) anti-SCV2 N IgG, IgA and SIgA responses in saliva at 1 month after 

3rd vaccine dose in uninfected participants (1M PV2, n=61) compared with levels 1 month after 

infection in participants who received a 2nd dose of vaccine and then had a post-vaccine 

infection (PV2 +1M PVI, n=6). Analysis performed on log-transformed data using a Mann-

Whitney test. Fold-change in geometric mean is indicated in the text above box and whisker 

plots. ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Red dotted line 

represents lower limit of the assay. 

 

Vaccination results in boosting of saliva IgG against the spike protein of OC43 

Prior studies have shown that COVID-19 mRNA vaccines boost serum levels of IgG antibodies 

against the spike protein of OC43, one of the four HCoVs.41-43 To determine if a similar cross-

reactive boosting phenomenon occurs in the saliva, we measured IgG, IgA, and SIgA levels in 

saliva against the spike proteins of OC43, 229E, HKU1, and NL63 at baseline and 1 month after 
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vaccination (1M PV2) in participants with no prior positive SARS-CoV-2 test or subclinical 

infection. Vaccination resulted in a modest (1.3-fold) increase in IgG saliva levels against OC43 

spike protein (p= 0.0006, Supplemental Figure 8). No statistically significant increases were 

observed in saliva antibody levels against the spike proteins of 229E, HKU1, and NL63. In 

participants that were unvaccinated and infected, a similar increase (1.4-fold) was observed 1 

month after infection (1M PreVI) in anti-OC43 spike IgG, though the increase was not 

statistically significant (p = 0.3575, Supplemental Figure 9).  

 

Baseline saliva IgG levels against the spike proteins of all four HCoVs positively 

correlate with anti-SCV2 spike IgG saliva levels after vaccination   

The BNT162b2 vaccine contains mRNA that codes for the WT SARS-CoV-2 spike protein. To 

determine if baseline mucosal immunity against HCoVs had an effect on vaccine-induced saliva 

antibody levels, we assessed for correlations between baseline saliva antibody levels to the 

spike proteins of the four HCoVs and 1-month post-vaccination (1M PV2) responses to the 

spike protein of SARS-CoV-2 (Figure 6). Again, this analysis was performed using samples from 

participants with no prior positive SARS-CoV-2 test or subclinical infection. We found saliva anti-

SCV2 spike IgG levels after vaccination positively correlated with baseline saliva IgG levels 

against the S proteins of all four HCoVs. A modest correlation was found with baseline anti-

OC43 spike IgG levels (Spearman’s rho = 0.4608, p < 0.0001), and weak correlations were 

observed with baseline IgG levels against spike proteins of 229E, HKU1, and NL63 (rho = 

0.2719, p = 0.0021; rho = 0.2814, p = 0.0014; rho = 0.2872, p = 0.0011, respectively). 
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Figure 6: Baseline saliva IgG levels against the spike proteins of all four HCoVs 

positively correlate with anti-SCV2 spike IgG saliva levels after vaccination   

Spearman correlations of paired baseline (BSL) saliva anti-spike (S) OC43, HKU1, 229E, and 

NL63 antibody levels with saliva anti-SCV2 spike (S) antibody levels 1 month after 2nd COVID-

19 mRNA vaccine (1M PV2, n=126). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Red 

dotted line represents lower limit of the assay. 

 

DISCUSSION 

In this prospective longitudinal analysis of 266 healthcare workers at the Walter Reed National 

Military Medical Center in Bethesda, Maryland, USA, we observed that by the spring of 2022 
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most individuals had detectable anti-SCV2 spike IgG and IgA antibodies in saliva. Our results 

indicate that the detection of anti-SCV2 spike IgA and SIgA in saliva was primarily driven by 

subclinical and clinically-evident infections. While COVID-19 mRNA vaccination alone was a 

weak inducer of saliva IgA antibodies, IgG was strongly induced in the saliva by vaccination and 

exhibited increased half-life after subsequent vaccinations and after a post-vaccine infection. 

Additionally, we observed that women generated greater levels of saliva IgG and IgA than men, 

and identified positive correlations between baseline saliva anti-HCoV spike IgG levels and anti-

SCV2 spike IgG levels in saliva 1 month after vaccination.   

 

A major challenge for evaluating how well COVID-19 mRNA vaccines induce mucosal 

antibodies is potential confounding by subclinical SARS-CoV-2 infections. By the summer of 

2022, 45% of participants still being followed in the PASS study reported having at least 1 

known SARS-CoV-2 infection. Because individuals can have pauci- or asymptomatic infection, 

especially in the post-vaccine era, we also sought to exclude all individuals with immunological 

evidence of a possible subclinical infection. This was done by eliminating, from vaccine-only 

analyses, all samples obtained after individuals exhibited a doubling of saliva anti-SCV2 N IgG 

antibodies compared to their baseline levels. Longitudinal analyses revealed that by the 

summer of 2022, only 12.6% of participants remaining in the cohort had no evidence of prior 

SARS-CoV-2 infection (45.2% with a known SARS-CoV-2 positive test and another 42.2% with 

saliva anti-SCV2 N IgG doubling without a prior positive SARS-CoV-2 test). This high rate of 

SARS-CoV-2 exposure is consistent with a Morbidity and Mortality Weekly Report stating that 

70% of blood donors through September 2022 had either a pre-vaccine infection or post-

vaccine infection as well as another study which estimated that 97% of the US population was 

infected by November 2022.44,45 
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Our study demonstrates that COVID-19 mRNA vaccination induces robust anti-SCV2 spike IgG 

levels in saliva but poor IgA responses in naïve individuals. After the initial 2-dose series, anti-

SCV2 spike IgG antibodies were detectable in saliva as early as 14 days and peaked at 1 

month to levels 14.7-fold greater than baseline. In contrast, anti-SCV2 spike IgA increased 

modestly, achieving a peak that was only 1.6-fold greater than baseline values, and anti-SCV2 

spike SIgA never increased significantly above baseline.  

 

We next evaluated how additional vaccine doses influenced the kinetics of saliva antibody 

levels. Our analysis of samples from infection naïve participants showed that a 3rd vaccine dose 

resulted in 8.7-fold higher levels of saliva anti-SCV2 spike IgG than 2 doses. Additionally, a 3rd 

vaccine dose improved the durability of the saliva anti-SCV2 spike IgG response, with a half-life 

of 159.5 days determined by analyses performed through 9 months of follow-up. However, a 3rd 

vaccine dose resulted in no appreciable increases in saliva anti-SCV2 spike IgA or SIgA. 

 

While there are many publications examining antibodies in the serum after mRNA vaccination, 

studies of saliva have been less frequent. There is overall agreement in the literature that 

mRNA vaccination induces IgG responses in saliva.24-29 However, reports on saliva IgA 

responses after COVID-19 mRNA vaccines have varied. Several studies have reported 

detectable increases in saliva IgA after initial and/or booster vaccination with COVID-19 mRNA 

vaccines.24,26-29,46 Others, more consistent with our findings, have observed only minimal IgA 

responses in uninfected individuals.25,30,31 

 

A potential limitation of COVID-19 vaccine studies is possible inclusion of individuals with prior 

subclinical infections, as vaccination after prior SARS-CoV-2 infection can induce significant 

saliva anti-SCV2 spike IgA responses.47,48 At least 2 studies that found increases in saliva IgA 

attempted to screen out unrecognized infections by testing for serum anti-SCV2 N IgG.24,29 
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While serum anti-SCV2 N is often positive shortly after infection, the sensitivity of anti-SCV2 N 

IgG for diagnosing prior infection is highly variable (52% - 100%)49,50 and its half-life post-

infection is short, with one study estimating it to be only 35 days.51 In this study, we utilized 

saliva anti-SCV2 N IgG as a marker for possible prior infection. Saliva anti-SCV2 N IgG has 

been reported to have a high sensitivity for prior SARS-CoV-2  infections,49 and we found an 

86% sensitivity for known post-vaccine infections in our cohort. Further, we obtained saliva 

antibody levels at baseline and then regularly (approximately 4 times a year), increasing the 

likelihood that we would not miss a transient infection-induced increase in saliva anti-SCV2 N 

antibodies. We believe the approach taken in our study convincingly demonstrates that COVID-

19 mRNA vaccination (after the initial 2-dose series as well as after 3rd or 4th doses) induces 

only minimal increases in saliva IgA responses in the absence of prior infection. Of note, given 

that very few individuals remain that have not yet been infected at least once with SARS-CoV-

244,45, it will be challenging for future studies to investigate the impact COVID-19 vaccines can 

have on immunologically naïve individuals.  

 

With regards to saliva antibody durability, a large cross-sectional study found that the anti-SCV2 

RBD/spike IgG half-life in saliva was 140 days after 2 doses of mRNA vaccine.52 We found the 

half-life of saliva anti-SCV2 spike IgG to be 92.7 days after 2 doses of vaccine and 159.5 days 

after a 3rd vaccine dose, analyzed through 9 months. Although reported half-lives in binding 

antibodies and neutralizing antibodies vary in the literature, the consensus is that a 3rd dose 

does extend the durability of anti-SCV2 spike IgG in serum,31,53-55 which is also reflected in our 

saliva anti-SCV2 spike IgG data.  

 

In addition to evaluating the effects of vaccine alone on saliva antibody responses, we also 

evaluated effects of pre-vaccine infection and post-vaccine infection. Pre-vaccine infection 

resulted in saliva IgG antibody levels that were similar to those induced by 2 doses of vaccine.  
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Additionally, post-vaccine infection (PV2 +1M PVI) resulted in saliva IgG antibody levels similar 

to those in naïve individuals after 3rd vaccine dose (1M PV3). In contrast, anti-SCV2 spike IgA 

and SIgA were significantly greater after infection alone, and in the setting of hybrid immunity, 

compared to samples tested after vaccination alone, with the greatest values observed when 

infection occurred after vaccination. These results are consistent with other studies that have 

identified clear differences in humoral immune responses between vaccine-only groups and 

hybrid immune groups.47,56,57 These results suggest that development of anti-SCV2 spike IgA 

and SIgA in the saliva requires antigen exposure in the NALT to generate a local mucosal 

immune response through activation of tissue-resident memory B cells.  

 

When COVID-19 vaccines were introduced, there was some concern that prior immunity to 

HCoVs could potentially impair vaccine-induced responses.6,7 To evaluate for this possibility, we 

conducted longitudinal measurements of saliva antibodies to the S proteins of the four HCoVs 

as well as to the spike protein of SARS-CoV-2. Rather than a negative effect, we observed a 

moderate positive correlation between baseline saliva anti-OC43 S IgG levels and saliva anti-

SCV2 spike IgG levels measured 1 month after the initial 2-dose BNT162b2 vaccine series. We 

observed weak, but significant, positive correlations of post-vaccine saliva anti-SCV2 spike IgG 

with baseline saliva anti-SCV2 spike IgG levels to the HCoVs (229E, HKU1, and NL63). Anti-

OC43 spike IgG levels in saliva were also boosted at 1 month after COVID-19 mRNA 

vaccination. The cross-reactivity of the spike proteins of OC43 and SCV2 has been shown in 

several studies of serum antibodies, and is consistent with their high sequence homology.7,42,58-

60 Results of serological studies between other endemic HCoV IgG levels and vaccination 

response in the literature has been varied and many of these studies were conducted after 

infection rather than vaccination.58,59,61-63  Like our findings with saliva antibody levels, one 

serological study in humans found positive correlations between pre-existing antibody levels to 

the spike proteins of 229E and NL63 and post-vaccine levels of anti-SCV2 spike IgG.59 In 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.22.24307751doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24307751


 26 

contrast to observations in humans, two recent studies using mouse models observed that pre-

existing immunity to HCoVs did not affect serum anti-SCV2 spike IgG responses to COVID-19 

mRNA vaccination.64,65 An alternative explanation for the correlations we observed between 

HCoVs and SARS-CoV-2 vaccine response could be cross reactive anti-SCV2 spike IgG from a 

prior SARS-CoV-2 infection. We believe this to be unlikely however, since all participants 

included had negative IgG serology to the spike protein of SARS-CoV-2 upon enrollment in the 

study. Additionally, only participants without evidence of a subclinical infection, using the 

doubling of anti-SCV2 N IgG threshold, were used in the HCoV correlation analyses. 

 

With regards to demographics, we observed that females produced higher saliva anti-SCV2 

spike IgG and IgA than males after vaccination, a finding that has also been observed in studies 

of humoral immunity.52,66 In contrast, we found no effect of age on saliva antibody responses 1 

month after vaccination which differs from serum studies which have found reduced antibody 

responses after COVID-19 mRNA vaccination in older populations.67-69 We speculate our study 

may not have observed differences with age because the maximum age was only 71 years old 

and participants with major comorbidities were excluded from the study. 

 

Limitations 

Limitations of our study include small sample sizes for uninfected/unexposed participants at 9-

12 months after the 3rd dose and after the 4th dose. Another limitation is that in this study we did 

not assess virus neutralization or other functional effects of saliva antibodies. However, in a 

recent publication by our group,38 we found that antibody from serum functioned as well as 

neutralizing antibodies as correlates of protection.70 Our study also was predominantly 

comprised of white females and was a single center study, both of which may impact the 

generalizability of our results.  
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Conclusions 

Our results support the current literature highlighting the need for further research on the 

mucosal immune system and its activation through vaccination. While IM mRNA vaccinations 

have reduced the burden of COVID-19, they have also highlighted gaps in our knowledge 

regarding approaches that can be taken to optimize mucosal immunity. Further research is 

warranted in this area to improve our ability to protect individuals against viral respiratory 

pathogens.71-74 
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