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Abstract 
 
Wastewater-based epidemiology has proven to be an important public health asset during the 
COVID-19 pandemic. It can provide less biassed and more cost-effective population-level 
monitoring of the disease burden as compared to clinical testing. An essential component of 
SARS-CoV-2 wastewater monitoring is next-generation sequencing, providing genomic data to 
identify and quantify circulating viral strains rapidly. However, the specific choice of sequencing 
method influences the quality and timeliness of generated data and hence its usefulness for 
wastewater-based pathogen surveillance. Here, we systematically benchmarked Illumina 
Novaseq 6000, Element Aviti, ONT R9.4.1 MinION flow cell, and ONT R9.4.1 Flongle flow cell 
sequencing data to facilitate the selection of sequencing technology. Using a time series of 
wastewater samples from influent of six wastewater treatment plants throughout Switzerland, 
along with spike-in experiments, we show that higher sequencing error rates of ONT Nanopore 
sequencing reduce the accuracy of estimates of the relative abundance of viral variants, but the 
overall trend is in good concordance among all technologies. We find that the sequencing 
runtime for ONT Nanopore flow cells can be reduced to as little as five hours without significant 
impact on the quality of variant estimates. Our findings suggest that SARS-CoV-2 variant 
tracking is readily achievable with all tested technologies, albeit with different tradeoffs in terms 
of cost, timeliness and accuracy.    
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1. Introduction  
 
During the recent COVID-19 pandemic, wastewater-based epidemiology (WBE) has emerged 
as a significant public health resource as it offers a less biassed  and more cost-efficient method 
for monitoring disease prevalence at the population level compared to clinical testing1–4. Next-

generation sequencing (NGS) plays a crucial role in SARS-CoV-2 wastewater monitoring by 

enabling tracking of the prevailing SARS-CoV-2 variants in communities. The effectiveness of 
wastewater monitoring has further been shown in several studies by demonstrating  its ability to 
detect emerging variants of concern earlier than clinical surveillance5–7.  Different NGS 
technologies have found application in  wastewater monitoring as they provide unique 
advantages for WBE. 
  
Illumina sequencing provides high coverage and is considered one of the best NGS 
technologies in terms of sequencing accuracy8. Hence it is frequently applied in comparative 
studies between wastewater and clinical surveillance5–7. Illumina sequencing is a sequencing by 
synthesis method, where fluorescently labelled nucleotides are incorporated sequentially 
followed by an imaging step.  
 
A recent competitor of the well-established Illumina sequencing is the Aviti sequencing platform. 
Through the use of a novel sequencing chemistry, incorporation and identification of nucleotides 
are optimised, resulting in higher sequencing accuracy than Illumina9. Nevertheless, Aviti 
sequencing has not yet been applied in the context of WBE to the best of our knowledge.  
 
Nanopore-based sequencing, which is mainly distributed by Oxford Nanopore Technologies 
(ONT), provides a cost-efficient alternative to Illumina and Aviti sequencing and is the 
sequencing method of choice in several wastewater studies, including the ARTIC network 
wastewater surveillance efforts10–13. In contrast to Illumina sequencing, Nanopore sequencing is 
not synthesis-based but instead nucleotides pass through a polymer membrane via a nanoscale 
protein pore (Nanopore) and are typed through the disruption of an electric current across the 
membrane. The entire sequencing reaction is integrated on a single flow cell, which can contain 
thousands of Nanopores. Different ONT flow cells exist, which vary in throughput and 
sequencing accuracy14. In this study we focused on the ONT MinION R9.4.1 and Flongle R9.4.1 
flow cells and will refer to them as ‘Nanopore flow cells’ throughout the paper. The small size of 
these flow cells and the development of equally compact sequencing instruments, provide 
portable sequencing options15. This portability and the underlying molecular process allows for 
real-time monitoring and dynamic adjustment of sequencing runtime16. As Nanopore flow cells 
can be reused by subjecting them to a washing protocol, dynamic runtime adjustment can 
further reduce sequencing costs17. Thus, Nanopore sequencing is also attractive for settings 
where reduced cost and lower burden on laboratory infrastructure are crucial factors for a 
successful implementation of wastewater surveillance. The advantages of Nanopore 
sequencing come at the cost of lower sequencing quality16,18 as compared to Illumina 
sequencing. 
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One of the main demonstrated applications of NGS for wastewater monitoring in the context of 
the COVID-19 pandemic is to estimate the relative abundances of different SARS-CoV-2 
variants in samples over time6,7,19–21. To this aim, computational tools are used for deconvolving 
the observed mutation frequencies in the sample into variant relative abundances, i.e., for 
finding the relative abundances of variants that best explain the observed pattern of mutation 
frequencies6,19–21. Tracking the relative abundance of variants through time and geographical 
locations can provide prime epidemiological information. In this study we evaluate the effect of 
sequencing wastewater samples with different technologies on the ability to accurately 
deconvolve the mutation data into the relative abundances of variants.  
 
Since NGS methods influence quality and timeliness of pathogen surveillance in wastewater, 
here we provide a systematic assessment of Illumina Novaseq 6000, Element Aviti, ONT 
MinION flow cell, and ONT Flongle flow cell sequencing to facilitate the selection of sequencing 
method based on the study's objectives. Our comprehensive evaluation incorporates time-
resolved wastewater samples from six wastewater treatment plants (WWTPs) across 
Switzerland along with spike-in experiments.  
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2. Methods  

2.1 Sampling and processing of wastewater  

 
Surveillance of SARS-CoV-2 through wastewater analysis was carried out in six sewersheds 
(Altenrhein, Chur, Laupen, Lugano, Geneva, Zurich) across Switzerland from January 4, 2023, 
to January 10, 2023. Daily composite samples, obtained from 24-hour flows of wastewater 
influent at each of the six locations, were collected and preserved at 4°C for a maximum of 5 
days. Subsequently, these samples were transported on ice to a central laboratory (Eawag, 
Dübendorf, Switzerland) for processing. The processing steps involved total nucleic acid 
extraction from 40 ml samples by using the Wizard Enviro Total Nucleic Acid Extraction Kit (CN 
A2991, Promega Corporation, USA) with an elution volume of 80 µl as described in Nadeau et 
al.22. Following this, inhibitor removal was performed by using OneStep PCR Inhibitor Removal 
columns (CN D6030, Zymo Research, USA). All samples (n = 36) were subsequently subjected 
to the sequencing protocols described below. RNA extracts were stored at -80°C for up to one 
week prior to sequencing. The wastewater sequencing data of all NGS technologies is available 
on the European Nucleotide Archive (ENA) under project accession number PRJEB4493223. 

2.2 Spike-in experiment  

 
For the BA.1 Omicron strain spike-in experiment, the clinical Omicron strain (BA.1) was 
obtained from clinical isolates confirmed as BA.1 via sequencing, obtained from the Functional 
Genomic Center Zurich. Its concentration was measured to be 25.1 gc/µL by quantifying the N1 
gene target by using Crystal Digital PCR (Naica system, Stilla Technologies) as described in the 
previous study 7. In parallel, as a wild-type solution, twenty RNA extracts from SARS-CoV-2 
Omicron-free wastewater (August 2021, the same six sewersheds across Switzerland) were 
pooled together. The pooled solution was quantified to be 36.5 gc/µL of wild-type SARS-CoV-2 
by using the same digital PCR assay targeting the N1 gene.The mixtures of wild-type and BA.1 
solutions were prepared for the BA.1 percentage to be  88.3,  77.5,  57.9, 49.1, 40.7, 18.6, 8.9, 
4.4, 2.2, 1.1 and 0 %, with respective concentrations 22.17, 17.17, 9.94, 4.88, 1.99, 0.37, 0.03, 
1.45 x 10-3, 3.4 x 10-7 and 0 gc/µL. Each mixture was sequenced in triplicates with the 
sequencing platforms described below. The sequencing data can be found here 
https://doi.org/10.3929/ethz-b-00066382724. 

2.3 Library preparation for Illumina sequencing 

 
The RNA extracts were reverse transcribed using the LunaScript Super Mix (New England 
Biolabs, Franklin Lake, NJ, USA) according to manufacturer’s instructions. The resulting cDNA 
were amplified using the ARTIC V4.1 NCOV-2019 Panel (IDT, Iowa, USA). Sequencing libraries 
were prepared using the NEBNext Ultra II Prep Kit for Illumina (New England Biolabs, Franklin 
Lake, NJ, USA) and were used in the succeeding steps according to manufacturer's 
instructions. Briefly, 2.5 µl of PCR products (cDNA amplicons) were end-repaired before ligation 
of adapters. Fragments containing adapters on both ends were selectively enriched with PCR 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.22.24306666doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24306666
http://creativecommons.org/licenses/by-nc-nd/4.0/


implementing unique dual indices (UDI) for multiplexing. The quality and quantity of the enriched 
libraries were validated using a TapeStation (Agilent, Santa Clara, California, USA). The product 
is a peak of a size of approximately 500 bp. For each sample, 5 of the libraries were used for 
pooling. 

2.4 Illumina sequencing 

 
The pooled libraries were further quality checked  using a TapeStation (Agilent, Santa Clara, 
California, USA) and quantified with Qubit HS DNA assay (Thermofisher Scientific, USA) and 
were loaded into a NovaSeq 6000 (Illumina, Inc, California, USA), 18µl of the pooled libraries 
with a concentration of 0.8 nM was loaded on a lane of a NovaSeq 6000 SP Reagent Kit v1.5 
(500 cycles) flow cell for a final loading concentration of 180 pM. The wastewater sequencing 
data of all NGS technologies is available on the European Nucleotide Archive (ENA) under 
project accession number PRJEB4493223. 

2.5 Aviti sequencing 

 
The pool of Illumina libraries was prepared for sequencing on the AVITI sequencer (Element 
Biosciences, San Diego, CA) using the Element Adept Library Compatibility Kit v1.1. This 
process involves the denaturation, library circularization via ligation to a splint adapter, and 
exonuclease digestion of non-circularized molecules. Thirty microliters of the Illumina 
sequencing library pool at a concentration of 16.7 nM were circularised. The resulting 
circularised library was quantified via qPCR using the standards provided in the compatibility kit. 
Twenty-five microliters of the circularised library at a concentration of 3.5 pM sequenced with a 
AVITI 2x300 Sequencing Kit. The wastewater sequencing data of all NGS technologies is 
available on the European Nucleotide Archive (ENA) under project accession number 
PRJEB4493223. 

2.6 ONT sequencing 

 
Viral cDNA amplicons (400 bp long) were produced in a tiled fashion across the whole SARS-
CoV-2 genome following the SARS-CoV-2 ARTIC V4.1 NEB Ultra II protocol (the same as for 
Illumina sequencing). The Oxford Nanopore libraries were further produced from cDNA 
amplicons by ligation of native barcodes (Native Barcoding Expansion 96 (EXP-NBD196)) and 
subsequent sequencing adapter ligation (Ligation Sequencing Kit (SQK-SQK109) following the 
instruction from Oxford Nanopore Technologies protocols: 
‘pcr-tiling-SARS-CoV-2-nbd-PTCN_9103_v109_revQ_13Jul2020-minion’ and ‘amplicon-
barcoding-with-native-barcoding-expansion-96-exp-nbd196-and-sqk-
NBA_9102_v109_revN_09Jul2020-minion’. 
Each Oxford Nanopore library was sequenced on both MinION flow cell (R9.4.1 (FLO-MIN106) 
and Flongle flow cell (R9.4.1 (FLO-FLG001)) on the ONT Mk1C device with 72h and 24h run 
time, respectively. The wastewater sequencing data of all NGS technologies is available on the 
European Nucleotide Archive (ENA) under project accession number PRJEB4493223. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.22.24306666doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24306666
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.7 Effect of the sequencing technology on lineage relative abundance estimation in the 
spike-in data 

 
To determine whether technology or runtime have an effect on the estimates of relative 
abundances, we modelled the relationship between the relative abundances of the variant 
Omicron BA.1 determined from the dilution � and its relative abundance estimated from 
deconvolution of the sequencing data ��. We modelled this relationship as a linear function after 
applying the arcsine square root transformation, which is commonly used for proportional data 
as it is the variance-stabilising transformation for binomial likelihoods 25,  
 

������	
���  
 � � ������	
��  � � � �  
 
Where � and � are the slope and intercept parameters, respectively, and � is a random error 
term. To account for the presence of heteroskedasticity in the residual errors and hence  
increase the robustness of our model, we additionally calculate the error variance using the 
“Huber Sandwich Estimator” 26,27. We included fixed additive effects of the experimental 
conditions (technology or runtime) on the parameters � and �. The model was fitted by using 
robust linear regression implemented in stats (R base package). The statistical significance  of 
the effects of technology or runtime on the parameters  � and � were assessed by using two-
sided t-tests. When comparing the different sequencing technologies, the model was fitted 
multiple times with different treatment contrasts to allow for all pairwise comparisons of 
technologies (no correction for multiple comparisons was applied). When comparing different 
runtimes for the sequencing, the model was fitted with treatment contrasts set with the lowest 
sequencing time (5h) as a reference level. The code is available here 
https://doi.org/10.5281/zenodo.1108572128.  
 

2.8 Bioinformatic pre-processing 

 
Basecalling and demultiplexing was performed by using Guppy (version 6.4.6) integrated in the 
MinKnow software (version 22.12.5). The “Fast model, 450 bps'' basecalling model was applied. 
To adhere to community standards pre-processing was subsequently performed by using the 
wf-artic workflow 29, with parameters --normalise 200, --_min_len 400, --_max_len 
700 and -- _scheme_version ARTIC/V4.1. Version 1.3.0 of the arctic pipe-line was 
used. Other parameters were set to default values. Alignment  was performed with minimap2 
(version 2.18-r1015), with -x map-ont set. Using the information provided in the sequencing 
summary file, reads were sub-sampled from the bam files depending on the sequencing time 
point by using the samtools view -bS -N command. 

2.9 Variant abundance estimation 
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The alignment files resulting from the pre-processing described above were analyzed by using 
V-pipe (version 3.0)30, a bioinformatics pipeline for analysis of viral sequencing reads obtained 
from mixed samples, which has been adapted for wastewater sequencing data. By using the 
integrated tool LolliPop31 SARS-CoV-2 signature mutations were deconvolved in lineage relative 
abundances for the variants of interest (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.1, BA.1, BA.2, 
BA.4, BA.5, BA.2.75, BQ.1.1 and XBB). The kernel bandwidth parameter was set to 1e-17. 
Detailed documentation of the analysis settings can be found here 
https://doi.org/10.5281/zenodo.1108572128. 

2.10 Sequencing error rate estimation 

 
Sequencing error rates were determined from clinical Omicron (BA.1) isolates, with an expected 
BA.1 relative variant abundance of 1.0. BA.1 signature mutations were defined as single 
nucleotide polymorphisms present uniquely in BA.1 and not in earlier reported variants. Hence 
we included mutations listed in Table 1 (relative to reference NC_045512.2). The sequencing 
error rate was defined as the mean fraction of reads lacking the signature mutation. This 
resulted in position-wise error rates of which the mean was taken. 
 
 

Genomic position Mutation 

2832 A to G 

5386 T to G 

8393 G to A 

11537 A to G 

13195 T to C 

15240 C to T 

21762 C to T 

21846 C to T 

23048 G to A 

23202 C to A 

24130 C to A 

24503 C to T 

26530 A to G 

 
Table 1: BA.1 unique signature mutations relative to NC_045512.2 reference sequence. 
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3. Results 
 
We investigated the suitability of the different sequencing technologies for wastewater based 
SARS-CoV-2 variant abundance estimation by using two separate experimental setups (Figure 
1). First, we compared variant abundance estimates from a real life setting by using 42 
wastewater samples originating from six geographical locations in Switzerland, sampled daily 
for one week in January 202332. In Swiss clinical samples from the same time period, BQ.1, 
BA.5 and BA.275 were the most abundant circulating variants. The surveillance samples, 
collected within the Swiss wastewater surveillance program, underwent identical treatment up to  
library preparation under the ARTIC protocol, and were subsequently sequenced by using 
Illumina Novaseq 6000, Element Aviti, one R9.4.1 MinION flow cell, and one R9.4.1 Flongle flow 
cell. The second experiment compared variant abundance estimates obtained from the above-
mentioned sequencing methods in samples with a predefined combination of SARS-CoV-2 
variants. Through spike-in experiments we simulated the arrival of a novel SARS-CoV-2 variant 
(BA.1) and analysed deviations from expected abundances for the different sequencing 
technologies. For nanopore sequencing data we also investigated the effect of sequencing 
runtime on the variant abundance estimates. For both experiments, the sample processing and 
relative abundance estimation of SARS-CoV-2 variants was performed using V-pipe30, a 
workflow designed for the analysis of NGS data from viral pathogens. The experimental setup 
and bioinformatics data analysis is described in detail in Methods. 
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Figure 1: Overview. One week of daily collected wastewater samples from six WWTPs was
subjected to RNA extraction and SARS-CoV-2 v.4.1 ARTIC tiling-amplicon amplification. The
resulting cDNA samples were sequenced with Illumina Novaseq 6000, Element Aviti, and
Oxford Nanopore flow cells (MinION and Flongle) technologies. Next the sequencing data was
used as input for the bioinformatics analysis to estimate relative abundance of different viral
variants. These results were then statistically compared across sequencing technologies. The
Figure was created with BioRender.com. 

3.1 Whole-genome coverage is achieved for all sequencing technologies 

 
For the surveillance samples we obtained the highest mean amplicon coverage using Illumina
sequencing (Figure 2A), with coverage drops caused by PCR amplification biases during
amplicon generation. The most prominent drops are visible around amplicons 14 and 73, where
mean amplicon coverages approach zero. Despite being lower, the viral genome coverages
obtained with the Aviti, MinION and Flongle flow cells follow a similar overall pattern to the
Illumina coverage (Figure 2A). Notably, the apparently more uniform coverage of MinION flow
cell data originates from a coverage normalisation step during pre-processing of the data
(section 2.8). Aviti sequencing data also shows very similar coverage compared to Illumina
sequencing data (Figure 2B). The consistent amplicon coverage pattern for all sequencing
technologies indicates an absence of technology-specific sequencing bias across amplicons.  
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Figure 2: Mean amplicon coverage distribution for the sequencing technologies of 
interest amongst 42 surveillance samples. The amplicons for all sequencing technologies 
were generated by using v4.1 ARTIC primers. For each amplicon the mean coverage over all 42 
samples is represented by a large dot. The smaller dots represent the individual coverage depth 
of each amplicon within one of the 42 samples. The error bar at each amplicon represents the 
interquartile range of the coverage values (pi = 50).  An overview of the amplicon distribution 
and coverage depth across the genome is shown in Supplementary Figure A. A: Comparing 
amplicon coverage between Illumina- and Nanopore-based surveillance samples. B: Comparing 
amplicon coverage between Illumina- and Aviti-based surveillance samples. 

3.2 Nanopore sequencing displays higher error rates compared to Illumina and Aviti  

 
To estimate the sequencing error rate for each sequencing technology, we assessed the 
respective deviation of 13 BA.1 signature mutation frequencies from BA.1 clinical isolates with 
expected relative abundance of 1.0 (see section 2.10). We found a mean sequencing error rate 
of 0.0038 for Illumina, 0.0032 for Aviti, 0.1 for MinION and 0.2 for Flongle sequencing. The 
Nanopore technologies also showed a larger spread in error rate compared to Illumina and Aviti, 
with Flongle data displaying the largest spread (Figure 3). The position-wise error rate shows a 
similar distribution across positional coverage (Supplementary Figure B).     
 
 

B 
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Figure 3: Boxplots of per-position error rates. For each sequencing dataset, error rates were
estimated from the three non-diluted spike-in samples, where the expected relative abundance
of BA.1 is 1.0. Only the positions of the 13 BA.1 signature mutations were considered. For more
details see section 2.10. The box of the boxplots represents the interquartile range and the line
within the box represents the median of the values. The whiskers of the box plots extend to
points that lie within 1.5 times the upper and lower quartile. Values outside this range are
displayed as rhombus. The transparent dots represent the individual per-position error rates. 
 

 

 

3.3 Variant abundance estimates from Nanopore and Aviti technologies correlate well
with Illumina-based estimates 

 
For the 42 surveillance samples we determined the mutation frequencies of SARS-CoV-2
variant signature mutations (Figure 4A). Subsequently we estimated the relative abundance of
SARS-CoV-2 variants of interest, for each sample separately by deconvolution of signature
mutation data using V-pipe (Figure 4B). For each sequencing technology we compared the
results to the outcomes obtained from Illumina data, as it was the first technology in the context
of the monitoring program. 
 
Considering SARS-Cov-2 signature mutations (Figure 4A), we observed the largest deviation
from Illumina-based mutation frequencies for the Flongle data (R2 = 0.498, p-value < 2.2e-16).
For the Aviti and MinION data, deviations from the Illumina-based mutation frequencies were
observed, but less prominent (Aviti: R2 = 0.802, p-value < 2.2e-16; MinION: R2 = 0.796, p-value <
2.2e-16) and mostly associated with low coverage (Supplementary Figure C). The BA.2.75
unique signature mutations frequently displayed low coverage, since a substantial amount of
them is located on amplicon 73 and 74, which experienced a coverage drop (Figure 2). For the
Flongle data large deviations were also observed for moderately covered positions
(Supplementary Figure D).  
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The results observed when comparing variant abundance estimates across technologies 
(Figure 4B) aligned with the previous results from the mutation frequency correlation analysis. 
We found that overall, variant abundance estimates from Nanopore sequencing correlated well 
(MinION: R2 = 0.920, p-value < 2.2e-16; Flongle: R2 = 0.674, p-value < 2.2e-16) with Illumina-
based estimates (Figure 4B). However, estimates obtained from Flongle data displayed a larger 
spread (Figure 4B), especially for the BA.5 variant, (Supplementary Figure E). Further, the 
higher abundance of the undetermined variant category (assigned in the presence of non-
signature mutations) in the Flongle data suggests the frequent occurrence of undefined 
mutations within the Flongle data set. These findings further supported the indication of a higher 
sequencing error rate for Flongle sequencing. 
 
Variant abundance estimates obtained from Aviti data were most similar to Illumina-based 
estimates (R2 = 0.935, p-value < 2.2e-16) across the majority of variants of interest (Figure 4B 
and Supplementary Figure B). The mutation frequency observations and the absence of 
undetermined variants (Figure 4B) provide additional evidence for a  lower sequencing error 
rate of Aviti compared to the Nanopore technologies. Further we found that the most prominent 
outliers from the Illumina-Aviti abundance correlation (Figure 4B) corresponded to samples 
which have a lower overall coverage in the Illumina dataset (Supplementary Figure F). Such an 
outlier pattern is not evident for the Nanopore data (Supplementary Figure F) and hence 
indicated that deviations in Illumina- and Aviti estimates are most likely due to differences in 
coverage.   
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Figure 4: Comparison of mutation frequencies and variant abundance estimations by 
sequencing technologies compared to Illumina. A: Each dot represents a unique mutation 
for a SARS-CoV-2 variant of interest for one of the 42 surveillance samples included in this plot. 
Dots are coloured by the log(coverage) of y-axis-based sequencing technology at the respective 
mutation position. Dark purple corresponds to a high coverage, light yellow to a low coverage. 
B: Each dot represents the estimated abundance of a given variant for one of the 42 
surveillance samples included in this plot.The abundances were estimated by using LolliPop. 
Lines represent the estimated linear regression on the points and the shaded area the 
corresponding 95% confidence intervals. Mutations that cannot be classified to a defined 
variant, are categorised as “undetermined” by LolliPop. 
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3.4 MinION and Flongle flow cell data show no significant difference in spike-in BA.1 
variant abundance estimates 

 
We assessed the difference between sequencing technologies further through a spike-in 
experiment where a known concentration of the BA.1 variant was diluted in a wastewater 
background sample containing mainly B.1.617.2 (see section 2.2). Twelve dilution steps were 
performed in three replicates, and samples were sequenced by using Illumina Novaseq 6000, 
Element Aviti, one MinION flow cell, and one Flongle flow cell. The resulting sequencing reads 
were processed and SARS-CoV-2 signature mutations deconvolved in lineage relative 
abundances as for the surveillance samples under 3.3 (see section 2.9). We then systematically 
compared the expected concentration of BA.1 to the estimates obtained from the different 
sequencing technologies (Figure 5). To assess the effect of the sequencing technology on the 
variant abundance estimation, we modelled the estimated relative abundances as a linear 
response to the relative abundances expected from the mixing concentrations and defined 
sequencing technology as a qualitative factor of the model (see section 2.7).  
 
When comparing relative variant abundance of BA.1 across sequencing technologies, we 
observed a high correlation between Aviti-, Nanopore- and Illumina-based BA.1 abundance 
estimates. In addition good concordance of whole-genome amplicon coverage was present 
across all sequencing technologies (Supplementary Figure G).  
 
Consistent with the comparison of sequencing technologies on the surveillance data (Figure 4), 
we observed more noise (constant low-level detection of spurious variants) in estimates from 
Nanopore flow cell data, with Flongle data displaying the highest level of noise (Figure 5A). 
Although deviations from the expected abundances were clearly visible for all sequencing 
technologies (Figure 5A), they followed the same trend across technologies. Averaging the 
frequencies of BA.1-unique signature mutations (Supplementary Figure H), produced similar 
results compared to Figure 5A, indicating that the deviation from the expected abundance is 
also present in the initial sequencing reads and not introduced through variant abundance 
estimation. Hence the divergence between expected and estimated BA.1 abundance was most 
likely caused by preparation of the spike in samples in the lab, such as inaccurate initial 
quantification of SARS-CoV-2 RNA using digital PCR; inaccurate pipetting; or RNA degradation 
during the spike-in. 
 
To assess the effect of sequencing technology on variant abundance estimation we modelled 
the relative abundance of the BA.1 variant estimated from the deconvolution of the sequencing 
data as a linear function (on the arcsine square root scale, variance-stabilising transformation 
for binomial likelihoods) of the expected relative abundance of BA.1 from the dilution series (see 
section 2.2). We found no significant difference between the slopes (p-value = 0.98, two-sided t-
test) and intercepts (p-value = 0.96, two-sided t-test) of the response curves from Illumina and 
Aviti data (Figure 5B). Similarly, we found no significant difference between the slopes (p-value 
= 0.23, two-sided t-test) and intercepts (p-value = 0.6, two-sided t-test) of the response curves 
from  MinION and Flongle flow cell data (Figure 5B, Supplementary Table A). However, our 
model predicted a significant difference between the slopes of the Nanopore-derived response 
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curves compared to Illumina- (MinION: p-value = 2.183 × 10-2, Flongle: p-value = 2.846 × 10-4; 
two-sided t-test) and Aviti-derived (MinION: p-value = 2.060 × 10-2, Flongle: p-value = 2.602 × 
10-4; two-sided t-test) response curves (see Supplementary Table A and B). This indicated a 
statistically significant underestimation of BA.1 for Nanopore-derived data (the slope parameter 
of MinION and Flongle differs to the Illumina slope parameter by 18% and 27% respectively).  
 
Next, we checked whether the underestimation of BA.1 for Nanopore-derived data, is caused by 
the higher noise levels or instead by other sources of bias that might be sequencer specific. To 
do so we re-normalized the relative abundance of BA.1 and B.1.617.2 variant estimates, 
through re-calculating the relative abundance of BA.1 by considering only BA.1 and B.1.617.2 to 
be present in the variant mix. Doing so we removed low-level spurious variants (noise) from the 
data. Fitting this re-normalized data to the same model, we no longer observed a significant 
difference between the slopes of the Nanopore-derived response curves compared to the 
Illumina (MinION: p-value = 0.32, Flongle: p-value = 0.26; two-sided t-test) and Aviti (MinION: p-
value = 0.31, Flongle: p-value = 0.25; two-sided t-test) response curves (see Supplementary 
Table C, Table D, and Figure I), indicating that the underestimation of BA.1 was due to higher 
noise levels with Nanopore.  
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Figure 5: Variant Abundance estimation from spike-in experiment. Abundance estimations
were made by using LolliPop. For each sequencing technology, three technical replicates were
provided. A: Each row represents the abundance estimates for one technical replicate (batch).
The green dotted line shows the expected BA.1 abundance, for ‘Dilution Step’ 1 represents the
BA.1 clinical isolate (see section 2.2). B: Comparison of expected and estimated BA.1
abundance on arcsine-square root scale. The green line represents the derived linear model
(see section 2.7). 
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3.5 Reducing Nanopore sequencing runtime to five hours has no significant impact on 
BA.1 abundance estimation 
 
As Nanopore sequencing by ONT allows for real-time sequencing, we investigated the impact of 
sequencing runtime on variant abundance estimates, for the two ONT flow cells. For MinION 
flow cell sequencing, a large proportion of good quality sequencing reads was generated within 
the first five to ten hours of the sequencing run (Figure 6A, Supplementary Tables E). For the 
Flongle flow cell, even the majority of good quality sequencing reads was generated during the 
first ten hours of the sequencing run (Supplementary Tables F). In order to investigate whether 
reducing the sequencing runtime to this time span has a significant effect on BA.1 variant 
abundance estimation, we downsampled the reads to represent 15 h, 10 h, and 5 h of 
sequencing time, from which we produced estimates of the relative abundance of variants as 
described previously. We again modelled the relationship between estimated and expected 
variant abundances and incorporated runtime as a factor of the model (see section 2.7). We 
found that reducing the runtime to as little as five hours does not have a significant effect on the 
slope and intercept of the response curve for either flow cell (Figure 6B, Supplementary Table E 
and F).  
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Figure 6: Variant abundance prediction for different runtimes of MinION and Flongle flow 
cell. A: Read sequence quality distribution by sequencing time. The read quality score is the 
mean base quality (Phred quality score) of a given read. Reads with a quality score below 8 are 
filtered out by the basecaller. B: Comparison of expected and estimated BA.1 abundance on 
arcsine-square root scale. The green line represents the derived linear model (see section 2.7). 
 
 

4. Discussion  
 
In this study, we investigated the suitability of different NGS technologies for sequencing and 
quantifying SARS-CoV-2 variants in wastewater. Our study adds to previous work comparing 
NGS technologies for clinical SARS-CoV-2 whole-genome analysis, in which both  Illumina and 
MinION flow cell sequencing methods were effective, but varied in their error rates, quality of 
whole genome sequences, and detectability of short indels.33 Because wastewater is a unique 
matrix, distinct from clinical sampling due to the presence of inhibitory substances and co-
occurrence of multiple circulating variants in a single sample, we benchmarked  Illumina 
Novaseq 6000, Element Aviti, MinION flow cell, and Flongle flow cell sequencing techniques 
w.r.t. their ability to support wastewater-based epidemiology. Our findings indicate that, despite 
higher sequencing error rates and lower whole-genome coverage as compared to Illumina and 
Aviti, both MinION and Flongle flow cell sequencing demonstrate robust applicability to 
wastewater-based surveillance, due to variant abundance estimation being tolerant to 
sequencing errors. Thus, our findings suggest potential for improving efficiency, reducing cost, 
and increasing timeliness in genomic surveillance analyses. 
 
The data generated with the novel Aviti sequencer showed the greatest concordance to Illumina 
sequencing data in terms of mutation frequencies and variant relative abundance estimates. 
Although the estimated variant abundances in some Aviti surveillance samples were misaligned, 
we showed that those were mainly associated with coverage drops under the v4.1 ARTIC 
primers used in this study34. The strong correlation of Aviti and Illumina-based measures is likely 
attributable to the low sequencing error rates of both systems. We found the Aviti sequencing 
error rate to be slightly lower than the Illumina sequencing error rate, which is consistent with 
first assessments of this novel technology9. Based on these findings, we conclude that Aviti 
sequencing poses a suitable alternative to Illumina sequencing in wastewater studies, especially 
in cases where sequencing quality is essential, such as detection of lowly abundant variants or 
variants characterised by a limited number of signature mutations.   
 
Nanopore sequencing, and especially the R9.4.1 MinION flow cell, provides data of sufficient 
quality to allow classification of SARS-CoV-2 variants, albeit with weaker concordance to 
Illumina sequencing data than Aviti. In general, MinION and Illumina mutation frequencies 
showed good correlation, despite the higher sequencing error rate (0.1%) that we determined 
for the MinION flow cell. The MinION error rate determined in our study is slightly lower 
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compared to the recently reported per-position error rate of 0.202% for R9.4.1 MinION flow cell 
sequencing on Twist synthetic RNA sequencing35. The lower rate observed here is likely due to 
the different source of SARS-CoV-2 RNA, as we used RNA from clinical samples as opposed to 
synthetic RNA. The higher error rate of nanopore sequencing impacted relative abundance 
estimates of variants, particularly for variants containing only a few signature mutations (e.g., 
BA.5 with only two signature mutations) as they are more susceptible to sequencing errors. 
Despite this challenge, the abundance estimates of the MinION surveillance samples correlated 
well with the Illumina-based estimates. We observed larger discrepancies of mutation frequency 
and variant abundance estimates between Flongle and Illumina surveillance data, which we 
attribute to the higher sequencing error rate of the Flongle flow cell, also observed by 
Mosbruger et al.14. The observed difference in sequencing error rate between the MinION and 
Flongle flow cell was surprising as they have the same underlying chemistry. However, 
Vereecke et al. previously reported differences in R9.4.1 MinION and R9.4.1 Flongle read 
quality and suggested that the discrepancy is due to deviations in squiggle spaces, the input of 
the base calling alogrithm36. In our study, the higher sequencing error rates of the nanopore flow 
cells resulted in an increased abundance of low-level spurious variants (noise) due to false or 
undefined nucleotide changes at genomic positions of variant-defining mutations. Analysis of 
the spike-in data revealed that the higher noise in the Nanopore data causes a significant 
underestimation of BA.1 abundance estimates compared to estimates from Illumina and Aviti 
sequencers. However, no significant difference in BA.1 abundance estimates was detected 
between the Nanopore flow cells, despite the previously reported higher error rate of Flongle 
flow cell sequencing. This is due to the larger number of signature mutations in BA.137, making 
variant abundance estimation more robust  to sequencing errors. 
 
An advantage of nanopore sequencing-based technologies is the speed at which data can be 
generated, allowing for faster processing than both Illumina and Aviti sequencing38. Indeed, we 
showed by downsampling reads that reducing the runtime of MinION and Flongle flow cell 
sequencing to as little as five hours did not significantly change the derived abundance 
estimates, as for both flow cells a large proportion of good quality reads is produced within the 
first five hours of a sequencing run. These results imply substantial potential for reducing 
sequencing costs since reduced runtime enables the re-use of flow cells after subjecting them to 
a washing protocol as shown by Lipworth et al.17. Overall, our study suggests that the use of 
ONT flow cells is appropriate in scenarios where a prompt assessment of circulating variants 
has priority over achieving maximum precision in abundance estimation. This might be 
particularly beneficial in settings with higher cost and infrastructure restrictions where portable 
and cost-efficient sequencing technologies are prioritised.  
 
The efficacy of sequencing technologies for wastewater is likely influenced by the number of 
signature mutations of the distinct circulating variants as well as the surveillance deconvolution 
timeframes. Both factors should therefore be considered when choosing an NGS method. In our 
study we had access to one week of wastewater surveillance data, but we believe that longer 
sampling time frames could positively impact variant abundance estimation. Since the variant 
deconvolution approach used in this study is tailored to time series data by allowing for kernel 
smoothing of variant abundance estimates over time31, we expect that smoothing over longer 
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surveillance time periods would further decrease the divergence in variant abundance estimates 
between Illumina and Nanopore data. This prediction can be tested in the future by analysing 
data from longer time periods than one week. We also expect this effect to become more 
prominent as the number of signature mutations in the variant increases.  
 
Another limitation of our study is that we did not assess the impact of longer sequencing reads, 
which, in principle, are available through Nanopore sequencing. It is expected that long-read 
whole-genome sequencing would increase the detection of co-occurring mutations on a single 
amplicon and hence improve variant abundance estimation. However, the extraction of long 
RNA fragments from wastewater covering the entire SARS-CoV-2 genome remains 
challenging6.  
 
While our study emphasises NGS for WBE, it is also important to acknowledge that sequencing 
is just one element in the wastewater surveillance workflow. The limiting factors of implementing 
such workflow extend beyond the choice of sequencing technology, encompassing challenges 
in portable library preparation39, thermocycler accessibility40, and the need for sufficient 
computational resources for data analysis and abundance estimates. Here we used the V-pipe 
workflow to process the samples and subsequently calculate the SARS-CoV-2 abundance 
estimates 30. Although convenient to use, the workflow can require substantial  computational 
resources and the use of a high performance computing cluster, especially for high-coverage 
samples. Efforts for reducing required resources and enabling real-time analysis will be crucial 
for advancing the accessibility of WBE methodologies.  
 

5. Conclusion 
 
Our study demonstrates that a diverse range of NGS technologies can be readily and reliably 
applied for wastewater surveillance studies. In terms of sequencing quality, the Element Aviti 
sequencer provides better sequencing data compared to Illumina. We also illustrated that 
Nanopore sequencing, especially the ONT MinION flow cell, resulted in similar mutation 
frequencies and variant abundance estimates as Illumina- and Aviti-based data despite lower 
sequencing quality. We further presented evidence that through nanopore real-time sequencing, 
the sequencing runtime can be reduced to five hours without changing variant abundance 
estimates significantly. MinION flow cell sequencing can be a valid sequencing method for 
wastewater studies where variants of interest are adequately abundant and have a sufficient 
number of signature mutations. For studies where the variants of interest can only be 
distinguished by a few mutations, Element Aviti sequencing can be a suitable alternative to 
Illumina sequencing. Together, these findings highlight that the selection of sequencing 
technology should be based on multiple factors, including circulating variants and associated 
mutations, cost, accessibility, and importance of timely mutation and variant abundance 
estimates.  
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