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Abstract 34 

Our genetic makeup, together with environmental and social influences, shape our brain's 35 
development. Yet, the imaging genetics field has struggled to integrate all these modalities to 36 
investigate the interplay between genetic blueprint, environment, human health, daily living skills and 37 
outcomes. Hence, we interrogated the Adolescent Brain Cognitive Development (ABCD) cohort to 38 
outline the effects of rare high-effect genetic variants on brain architecture and corresponding 39 
implications on cognitive, behavioral, psychosocial, and socioeconomic traits. Specifically, we 40 
designed a holistic pattern-learning algorithm that quantitatively dissects the impacts of copy number 41 
variations (CNVs) on brain structure and 962 behavioral variables spanning 20 categories in 7,657 42 
adolescents. Our results reveal associations between genetic alterations, higher-order brain networks, 43 
and specific parameters of the family well-being (increased parental and child stress, anxiety and 44 
depression) or neighborhood dynamics (decreased safety); effects extending beyond the impairment 45 
of cognitive ability or language capacity, dominantly reported in the CNV literature. Our investigation 46 
thus spotlights a far-reaching interplay between genetic variation and subjective life quality in 47 
adolescents and their families.  48 
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Introduction 49 
Our genes collectively provide the blueprint of our biological makeup upon which the dynamic 50 

interplay of environmental influences, social interactions, and developmental experiences unfolds. 51 
The genetic architecture contributes directly and indirectly to the wiring of brain circuits and provides 52 
the foundation of behavior repertoire manifestation1,2. By understanding genetic underpinnings, we 53 
can unravel the origins of individual differences in cognitive processes and behaviors, which in turn 54 
offers insights into both adaptive capacities and developmental vulnerabilities3. Identifying biological 55 
determinants behind brain organization and behavioral differentiation necessitates an integrative 56 
approach that cuts across an array of disciplines. Nevertheless. neuroimaging genetics, psychiatric 57 
genetics, and environmental factor studies have been conducted in isolated silos. Without the 58 
integration of these disciplines, the full extent of genetic influences on human health will remain 59 
concealed. 60 

 61 
The genetic underpinnings have been traditionally studied through genome-wide association 62 

studies (GWAS). However, GWAS have been restricted to common variants which mainly reside in 63 
non-coding regions and exert only small effects on phenotypes4. Compared to incumbent single 64 
nucleotide polymorphism analyses in GWAS, protein-coding copy number variations (CNVs) represent 65 
rare and consequential genome-wide perturbations invariably leading to a large decrease or increase 66 
in gene expression - a currently under-exploited genetic phenomenon. This class of genetic variation 67 
is defined as either a deletion or duplication of sequences of nucleotides more than 1,000 base pairs 68 
long5,6. Moreover, given recently accumulating evidence, many protein-coding CNVs are now being 69 
understood to exert body-wide implications7,8 as well as increase the risk of neurodevelopmental 70 
disorders, including intellectual disability, autism spectrum disorder or schizophrenia9–11. Since 71 
protein-coding CNVs are cumulatively relatively frequent in the population and have the potential for 72 
substantial effects on a given phenotype, they represent a potent imaging-genetics tool, which we will 73 
here deploy for interrogating the effects of genetic modifications on brain physicality and behavioral 74 
differentiation in adolescents. 75 

 76 
Adolescence is a critical juncture where the seeds of mental health and well-being are sown. 77 

During this period, brain circuits and behavioral tendencies undergo dynamic changes shaped by 78 
genetic factors, environmental influences, and their interactions12,13. Importantly, adolescence is also 79 
a life stage during which symptoms of numerous psychiatric disorders become apparent14. Recent 80 
findings underscore the necessity of adopting a multidimensional and interdisciplinary approach that 81 
cuts across sociology, psychology, and biology, conventionally studied in isolation. Such a holistic 82 
perspective is essential for a more nuanced understanding of the intricate interplay of genetic, socio-83 
economic, and environmental factors influencing healthy children's development15. By integrating 84 
information from cognitive assessments, genetic information, and socio-environmental measures, we 85 
can identify potential risk factors as well as unveil protective elements contributing to resilience in 86 
individuals navigating the complexities of adolescence16,17. Consequently, the analysis of CNVs in 87 
adolescents is uniquely positioned to carve out important interactions between our genetic heritage, 88 
the environmental milieu, and the intricacies of cognitive and social development, laying the 89 
groundwork for a more comprehensive approach to mental health. 90 
 91 

In the present study, we leveraged under-studied rare genetic alterations (genome-wide 92 
CNVs) with strong downstream effects. We interrogated the Adolescent Brain Cognitive Development 93 
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(ABCD) study18, which represents one of the largest collections of brain images and genetic profiles 94 
from over 10,000 children aged 9 to 11 years at baseline. Moreover, these adolescents are 95 
prospectively deeply phenotyped by means of an extensive battery of cognitive, behavioral, clinical, 96 
psychosocial, and socioeconomic measures. Benefiting from this comprehensive multimodal data, we 97 
investigated the effects of a genomic deletion or duplication on patterns of individual subjects' brain 98 
architecture linked with cognitive, behavioral, psychosocial, and socioeconomic measures in a single 99 
multivariate analysis. Specifically, we first probed the carefully curated data from 7,657 children for 100 
the presence of CNVs. We then deployed multivariate pattern learning algorithms in the children 101 
without any CNV to estimate modes of population covariation between brain architecture, 102 
represented by 148 regional atlas volumes and ~1000 behavioral variables spanning 20 rich categories. 103 
Finally, we quantified the effects of deletions and duplications on the revealed canonical modes. The 104 
robustness of derived modes and CNV-induced differences were assessed by cross-validation and 105 
permutation testing15,19. This multidimensional and doubly multivariate framework revealing the 106 
multi-faceted relationships between genes, brain architecture, and behavior paves the way for 107 
innovation in neuroscience, genetics, and personalized medicine. 108 
  109 
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Results 110 
Genome-wide mutations alter patterns of brain and behavior 111 

We used a pattern-learning approach to analyze the impact of genome-wide CNVs in the ABCD 112 
cohort by means of its uniquely deep phenotype profiling. To this end, in the group of 7,657 children 113 
that passed genetic and MRI quality control, we first identified 514 children carrying at least one 114 
genomic deletion and 1,472 children carrying at least one duplication that fully encompassed at least 115 
one gene. The 136 children that carried both a deletion and duplication were not analyzed in this study 116 
due to the limited sample size. The remaining 73% (5,535) of the children did not carry any protein-117 
coding CNV larger than 50kb across the genome (Fig. 1A). These participant groups (deletions, 118 
duplications, controls) showed similar proportions of sex (percentage of females: 44-48%) and 119 
distributions of age (Fig. 1A). 120 

Next, we zoomed in on the CNVs that we localized in the children’s genetic profiles (Fig. 1B). 121 
Almost 60% of deletions encompassed a single complete gene. Duplications generally encompassed 122 
more affected genes than deletions, although a single-gene duplication was the most common (~30% 123 
of cases). Besides the genetic profiling, the ABCD resource provides brain and behavior measurements 124 
for each participant: brain measurements were represented by 148 regional brain volumes defined 125 
according to the Desikan-Killiany standard atlas. Behavioral measures drew across 962 different 126 
phenotypes spanning 20 categories for in-depth follow-up analyses. 127 

In order to investigate how genetic mutations impact brain and behavior, we first established 128 
the link between measurements of brain architecture and behavior using a single holistic multivariate 129 
model. Specifically, we brought to bear a partial least squares (PLS) model that maximizes the 130 
covariation between the weighted set (linear combination) of sociodemographics, family well-being, 131 
physical characteristics, or behavioral measures and a weighted set (linear combination) of brain 132 
structure measures (Fig. 1C). The PLS model parameters were initially estimated in participants 133 
without any CNV, as a reference group, to reveal the modes of covariation that reflect the general 134 
population. The subject-wise expressions of each brain-behavior covariation mode (i.e., canonical 135 
variables) will henceforth be called scores. In other words, these scores are calculated as a linear 136 
combination (weighted sum) of the original variables with PLS weights. Each identified PLS mode can 137 
thus be characterized by a set of brain and behavior scores for all subjects and for each PLS mode. 138 
Using a robust protocol for cross-validation and empirical permutation testing15, we identified three 139 
significant PLS modes (Sup. Fig. 1). The revealed major sources of covariation in adolescents captured 140 
the ways in which brain features are intertwined with early life events, mental well-being, or 141 
environment. 142 

In the next step, we wished to evaluate if carrying a coding CNV led to statistically significant 143 
shifts in the observed brain and behavior patterns. To that end, we devised a bootstrap validation 144 
scheme that compares PLS scores between controls and CNV carriers (Sup. Fig. 2). In this CNV-control 145 
comparison, deletion and duplication carriers are pitted against control participants not used to derive 146 
PLS parameters in order to prevent overfitting (cf. Methods for details). The comparison was based 147 
on separately testing the difference in the average behavior scores and the average brain scores. We 148 
were thus able to assess mode expression differences separately for each CNV status (Fig. 1C). We 149 
found deletions to impact behavior scores in all three identified modes (p-valuemode1 = 10-4, p-150 
valuemode2 = 0.014, p-valuemode3 = 0.041). By contrast, duplications affected only the first behavioral 151 
mode (p-valuemode1 = 10-4, p-valuemode2 = 0.151, p-valuemode3 = 0.336). Furthermore, there was a 152 
significant shift in brain scores for the first two modes in duplications (p-valuemode1 = 10-4, p-valuemode2 153 
= 0.027, p-valuemode3 = 0.097) and the second mode in deletions (p-valuemode1 = 0.395, p-valuemode2 = 154 
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0.043, p-valuemode3 = 0.052). A sensitivity analysis demonstrated that the obtained differences were 155 
not driven by the presence of recurrent CNVs, such as 16p11.2 or 22q11.2 (Sup. Fig. 3). These results 156 
revealed that carrying a CNV significantly impacts the expression of patterns linking brain architecture 157 
and diverse aspects of cognitive, psychosocial, and socioeconomic measures in our ABCD sample. 158 
Therefore, genetic factors shape individual differences in brain-behavior correspondences in 159 
adolescents. 160 
 161 
Canonical modes bind patterns of whole-brain architecture with real-life functioning, mental well-162 
being and environment 163 

After identifying robust deviations of brain-behavior patterns in CNV carriers at population 164 
scale, we examined each revealed mode in more detail. The dominant mode portrayed the ties 165 
between large-scale brain networks with sociodemographics and cognition. Specifically, we first re-166 
expressed the difference in PLS scores between controls and CNV carriers using Cohen’s d measure to 167 
provide a standardized measure of CNV-carriership effect size. The dominant PLS mode was 168 
characteristic of significantly altered behavior scores, with the shift being more prominent in CNV 169 
deletions (CNV - controls Cohen’s dDEL = -0.16, dDUP = -0.11) (Fig. 2A). To find which phenotypes play a 170 
prominent role in the first mode, we calculated brain and behavior loadings. Our version of these 171 
loadings was here obtained by Pearson’s correlation between a respective PLS score and the original 172 
measurement. As an example, each brain loading indexes the linear association strength between 173 
brain region measurements and brain scores in our reference group. Among the strongest brain 174 
effects, we observed the medial orbital sulcus (average of left and right hemisphere Pearson’s r = 175 
0.25), a part of the frontal lobe which may be involved in various cognitive functions, including 176 
decision-making, emotional processing, and social cognition 20. Since duplication carriers displayed 177 
higher brain scores compared to controls and since medial orbital sulcus was associated with positive 178 
loading (higher volume = higher score), this result pointed to increased volume in this region for 179 
duplication carriers. Other strong negative loadings included the middle occipital sulcus, subcallosal 180 
area, superior occipital gyrus, or right lingual gyrus (Fig. 2B). We subsequently submitted these 181 
loadings to a bootstrap test to determine if they were significantly different from zero (cf. Methods). 182 
This test was based on 1,000 PLS model instances built on a randomly perturbed version of our ABCD 183 
participants created by sampling a participant cohort of the same sample size (with replacement). We 184 
further computed the relative number of significant region effects (i.e., loadings) among each set of 185 
regions belonging to one of the seven large-scale networks according to Schaefer-Yeo definitions. We 186 
observed that at least 50% of the loadings in each of the seven networks were significant, highlighting 187 
the brain-wide pattern of this first mode. 188 

Furthermore, we inspected a broad portfolio of behavior characteristics interlocked with the 189 
above-described brain-level effects. To that end, we calculated behavior loadings similarly to brain 190 
loadings. The strongest loadings included family income (Pearson’s r = 0.70), poverty index (Pearson’s 191 
r = -0.68), parental education (Pearson’s r = 0.60), measures of cognitive performance (Pearson’s r = -192 
0.57), and also screen time or sleep duration (Pearson’s r = 0.46) (Fig. 2C). To obtain a synopsis of the 193 
dominant behavioral profile, we averaged absolute behavior loadings in each of the 20 categories. 194 
Demographics, cognitive, and socioeconomic categories had the strongest average loadings (average 195 
absolute Pearson’s r > 0.22). Since CNV carriers displayed higher expression compared to controls for 196 
this mode characterized by negative loading for measures of cognitive performance (lower 197 
performance = higher score), these results thus point to decreased cognitive abilities and real-life 198 
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functioning, especially in deletion carriers. Collectively, the dominant canonical mode highlighted the 199 
crosslinks between most of the brain networks and assessments of cognition and demographics. 200 
 201 

The second PLS mode spotlighted opposing gene dosage effects on the brain structure that 202 
we identified to tie into family history of mental health. Specifically, we observed significant opposing 203 
brain average expressions for both deletions and duplication (Fig. 3A), which might reflect the 204 
mirroring effect on brain architecture previously reported for CNVs at specific genomic loci21. Only 205 
behavior scores in deletion carriers passed the significance testing. According to our obtained brain 206 
loadings, the mirroring brain scores were mainly driven by the lingual gyrus (across-hemisphere 207 
average Pearson’s r = -0.38), followed by supramarginal, precentral, or lateral superior temporal gyri 208 
(Fig. 3B). Despite being part of distinct brain networks, these regions were previously associated with 209 
neural mechanisms supporting complex cognitive tasks, especially those involving semantic 210 
processing or executive functions22,23. Collectively, following the conducted bootstrap significance 211 
test, most of the significant regions belonged to dorsal attention, somatomotor, and frontoparietal 212 
networks (more than 67% significant regions in each network). The interactions and coordinated 213 
activity of these networks are known to be essential for the efficient integration and execution of 214 
complex cognitive and motor tasks24. 215 

The prominent deviations in behavior scores in deletion carriers can be explained by elevated 216 
assessments of mental well-being as revealed by behavior loadings. Specifically, phenotypes from the 217 
Child Behavior Checklist (CBCL) and the Adult Self Report (ASR) dominated the set of relevant behavior 218 
loadings (Fig. 3C). Particularly, the total scores of CBCL (Pearson’s r = 0.80) and ASR (Pearson’s r = 0.77) 219 
emerged as the two strongest loadings. They were followed by measures of both parental and child 220 
anxiety, stress, depression as well as child sleep disorders. Indeed, when averaged across categories, 221 
the sleep category joined child behavior and parental questionnaires as the most prominent (average 222 
Pearson’s r = 0.22). The combination of flagged phenotypes from both children and adult assessments 223 
suggests that the second mode captures a comprehensive view of the well-being intricately tied to the 224 
family system. In addition, it points towards potential dynastic effects, i.e., the impacts of (inherited) 225 
genetic variants on family environments. Collectively, the second canonical mode proposed decreased 226 
familial mental well-being as a prominent marker of deletion carriers. 227 
  228 

In the third and last canonical mode, we observed the relationship of the default mode and 229 
frontoparietal networks with environmental measures. Despite the mirrored effects on brain 230 
structure, the only significant shift was found for behavior scores in deletion carriers (Fig. 4A). The 231 
third mode was characterized by a strong contribution of the insula (average Pearson’s r = 0.33) as 232 
well as middle temporal and lateral superior temporal gyri (Fig. 4B). The majority of significant regions 233 
based on bootstrap testing was part of the default mode network or the frontoparietal network (23% 234 
and 20% of regions, respectively). These two networks belong to the multimodal end of the unimodal-235 
to-multimodal characterization of large-scale brain networks. Prior research suggests that the 236 
relevance of these two networks and underlying regions could imply their crucial roles in cognitive 237 
flexibility and the integration of thought processes necessary for problem-solving and decision-238 
making25. 239 

Examining the behavior profile in the third canonical mode highlighted variables associated 240 
with the environment (Fig. 4C). Concretely, phenotypes related to the neighborhood, such as crime 241 
reports (Pearson’s r = 0.63), drug possession, violent crimes, adult offense, and feelings of safety 242 
emerged as strongly associated. These phenotypes reflect social and community dynamics, which 243 
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might affect the overall quality of life for individuals within that context. In summary, the third 244 
significant mode revealed an alteration in how environmental differences link to higher-order 245 
networks in adolescent deletion carriers. 246 
 247 
Decoding brain and behavioral patterns: Population, genetic and temporal perspectives 248 

After describing how genetic mutations influence the expression of behavior patterns, we 249 
explored how characteristics of genes encompassed in CNVs shaped behavior scores. In other words, 250 
for each individual with a deletion or duplication, we scored the genes inside a CNV using a total of 251 
seven complementary descriptions, including the average temporal expression, number of genes 252 
preferentially expressed in the brain, number of genes associated with autism spectrum disorder, 253 
schizophrenia, or broader portfolio of disorders, and a functional intolerance score: loss-of-function 254 
observed/expected upper bound fraction (LOEUF). LOEUF score provides insights into whether “Loss 255 
of function” variants in a given gene are under negative selection pressure in a population. It reflects 256 
the gene's functional impact by indicating how likely the gene will lead to disruptive changes when it 257 
is inactivated by a genetic variant. We then performed an exploratory analysis using Pearson’s 258 
correlation between behavior scores and the quantitative descriptions of CNVs occurring in the 259 
genome (Fig. 5A). For deletions, the strongest observed association was with gene brain expression 260 
(Pearson’s r = -0.10, pFDR = 0.13). For duplications, the strongest observed association was with 261 
temporal gene expression (Pearson’s r = -0.11, pFDR = 0. 0006). This result suggested deteriorating 262 
impact of altering dosage in genes expressed early during the human development. Other strongly 263 
associated description was the sum of LOEUF but, due to the limited number of CNV carriers, only the 264 
association with genetic temporal profile reached significance after applying False Discovery Rate 265 
(FDR) correction to control for multiple comparisons. Nevertheless, the reported associations can 266 
serve as valuable pointers for further research. In summary, our findings underscore the intricate 267 
relationship between genetic characteristics and behavioral outcomes, highlighting the importance of 268 
considering both genetic and temporal dimensions in understanding the etiology of behavioral 269 
patterns and susceptibility to disorders. 270 

 271 
We then explored whether modes of population stratification, that is, specific 272 

sociodemographically defined groups, also influence the derived patterns. In other words, we 273 
quantified if ethnicity, sex, age, or genetic background are linked with the shifts in behavior scores. As 274 
a concrete example of this sensitivity analysis, we stratified participant-wise behavior scores for the 275 
first mode by reported ethnicity (Fig. 5B). Using one-way ANOVA, we assessed whether there were 276 
significant differences in scores as a function of these diverse ethnic categories. Notably, the findings 277 
revealed that the scores did not exhibit a statistically significant difference among ethnicities (F-278 
statistic = 0.89, p-value = 0.56). We then extended this post-hoc analysis to other modes of population 279 
covariation and other metrics of population stratification. Namely, we quantified the difference in 280 
scores between males and females using a two-sample t-test and as a function of the 21 recruitment 281 
sites using one-way ANOVA. Moreover, we probed the association of scores with age and the ancestry 282 
structure of the cohort measured using the first ten principal components of genotyping data. We 283 
collected all p-values and applied FDR correction to control for multiple comparisons across the 284 
totality of 52 performed tests. None of the performed tests revealed significant association (Fig. 5C). 285 
This comprehensive examination provided valuable insights into the potential universality of the 286 
observed scores among modes of population stratification, underscoring the importance of 287 
considering the generalizability aspect in the broader context of the study’s implications26. 288 
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 289 
As the final step, we extended our analyses by examining longitudinal changes in brain 290 

structure between controls and CNV carriers at the two-years-after imaging time point. Investigating 291 
the trajectory of brain development over time can provide insights into whether individuals with CNVs 292 
exhibit distinct patterns of structural change. We benefited from the availability of 3,654 brain scans 293 
measured two years after the first visit (48% of participants passing genetic quality control). We 294 
observed a high correlation between regional volumes acquired at these two time points (Sup. Fig. 3). 295 
We used a single PLS model that subsequently evaluated brain measurement from the baseline and 296 
2-year follow-up (cf. Methods). Put differently, a single PLS model provided a holistic summary of brain 297 
maturation by calculating a brain score for each participant in each visit across the three modes. As 298 
an example, similar to brain structure measurements, we observed a strong link between PLS scores 299 
in the dominant mode between the baseline and follow-up measurements in controls (Pearson’s r = 300 
0.90) (Fig. 5D). Furthermore, we used a bootstrap mean test (cf. Methods) to evaluate temporal 301 
change in brain scores in controls and CNV carriers across the three canonical modes (Fig. 5E). We 302 
found a significant decrease in the mean brain score only for the first canonical mode in controls (p-303 
valueFDR = 0.001). Nevertheless, both CNV groups displayed similar brain maturation patterns 304 
compared to controls. Given the observed similarity in brain structure developmental patterns of CNV 305 
carriers and controls, further exploration of earlier stages of life may provide valuable insights into 306 
distinctions in neurodevelopmental processes.  307 
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Discussion 308 
In the current study, we carefully examined the ramifications of carrying an exonic CNV on 309 

brain organization and behavior. To this end, we designed an analytic framework based on a single 310 
holistic pattern-learning algorithm that can quantitatively dissect the impact of genetic mutations on 311 
a multimodal measurement that cut across disciplines to untangle the complex genes-brain-behavior 312 
interplay. This multivariate model uncovered three significant modes of brain-behavior covariation. 313 
The first mode connected volumetric differences in more than 50% of brain regions with measures of 314 
cognition and demographics. The second mode linked dorsal attention, somatomotor, and 315 
frontoparietal networks with mental health measures. Finally, the third mode highlighted associations 316 
between the higher-order networks and environmental factors. We then drew a detailed picture of 317 
how carrying a genomic deletion or duplication influences the expression of these comprehensive 318 
brain and behavior patterns. Specifically, both classes of CNVs were linked to adverse impacts on 319 
family well-being, as seen in the adverse effects on cognitive functioning, mental health, and 320 
socioeconomic outcomes. Our results also highlight the similar ramifications for cognition and 321 
behavior associated with deletions and duplication despite their distinct effects on brain anatomy, 322 
corroborating some of our earlier CNV-imaging studies on the UK Biobank8,27. Finally, we 323 
demonstrated that different genomic characteristics drive these shifts in behavior differentiation and 324 
brain maturation. 325 
 326 

Our results call for broadening the scope of genetic analyses in human health beyond what is 327 
traditionally considered. However, the analyses of genetic influences have long been dominated by 328 
univariate frameworks28,29. These standard regression approaches model one outcome variable at a 329 
time and thus focus on individual variables independently while neglecting the complex relationships 330 
and synergies that exist among genes, brain, and behavior. In other words, univariate approaches 331 
struggle with high-dimensional data and are prone to the "curse of dimensionality", making it 332 
challenging to capture the joint influence of multiple variables30. Scientists have long been waiting for 333 
multimodal datasets with deep phenotypic profiling of each participant. However, the availability of 334 
such resources prompts a change in our analytic toolkit31. PLS addresses several limitations of mass 335 
univariate approaches by embracing a doubly-multivariate strategy, providing a more nuanced and 336 
integrated perspective on the relationships between thousands of measures of brain architecture and 337 
behavior in the general population15,19. Prior research showed that genes are an important contributor 338 
to the interindividual variability of thus uncovered latent patterns32. Building on the heritability of the 339 
latent patterns, we showcased that their expression is further shaped by the presence of genome-340 
wide protein-coding mutations, demonstrating their effects on social, familial, and environmental 341 
factors. 342 

 343 
The consequences for various aspects of human health and well-being often go unnoticed 344 

because analyses of genomic deletions and duplications most commonly focus on intellectual 345 
disability and developmental delay33,34. Developmental delay phenotypes, especially language and 346 
motor disorders, are the earliest symptoms for which children are clinically referred for assessments 347 
and genetic testing35. Recent results showcased potential lifelong implications represented by 348 
diminished academic qualifications, occupation or household income for a small set of schizophrenia-349 
associated CNVs36. As an extension, our results demonstrated that the genome-wide presence of any 350 
coding CNV could lead to impaired real-life functioning, represented here by cognitive performance, 351 
income, education, screen time, or sleep duration. These characteristics played a driving role in our 352 
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dominant mode of population covariation. A similar dominant mode characterized by cognitive 353 
measures as well as screen time was identified in the HCP population resources19. The stronger 354 
influence of deletions on the dominant mode compared to duplications is concordant with the more 355 
pronounced effect of deletions on cognitive ability observed in clinical studies37. Therefore, the validity 356 
of the PLS-derived dimensions is corroborated by recapitulating key findings from previous clinical 357 
studies. 358 

The power of our doubly-multivariate approach allowed us to reveal additional consequences 359 
beyond just the dominant population mode, which are at risk of staying hidden in classical analyses38. 360 
Concretely, our second mode highlighted impoverished familial mental well-being as a prominent 361 
marker of deletion carriers. Notably, the presence of phenotypes from both child and parental 362 
questionnaires demonstrates how well-being is closely tied to the family system as a whole. It has 363 
been estimated that over 99% of CNVs are inherited, whereas others arise de novo39. Therefore, in 364 
addition to influencing offspring phenotype through genetic inheritance, the parental genotype can 365 
indirectly influence offspring phenotype through its expression in the parental phenotype40. In other 366 
words, carriers of the gene-dosage alterations may show certain characteristics similar to the parent's 367 
condition. Where this occurs, offspring may be subject to both phenotype-associated CNV and 368 
phenotype-associated environments from parents. These dynastic effects, i.e. “inheritance” of the 369 
environment in addition to genotype, might explain how CNVs associated with difficult behavior in the 370 
parent’s generation create unfavorable environments, which might inflate behavioral problems in 371 
children. In conclusion, the CNVs we studied in adolescents are likely to have been passed down from 372 
either parent, which points toward influences on the overall family system. The multigenerational 373 
impact where genetic and also environmental legacies contribute to the behavioral outcomes 374 
highlights the complex interplay between inherited genetic variations and the environments shaped 375 
by parental phenotypes. 376 

Finally, our analyses also spotlighted genomic deletions as shifting the expression of the mode 377 
linking the environment and higher-order brain networks. Interestingly, the higher association cortex, 378 
especially the default mode network, was suggested to be more “life wired” – resulting from 379 
differences in the circumstances and contexts in which people grow up and everyday life 380 
experiences41. In other words, the deeper layers of the neural processing hierarchy, such as the default 381 
mode network, allow for greater environmental influence and plasticity, as demonstrated by 382 
prolonged maturation and slower myelination compared to sensory/motor circuits in human 383 
primates42,43. Our finding adds more evidence for the adaptive and dynamic nature of the recently 384 
evolved parts of the human brain, emphasizing the significant role of genetic and environmental 385 
interplay in shaping neural development and function. Importantly, the environmental milieu, here 386 
represented by measures of crimes, drug possession, or violence, is related to health through 387 
psychological, physiological, and behavioral pathways44. Prior research documented chronic health 388 
conditions to be more prevalent in low-income neighborhoods, including those affecting infants (low 389 
birth weight), children (asthma), and adults (cardiovascular health)45. Specifically, low socioeconomic 390 
status neighborhoods46 and neighborhoods perceived as unsafe47 displayed elevated physiological 391 
risk, which includes indicators of inflammation and neuroendocrine and cardiovascular functioning. 392 
Our study thus implies that genetic underpinnings that govern neurodevelopmental trajectories may 393 
potentially magnify the impact of environmental stressors on long-term health disparities. 394 
 395 

The effects of protein-coding alterations are not limited to a single brain circuit, such as the 396 
default mode network. Instead, we painted a detailed picture of effects on brain patterns spanning 397 
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the entire cortex. In concordance, a previous study identified brain-wide patterns of regional 398 
alterations that robustly differentiate controls from carriers of clinical CNVs8. Here, we broaden the 399 
incumbent analysis scope of a few selected CNVs towards any coding CNV present in the genome. We 400 
observed opposite effects of deletions and duplications, recapitulating the mirroring effects observed 401 
in clinical studies21. As a primary example, the lingual gyrus played a dominant role in two altered brain 402 
patterns. The effects of CNVs on this region have been documented for carriers of 16p11.2 CNVs48. 403 
Similarly, as prominent examples from the frontal lobe, we observed significant contributions of the 404 
middle and superior frontal gyrus, which have been shown to be impacted by 1q21.149, resp. 15q11.250 405 
alteration. Impairments of lingual and frontal gyri have been associated with anxiety-depression 406 
severity51 or attention control deficit52 – phenotypes often present in CNV carriers53. Though these 407 
examples are region-specific, our research indicates far-reaching implications across entire networks. 408 
While the identified whole-brain patterns represent a general trend in each class of genetic mutation, 409 
the specific alterations pertinent to a specific CNV (e.g., 22q11.2 or 16p11.2) are further molded by 410 
the attributes of genes that are affected by a given CNV. According to analyses, the final brain and 411 
behavior profile is shaped by various attributes, including the number of deleted/duplicated genes, 412 
their tolerance to being mutated, or the temporal expression profile of affected genes. This may be 413 
part of the reason why prior research found brain patterns associated with deletions at 22q11.2 loci 414 
to strongly resemble deletions at 15q11.2 loci while being different from 16p11.2 deletions8. In other 415 
words, the here-revealed brain modes represent the bedrock of the global CNV effect upon which the 416 
specific CNV effects unfold guided by the properties of encompassed genes, such as temporal and 417 
spatial expression profiles. 418 
 419 

In conclusion, we developed a multi-level pattern-learning framework to investigate the 420 
effects of genome-wide protein-coding mutations on brain organization and behavior. This approach 421 
offers a comprehensive view of the multifaceted impact of rare genetic variations, surpassing 422 
important limitations of traditional univariate frameworks. We revealed that both genomic deletions 423 
and duplications can lead to a toll on family well-being through associations with increased parental 424 
and child stress, anxiety and depression, as well as neighborhood violence. This demonstrates that the 425 
consequences of genetic mutations are far more extensive than just cognitive functioning, playing a 426 
significant role in shaping socioeconomic and environmental aspects of life experiences. Future 427 
research building on our multidisciplinary approach can better appreciate the complexity of the 428 
relationship between genetic determinants and human health. 429 
  430 
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Methods 431 
ABCD population data source 432 

Brain imaging, behavioral, clinical, and genetic data in this study were obtained from the 433 
Adolescent Brain Cognitive Development Study (ABCD; https://abcdstudy.org/), representing the 434 
most extensive biomedical child development study of its kind. The ABCD Study acquired data from 435 
11,877 children aged 9–10 years (mean age = 9.49 years) from 21 sites across the United States (48% 436 
girls; 57% Caucasian, 15% African American, 20% Hispanic, 8% other)54. We leveraged baseline 437 
measurements from ABCD Annual curated release 4.0 (https://data-archive.nimh.nih.gov/abcd). Data 438 
Release 4.0 contains baseline data on the entire participant cohort as well as early longitudinal data, 439 
including 2-year follow-up neuroimaging data (second brain imaging timepoint). All protocols for ABCD 440 
are approved by either a central or site-specific institutional review board committee55. Caregivers 441 
have provided written, informed consent and children provide verbal assent to all research 442 
protocols56. Additional information about the ABCD Study can be found in57. This dataset is 443 
administered by the National Institutes of Mental Health Data Archive and is freely available to all 444 
qualified researchers upon submission of an access request. All relevant instructions to obtain the 445 
data can be found at https://nda.nih.gov/abcd/request-access. 446 
 447 
Genetic annotation and CNV calling 448 

Our study is built on the identification of exonic CNVs in the ABCD study sample. The 449 
genotyping protocol for the ABCD sample has been described previously58. In addition to the QC 450 
provided by ABCD, we performed several additional steps to ensure high quality of the genetic data. 451 
Using PLINK v1.959, we removed SNP variants with a missing rate > 5% as well as SNPs with a Hardy-452 
Weinberg equilibrium exact test p-value < 0.0001. We only considered arrays with call rate ≥ 99 %, log 453 
R ratio SD < 0.35, B allele frequency SD < 0.08, the absolute value of wave factor < 0.05 and the count 454 
of all unfiltered CNV per sample ≤ 10. We also removed subjects with > 5 % missing rate (n = 73) and, 455 
all individuals with duplicated data (n = 419, high degree of identity-by-descent, PI_HAT > 0.8) or with 456 
discordant phenotypic and genetic information regarding sex (n = 0). 457 

The identification of CNVs using SNP array (GRCh37/hg19) data followed previously published 458 
methods34,60. CNVs were called using the pipeline described at 459 
https://github.com/labjacquemont/MIND-GENESPARALLELCNV. In short, we computed (PFB)-files 460 
(Human Genome Build NCBI37/hg19) based on 500 best arrays in ABCD, and we used GC (content)-461 
model files (https://kentinformatics.com and https://github.com/ucscGenomeBrowser/kent.git). 462 
Only autosomal CNVs detected by both PennCNV61 and QuantiSNP62 were used, to minimize the 463 
number of potential false positives. All identified CNVs met stringent quality control criteria: 464 
confidence score ≥ 30 (for at least one of the two detection algorithms), size ≥ 50 kb, unambiguous 465 
type (deletion or duplication), overlap with segmental duplicates, and HLA regions or centromeric 466 
regions < 50 %. Finally, all carriers (n = 1) of a structural variant ≥ 10Mb, a mosaic CNV or a 467 
chromosome anomaly (aneuploidy or sexual chromosome anomaly) were removed. For the final set 468 
of participants, we calculated the first 10 genetic principal components (PCs) using the --pca function 469 
from PLINK v2.363. 470 

All identified CNVs were annotated using Gencode V19 (hg19) with ENSEMBL 471 
(https://grch37.ensembl.org/index.html). In this study, we only used exonic CNVs that fully 472 
encompassed at least one gene. In addition to the number of encompassed genes, each CNV was 473 
further annotated with seven other previously used scores. Specifically, we used an annotation 474 
quantifying the tolerance to protein-loss-of-function of each gene: Loss-of-function 475 
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Observed/Expected Upper bound Fraction -LOEUF64. Each CNV was then characterized by the sum of 476 
LOEUF of encompassed genes. Furthermore, CNVs were described using average temporal 477 
expression65 and average peak epoch. Gene-wise temporal expression was calculated as the 478 
developmental trajectory that the gene follows based on trajectory analysis (gene-specific trajectory 479 
coding: ‘Rising’ = 1, ‘Non-transitional’ = 0, ‘Falling’ = -1). The peak epoch corresponds to an epoch of 480 
highest expression, where epochs correspond to the developmental period defined previously66. Each 481 
CNV was also characterized by the number of genes, which expressions in the brain were labeled as 482 
‘High’ or ‘Elevated’ according to the GTEx resource (https://www.gtexportal.org). Finally, we 483 
quantified how many genes in each CNV were previously associated with autism spectrum disorder 484 
(risk genes from ref. 67, schizophrenia (risk genes from ref.68, and any disorder by either rare or 485 
common variation65. The similarity of the seven annotations is summarized in Sup. Fig. 5. 486 

As part of our sensitivity analyses, we compiled a list of 85 CNVs previously proposed to be 487 
pathogenic10,33,69–71 (sum of 1/LOEUF for each gene encompassed in CNV ≥ 6 or inclusion in ClinGen 488 
resource72). Regional coordinates are available in ref. 34. CNV was defined as recurrent if it overlapped 489 
≥ 40% with one of the 85 CNVs and/or included the key genes of corresponding region (see details for 490 
each recurrent CNV in Supplementary Table 1). 491 
 492 
Deep phenotyping using behavioral, cognitive, and socio-demographic data 493 

We analyzed a rich battery of cognitive, socio-demographic and environmental data partially 494 
reported in prior research15. Tabulated data of 1,319 phenotypes measured at baseline from 11,879 495 
participants were imported and processed using Python. In line with previous research15, we used 496 
robust z-scores for the preprocessing of each phenotype. The robust z-scores are derived by 497 
calculating each phenotype’s absolute deviation from the median absolute deviation (MAD)73. In other 498 
words, the resulting score indicates how many standard deviations each value deviates from the 499 
median, with robustness to outliers. Subsequently, we removed values with a z-score > 4 (4 × MAD). 500 
We then excluded phenotypes with less than 75% retained values before excluding subjects with less 501 
than 75 % retained values across the retained phenotypes. The remaining subjects (n = 11,867) were 502 
considered for further analysis. Finally, all data included in the study were visually checked by the 503 
same researcher (JK). The complete list of 962 phenotypes from 20 predefined categories included in 504 
the analysis is available in Table S1. As the last step, for the purpose of data analysis, missing values 505 
were imputed using the KNNImputer function (n_neighbors = 5, weights = “uniform”) from the scikit-506 
learn package. All derived phenotypic measures were then adjusted for variation that can be explained 507 
by age and sex. 508 
 509 
MRI imaging-derived phenotypes 510 

Our data sample included expert-curated brain-imaging phenotypes of grey matter 511 
morphology (T1w MRI). The images were acquired across 21 sites in the United States with 512 
harmonized imaging protocols for GE, Philips, and Siemens scanners74. We used baseline structural 513 
T1-weighted tabulated MRI data from ABCD curated release 4.0. We only included participants who 514 
passed quality assurance using the recommended QC parameters (n = 11,723) described in the ABCD 515 
4.0 Imaging Instruments Release Notes. ABCD preprocessing and QC steps are described in detail in 516 
the methodological reference for the ABCD study74. 517 

Tabulated brain-imaging phenotypes were guided by the topographical brain region 518 
definitions based on the Destrieux parcellation atlas75. This feature-generation step provides 519 
neurobiologically interpretable measures of gray matter volume in 148 regions. For each included 520 
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regional volume, we calculated the MAD for each brain region and removed values with MAD > 415. 521 
Subjects with less than 90% of regional volume retained in any region were excluded from the analysis. 522 
The remaining subjects (n = 11,723) were included for further analysis. Finally, interindividual 523 
variations in the volumes that could be explained by nuisance variables outside primary interest were 524 
adjusted for by regressing out: age, sex, total brain volume, and scanning site. 525 

We used the BrainStat toolbox76 to contextualize obtained patterns with respect to large-scale 526 
brain networks defined by Schaefer-Yeo definition77. Specifically, we mapped the brain loadings sizes 527 
from the 148 regions to fsaverage5 vertices, which we then averaged across the seven resting state 528 
brain networks. 529 

To analyze temporal changes in brain structure, we also acquired structural T1-weighted 530 
tabulated MRI data during the follow-up two years after the first MRI recording. Brain imaging data 531 
from this second time point underwent the same cleaning steps as the baseline brain imaging data. In 532 
total, follow-up brain measurements were available for 5,663 subjects. 533 
 534 
Multivariate pattern analysis protocol 535 

Our analysis aimed to reveal dominant modes of covariation between brain and behavior in 536 
the general population. Such a holistic perspective on complex brain-behavior relationships might be 537 
challenging to discern through univariate analyses. We leveraged 7,657 participants with both brain 538 
and behavior measurements that passed quality control. As a first data cleaning step, each brain and 539 
behavior measurement was normalized (z-scored) and submitted (separately for brain and behavior 540 
measurements) to principal component analysis (PCA) in order to increase the robustness of 541 
subsequent steps by avoiding potential issues with rank deficiency and fitting to noise. Based on a 542 
thorough examination, we extracted the first 100 PCA components for both the brain and behavior 543 
measurements (Sup. Fig. 6). It is noteworthy that although we used regional volumes as measures of 544 
brain structure, comparable results, especially for behavioral loadings, were obtained with regional 545 
thickness and area (Sup. Fig. 7). 546 

After initial cleaning steps, we used measurements from the participants not carrying any CNV 547 
to reveal modes of covariation in the general population. Therefore, the first set of cleaned input 548 
variables comprised regional brain volumes (5,535 × 100 matrix) and the second input variable set was 549 
constructed from behavior measurement (5,535 × 100 matrix). We elected canonical partial least 550 
squares analysis (PLS) as a multivariate pattern learning approach that is ideally suited to delineate 551 
relationships between two high-dimensional sets of variables by identifying latent structures that 552 
maximize the covariance between them78. In other words, PLS involves finding canonical modes that 553 
maximize covariations between the weighted set (linear combination) of behavior measures and a 554 
weighted set (linear combination) of brain structure measures. These PLS modes are identified by 555 
solving the generalized eigenvalue problem of the brain-behavior cross-covariance matrix. The 556 
subject-wise latent variables (i.e., linear combinations of original measures) are called brain and 557 
behavior scores, respectively, throughout the manuscript. The ensuing set of PLS k orthogonal modes 558 
of variation were uncorrelated with each other and naturally ordered from the most to least 559 
important. Therefore, the first and strongest mode explained the largest fraction of covariance 560 
between brain and behavior measurements. Each ensuing mode captured a fraction of brain-behavior 561 
covariation not explained by one of the k − 1 other modes. Notably, PLS draws similarities with 562 
canonical correlation analysis (CCA). However, CCA can be prone to instability79. Nevertheless, our 563 
obtained PLS solutions strongly resemble those obtained with CCA (Sup. Fig. 8). 564 
 565 
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Contribution of original phenotypes to latent variables 566 
  In order to quantify the contribution of each phenotype (e.g., regional volume or behavioral 567 
measure) to the construction of the latent structures, we computed PLS loading. These loadings are 568 
obtained as Pearson’s correlation between a respective PLS score and the original measurement 569 
across subjects. The loadings thus indicate the strength and direction of the relationship between the 570 
original phenotype and the identified canonical components. Stronger loading values signify greater 571 
importance in contributing to the latent structures, offering insights into which variables drive the 572 
covariation patterns between brain architecture and behavior. 573 

As a test for significance, above-chance phenotype contribution, we embraced a 574 
bootstrapping resampling strategy for the PLS model. In the first phase, a randomly perturbed version 575 
of the dataset was created by sampling controls with the same sample size with replacement. We 576 
repeated the bootstrap resampling procedure with 1,000 iterations. In so doing, we obtained different 577 
realizations of the entire analysis workflow and ensuing PLS model estimates. Concretely, the 578 
bootstrapping algorithm resulted in 1,000 instances of the trained PLS models used to obtain 1,000 579 
sets of associated PLS coefficients. 580 

Statistically salient coefficients had a distribution of 1,000 PLS coefficients significantly 581 
different from 0. Specifically, they were robustly different from zero if their two-sided confidence 582 
interval according to the 2.5/97.5% bootstrap-derived distribution did not include zero coefficient 583 
value, indicating the absence of an effect. 584 
 585 
Optimal number of PLS dimensions in the general population 586 

Each identified PLS mode was entered into statistical significance tests of robustness 587 
consistent with an established combination of cross-validation and permutation testing15 (Sup. Fig. 1). 588 
Initially, controls are split into 10 folds, where nine folds of participants are used as a train set, and 589 
one fold is used as a test set. The controls in the training set are used to estimate the parameters of 590 
all subsequent tools. In the first step, each brain or behavior measurement is z-scored column-wise 591 
across all controls in the training set. PCA then separately reduces the dimension of brain and behavior 592 
measurements to 100 features. In the next step, the behavior and brain measures are used as input 593 
variables to estimate a single multivariate canonical PLS model, where the output of the model is a set 594 
of scores (latent variables). This PLS model can also be characterized by weights (projection matrices 595 
used to transform input variables). PLS weights are back-projected using the PCA model to obtain 596 
brain and behavior weights in the original non-reduced ambient space. 597 

In the next step, brain and behavior scores are computed for controls from the test set. 598 
Specifically, z-scoring followed by PCA dimensionality reduction is applied with parameters learned 599 
using the training set. The resulting preprocessed measurements are multiplied by PLS weights to 600 
obtain PLS scores for test-sample controls. Finally, the covariance between brain and behavior scores 601 
is calculated for each canonical mode. We took the average of these canonical covariances across the 602 
10 folds. This procedure is repeated 100 times with a random fold split of controls to obtain a 603 
distribution of out-of-sample covariances for each PLS mode. 604 

To assess the significance of the resulting PLS modes, we ran 1,000 iterations of the same 10-605 
fold cross-validation procedure described above, where the order of participants of the brain 606 
measurements was randomly permuted in each iteration. In contrast to the unpermuted dataset, we 607 
collected covariances for the training rather than the testing subjects to account for overfitting by the 608 
PLS. In other words, using covariance from the permuted train set, and not the test set, represents a 609 
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more stringent criterion. Finally, P values for each of the PLS modes were calculated as a percentage 610 
of cases when permuted covariance was greater than the mean cross-validated covariance. 611 
  612 
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Group differences in the expression of brain and behavior patterns 613 
One of the main objectives of our analyses was to investigate the effect of CNV carriership on 614 

the revealed modes of brain-behavior covariation. To that end, we developed a pipeline quantifying 615 
the differences in brain and behavior scores for the identified significant PLS mode (Sup. Fig. 1). 616 
Initially, participants without any CNV are split into a training set (80%) and a test set (20%). As 617 
described above, brain and behavior scores are computed for controls from the test set using 618 
parameters learned from the training set. In addition, brain and behavior scores are also calculated 619 
for CNV carriers (either deletion or duplication). Specifically, z-scoring followed by PCA dimensionality 620 
reduction is applied with parameters learned using the training set of controls. The resulting 621 
preprocessed measurements are multiplied by PLS weights to obtain PLS scores for CNV carriers. 622 
Finally, the differences in both brain and behavior scores between out-of-sample controls and CNV 623 
carriers are calculated for each canonical mode. This procedure is repeated 1,000 times with a random 624 
80:20 split of controls to obtain a distribution of PLS score differences. Finally, P values for each of the 625 
PLS modes were calculated as a percentage of cases when the difference between mean scores of 626 
CNV carriers and mean scores of out-of-sample controls was greater than zero (resp. lower for modes 627 
with negative mean expression). 628 
 629 
Temporal shift in brain pattern expressions 630 

In total, 3,654 participants passed the quality control of genetic data and had brain recordings 631 
measured at the baseline and 2-year follow-up. For these subjects, we compared brain scores from a 632 
single PLS model that subsequently evaluated brain baseline and follow-up measurements. In the first 633 
step, the parameters of a PLS model were estimated using baseline measurements of brain and 634 
behavior. Using these brain loadings, we then calculated a brain score for each participant in each visit 635 
across the significant PLS modes. Furthermore, we used a bootstrap mean test to evaluate if there 636 
was a significant temporal change in brain scores in controls and CNV carriers. In this non-parametric 637 
approach to statistical inference, 1,000 bootstrap samples are drawn with replacements from the 638 
brain scores. The mean is then calculated for each of these bootstrap samples, creating a distribution 639 
of sample means for both sets of brain scores. Finally, there is a significant difference in PLS scores 640 
between baseline and follow-up if the two-sided confidence interval according to the 2.5/97.5% 641 
distribution of 1,000 differences does not include zero. 642 
 643 
Effect size of CNV carriership 644 

We used Cohen’s d to quantify the effect size of the CNVs on revealed PLS modes. For a given 645 
mode and separately for brain and behavior, Cohen’s d is calculated as: 646 

𝑑	 = 	
!1"!2

#!1
2"!2

2

2

 , 647 

where 𝑥1 corresponds to the mean PLS score across CNV carriers, 𝑥2 corresponds to the mean PLS 648 
score across controls. Similarly, s1 and s2 correspond to standard deviations of PLS scores of CNV 649 
carriers and controls. 650 
  651 
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Data availability 652 
The data supporting the findings of this study are available from the Adolescent Brain 653 

Cognitive Development (ABCD) dataset. The ABCD dataset is a publicly available resource accessible 654 
through the National Institute of Mental Health Data Archive (NDA). The specific data used in this 655 
study can be located within the ABCD dataset under X. 656 
 657 
Code availability 658 

The processing scripts and custom analysis software used in this work are available in a 659 
publicly accessible GitHub repository, along with examples of key visualizations in the paper: 660 
https://github.com/dblabs-mcgill-mila/CNV-covariation. 661 
  662 
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Figure captions 879 
Figure 1 880 
Genome-wide CNVs impact brain-behavior relationships across distinct modes of population 881 
covariation 882 
A) Genome-wide CNV identification in the ABCD population cohort. We investigated 7,657 children 883 
from the ABCD database. In total, 5,535 children do not carry any protein-coding CNV, 514 carry a 884 
deletion and 1,472 carry a duplication fully encompassing one or more genes. 136 participants carried 885 
both deletion and duplication. The ratio of males and females is similar in every group (left plot, inner 886 
circle). The age of participants is similar across different CNV groups (right plot). B) CNV characteristics. 887 
The most common kind of CNV is a deletion/duplication encompassing a few genes. On average, 888 
duplications contain more genes than deletions in the ABCD cohort. C) Partial least squares model 889 
links the brain with behavior in one holistic model. We estimate a multivariate relationship structure 890 
among 148 brain atlas volume measures and ~1000 behavior measures spanning 20 categories based 891 
on measurements from children without any CNV. The canonical scores represent the latent variable 892 
expressions calculated from linear combinations of the original brain and linear combinations of 893 
behavior measurements that maximize the covariance between the two sets of variables. k is the 894 
number of phenotypes per category. D) CNV status impacts individual expression strengths of brain 895 
and behavior patterns. We compared the average brain and behavior scores for CNV carriers with 896 
control participants not used to derive model parameters (i.e., controls not seen by the model during 897 
training). Stars denote significant differences based on cross-validation testing (cf. Methods). These 898 
results reveal that carrying a CNV significantly impacts canonical scores across different modes of 899 
brain-behavior covariation, emphasizing the utility of a multivariate holistic framework that cuts 900 
across single disciplines. 901 
 902 
Figure 2 903 
The leading population mode tracks decreased cognitive functioning in CNV carriers 904 
A) CNVs significantly impact revealed dominant behavior pattern. Cohen’s d values of canonical scores 905 
calculated between controls and separately carriers of deletions and duplications are plotted for the 906 
first canonical mode. Both deletion and duplication carriers show a significant shift in behavior scores, 907 
with a stronger effect for deletions. Only duplications display significantly affected brain scores. 908 
Significant differences are represented by solid dots. B) Brain region correlates reveal a whole-brain 909 
pattern. Brain loadings are calculated as the correlation between brain scores and 148 regional brain 910 
volumes. The bar plot depicts 20 regions with the strongest brain loadings, including a 95% confidence 911 
interval based on the bootstrap resampling. G denotes gyrus, and S denotes sulcus. The radial bar 912 
chart shows the percentage of significant brain loadings in each of the seven large-scale networks 913 
based on the bootstrap significance test. C) Behavior correlates highlight real-life functioning. 914 
Behavior loadings are calculated as the correlation between behavior scores and ~1000 behavior 915 
measures. The strongest behavior loadings include a variety of cognitive scores (i.e., summaries of 916 
tasks focused on language and vocabulary comprehension, working memory, abstract reasoning, or 917 
problem-solving), parental education, or family income. On average, the demographic, 918 
socioeconomic, and cognitive categories display the strongest coefficients. In summary, the first 919 
canonical mode highlights the connection between most of the brain networks and assessments of 920 
cognition and demographics. 921 
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Figure 3 923 
The second population mode spotlights shift in brain scores associated with mental wellbeing 924 
A) Canonical scores untangle gene dosage-induced differences and similarities. Deletions and 925 
duplications lead to mirrored significant brain scores. On the other hand, only deletions display 926 
significantly affected behavior scores. Significant differences are represented by solid points. B) Three 927 
large-scale brain networks dominate brain loadings. The lingual gyrus (G=gyrus, S=sulcus) displays the 928 
strongest loading of all regions. Summarized by large-scale networks, the highest percentage of 929 
significant brain loadings is present for the dorsal attention, somatomotor, and frontoparietal 930 
networks. C) Behavior loadings stress the importance of mental well-being. The strongest behavior 931 
loadings include parental and child-reported levels of problems, stress, anxiety, and depression. 932 
Therefore, this mode was dominated by mental well-being phenotypes mainly from parental behavior, 933 
child questionnaires, and sleep categories based on the average absolute loadings. Collectively, the 934 
second canonical mode proposes decreased mental well-being as a significant marker of deletion 935 
carriers. 936 
 937 
Figure 4 938 
The third population mode links higher order networks to environment measures 939 
A) Deletions, unlike duplications, shape behavior scores. In the third canonical mode, the only 940 
significant effect is for behavior scores in deletion carriers. Significant differences are represented by 941 
solid points. B) Higher-order networks play a prominent role in the third canonical mode. The anterior 942 
insula, followed by the middle temporal gyrus (G=gyrus, S=sulcus), are regions most strongly 943 
associated with brain scores. Furthermore, the default mode network, along with the frontoparietal 944 
network, displays the highest percentage of significant regions based on the bootstrap significant test. 945 
C) Environmental variables characterize behavior loadings. Measures of neighborhood violence, safety 946 
and crime are among the strongest loadings. These environment-associated phenotypes come 947 
primarily from the socioeconomic category. The third significant mode illustrates how deletions shift 948 
the expression of the mode linking the environment and higher-order networks. 949 
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Figure 5 951 
Population modes are driven by temporal gene characteristics rather than sociodemographic 952 
factors 953 
A) Behavior scores driven by temporal and spatial expression. Genes encompassed in each CNV were 954 
characterized based on seven different metrics. Summaries across all the deleted/duplicated genes 955 
for each CNV carrier were used to provide subject-specific annotations. Across the three different 956 
modes, behavior scores are most strongly associated with temporal expression, brain expression, and 957 
LOEUF scores. The three modes are labeled based on their dominant phenotype. * denotes significant 958 
association after FDR correction. B) Behavior scores not explained by ethnicity. As an example, 959 
behavior scores of the first canonical model are plotted for all subjects separated by participant 960 
ethnicity. The rain cloud plot combines a scatter plot, a box plot (whiskers equal to 1.5 times the 961 
interquartile range), and a violin plot. There is no significant difference in mean score expression 962 
across the 16 ethnicities. C) Canonical modes not reflective of sociodemographic factors. In addition 963 
to ethnicity, behavior scores across the three analyzed modes do not significantly differ based on sex, 964 
age, site, and the first ten genetic components capturing major patterns of genetic variation. D) 965 
Canonical modes capture brain maturation. A single PLS model evaluated brain measurement from 966 
the baseline and 2-year follow-up measurements. The star denotes significant change based on a 967 
bootstrap mean test. Both measurements are highly correlated. E) Similar cortical aging across all 3 968 
groups. As an extension, we examine the difference between baseline and 2-year follow-up 969 
measurements for all CNV groups and all three canonical modes. The arrow direction symbolizes the 970 
direction of change. Significant changes are represented by solid markers and a star. Both CNV groups 971 
display similar patterns of brain aging compared to controls, with particular change significant for the 972 
first canonical mode. 973 
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