1 **TITLE:** An International Longitudinal Natural History Study of Danon Disease

- Patients: Unique Cardiac Trajectories Identified Based on Sex and Heart Failure
 Outcomes
- 4

AUTHORS' NAMES: Kimberly N. Hong¹, Emily Eshraghian^{1,2}, Tarek Khedro^{1,3},
 Alessia Argiro^{1,4}, Jennifer Attias¹, Garrett Storm⁵, Melina Tsotras¹, Tanner Bloks⁵,
 Isaiah Jackson⁵, Elijah Ahmad⁵, Sharon Graw⁵, Luisa Mestroni⁵, Quan M. Bui¹,

- 8 Jonathan Schwartz⁶, Stuart Turner⁶, Eric D. Adler^{*1}, Matthew Taylor^{*5}
- 9 *The authors contributed equally to the manuscript.
- 10

11 **TOTAL WORD COUNT:** 3,413

12

AFFILIATIONS: ¹University of California, San Diego, La Jolla, California;
 ²University of Minnesota Medical School, Minneapolis, Minnesota; ³Royal
 College of Surgeons in Ireland, Dublin, Ireland; ⁴Cardiomyopathy Unit, University
 of Florence, Florence, Italy; ⁵University of Colorado Anschutz Medical Center,
 Denver, Colorado; ⁶Rocket Pharmaceuticals Inc., New York, New York

18

MEETING PRESENTATION: American Heart Association, Scientific Sessions2023

- 21
- 22 **FUNDING:** Grant MDA 67944.

DISCLOSURES: AA and QBI report consulting fees from Lexeo Therapeutics.
JS and ST are employees and shareholders of Rocket Pharmaceuticals. EDA
serves as Chief Medical Officer and Head of Research for Lexeo Therapeutics, is
a shareholder of Rocket Pharmaceuticals, Founder of Papillion Therapeutics,
and Founder, Scientific board member, and shareholder of Corstasis
Therapeutics. MT serves as principal investigator on a research grant from
Rocket Pharmaceuticals. The remaining authors have nothing to disclose.

31

32 CORRESPONDING AUTHOR:

- 33 Kimberly N. Hong, MD MHSA
- 34 University of California San Diego, San Diego, California, USA
- 35 9434 Medical Center Dr, La Jolla, CA 92037
- 36 <u>knhong@health.ucsd.edu</u>

Abbreviations Table	
Danon disease	DD
left ventricular	LV
lysosome-associated membrane protein-2	LAMP-2
ejection fraction	EF
left ventricular end diastolic diameter	LVEDD
left ventricular septal wall thickness	LVSW
left ventricular posterior wall thickness	LVPW
left ventricular hypertrophy	LVH
left ventricular assist device	LVAD
heart failure	HF
transplantation	ТХР
cardiovascular implantable electronic device	CIED
atrial fibrillation	AF

38 ABSTRACT

39	Introduction: Danon disease (DD) is a rare X-linked dominant cardioskeletal myopathy
40	caused by mutations in the lysosome-associated membrane protein-2 gene. Though the
41	severe morbidity of disease in males is well established, longitudinal studies describing
42	the trajectory of cardiovascular disease in both sexes have not been performed. Herein
43	we performed an analysis using the International Danon Disease Registry, a
44	retrospective dataset that includes longitudinal data from a cohort of males and females
45	with DD.
46	Methods: Data were from the International Danon Disease Registry and includes
47	patients from 2005 to 2022. Records were obtained from the first episode of care to the
48	date of enrollment and included demographics, clinical characteristics,
49	echocardiographic and laboratory values, and outcomes. The primary outcome in this
50	study was a heart failure (HF) composite defined as either transplant (TXP), left
51	ventricular assist device (LVAD) or death.
52	Results: The analysis included 116 DD patients: female (n=64, 55%) and male (n=52,
53	45%). Median age of diagnosis for the entire cohort was 15.2 years (10.0-25.2 years),
54	and 21.9 years (15.0-34.9 years) and 12.4 years (7.1-15.6 years) for females and males
55	respectively. The incidence of HF outcome was higher in males compared to females
56	(p<0.001). Regarding trends in echocardiographic parameters over time, LVEF
57	decreased and LVEDD increased regardless of sex and HF outcome, however, rate of
58	change was increased in patients who experienced a HF outcome in both sexes.
59	Increasing LV mass occurs in males but not females. Consistent with this, LV wall
60	hypertrophy continues in males who have not yet experienced a HF outcome and
61	stabilizes prior to HF outcome, while females have progressive LV thinning regardless of
62	HF outcome. Analyses stratified by age of HF outcome in females found two distinct
63	groups of females, one who experienced HF outcome prior to 26 years of age and

- 64 another after.
- 65 **Conclusions:** In this largest longitudinal natural history study of DD to date, we
- 66 confirmed that males present on average a decade earlier and demonstrate more
- 67 progressive cardiac hypertrophy and heart failure than females. Of note, there may be a
- subset of females who are phenotypically similar to males with profound LV hypertrophy
- 69 that appears to stabilize or regress prior to HF outcome. Correlations between structural
- 70 changes including LV hypertrophy, dilation and dysfunction and disease progression
- 71 may allow for risk stratification of Danon patients and refinement of treatment algorithms
- 72 while also informing therapeutic trial design.

73 Abstract Word Count: 392

74 INTRODUCTION

75 Danon disease (DD) is a rare X-linked dominant cardioskeletal myopathy caused by mutations in the lysosome-associated membrane protein-2 (LAMP2) gene.¹ It is 76 77 characterized by a severe cardiomyopathy associated with skeletal myopathy and 78 cognitive impairment. DD in males is typically lethal without cardiac transplantation, and 79 while disease severity is variable in females, there is a subset of females who require cardiac transplantation at similar ages to males.²⁻⁵ As an X-linked disorder, disease 80 81 course varies by sex, with males typically developing extracardiac symptoms early in 82 childhood. Cardiac manifestations present soon after and reach end-stage in males by 83 the second or third decade of life. Female extracardiac symptoms are variable, with cardiac manifestations in the 2nd or 3rd decade of life typically being the first symptoms.⁵⁻⁸ 84 85 Understanding natural disease progression is critical to improving outcomes in DD 86 patients, as it provides not only a basis for assessing the efficacy of treatments, but also 87 allows appropriate identification of patients for evolving therapeutics. The purpose of this 88 paper is to describe differences in disease progression as characterized by longitudinal 89 changes in echocardiographic and laboratory parameters prior to death, heart 90 transplantation or ventricular assist device in males and females with DD. 91

92 METHODS

Data were from the International Danon Disease Registry that includes patients from the
United States and Europe consented between 2005 and 2022. There were two enrolling
sites in the United States, University of Colorado and University of California, San Diego.
Patients were referred by their physician or self-referred through patient community and
outreach sites including <u>www.DanonDisease.org</u>, <u>https://rarediseases.org/rare-</u>
<u>diseases/danon-disease/</u>, and two Facebook groups (Danon Disease Support Group

and Danon Disease Support). All patients were required to have a history of positive

100 genetic testing (defined as pathogenic or likely pathogenic LAMP2 variations) or 101 confirmed genealogy to a known DD carrier prior to enrollment. Specific genetic data 102 was collected for 50% (n=60) of the patient cohort. Records were obtained from the first 103 episode of care to the date of enrollment. These data include patients born between the 104 years of 1943 and 2020. 105 Data collected included demographics, clinical characteristics such as involvement of 106 extracardiac systems and concomitant cardiac conditions, echocardiographic 107 parameters, laboratory values, cardiovascular implantable electronic device (CIED) 108 implantation and ablation. Specific echocardiographic parameters that were collected 109 included left ventricular (LV) thickest wall which was defined as the largest measurement 110 between septal and posterior wall thickness, LV ejection fraction (LVEF), LV end

- 111 diastolic diameter (LVEDD), which is the distance measured between the LV septal and
- 112 posterior walls in the parasternal view, and LV mass which was calculated using the
- 113 Cube formula (LV mass=(0.8*1.04[(IVS+LVEDD+PWd)^3-LVEDD^3]+0.6 grams),
- 114 wherein LV measurements are in cm).⁹ Outcome measures include heart
- 115 transplantation, left ventricular assist device and death. Z-scores were calculated for LV
- 116 septal and posterior wall, LVEDD and LV mass measurements in patients with
- 117 echocardiograms completed prior to the age of 18 years.
- 118 Laboratory values, including skeletal muscle, cardiac, and liver biomarkers, were
- 119 collected. These included creatine phosphokinase (mcg/L), brain natriuretic peptide
- 120 (pg/mL), aspartate transaminase (AST, IU/L), alanine aminotransferase (ALT, IU/L),
- 121 alkaline phosphatase (IU/L) and total bilirubin (mg/dL).
- 122 All data were analyzed with the statistical software package Stata 17 (Stata Corp,
- 123 College Station, TX). Continuous variables were reported as either mean with standard

124 deviation or median with interguartile range depending on normality testing and 125 compared with either Student's t-test or Wilcoxon Rank Sum non-parametric test as appropriate. To compare categorical variables, the Pearson's X^2 was used. The 126 127 conventional probability value of 0.05 or less was used to determine statistical 128 significance. All reported P-values are two-sided. For longitudinal analysis, Wilcoxon 129 Rank Sum testing was used to compare first and last echocardiograms and linear mixed 130 models were used to test for trends in echocardiography parameters over time/age. For 131 the echocardiography measures, separate mixed models were run for measures with 132 pediatric z-scores (included echocardiograms completed prior to the age of 18 years of 133 age) and for all values (included all echocardiograms). Age was the fixed effect, and the 134 individual patient the random effect. For survival analysis, Kaplan-Meier analysis was 135 used for time-to-HF event analysis, with log-rank test used to assess differences across 136 sex. Patients alive at last follow-up were censored on the day of last known follow-up.

137 **RESULTS**

138 The analysis included 116 DD patients and was stratified by sex: female (n=64, 55%) 139 and male (n=52, 45%). [Table 1] Median age of diagnosis for the entire cohort was 15.2 140 years (10.0-25.2 years), and 21.9 years (15.0-34.9 years) and 12.4 years (7.1-15.6 141 years) for females and males respectively. Median age at last follow-up time for the 142 entire cohort was 23.0 years (IQR: 16.5 – 34.5 years), and 32.0 years (IQR: 22.5 – 46.0 143 years) and 18.5 years (14.0 - 23.0 years) for females and males respectively. Median 144 follow up time was 5.82 years (2.67 – 11.76 years) for the entire cohort, and 5.82 years 145 (2.67 - 14.96 years) and 5.86 years (2.93 - 8.51 years) for females and males 146 respectively. The majority of patients in the registry were White (72.4%). Regarding 147 arrhythmia characteristics, 19.8% (n=23) of patients had WPW, 18.1% (n=21) had atrial 148 fibrillation (AF) and 38.8% (n=45) of patients had a CIED; there were no differences in

149 prevalence of WPW (p=0.429) or CIED (p=0.653) implantations between males and 150 females. AF occurred more frequently in females compared to males (p=0.004). Within 151 patients who received a CIED, 2 males (3.8%) were implanted with pacemakers alone; 152 the remaining patients were implanted with an AICD, of which 5.2% (n=2) were for 153 secondary prevention. 154 155 Heart Failure Outcomes 156 The incidence of the HF outcome was higher in males compared to females (p=0.031). 157 and actuarial median age of HF outcome was younger in males compared to females 158 with median time to HF outcome being 25 years in males and 63 years in females 159 (P<0.001). [Figure1] While age of HF outcome in males (19 years (16-23 years)) was 160 numerically lower compared to females (26 years (14-39 years)) who did experience HF 161 outcome, this did not reach statistical significance (p=0.162). This may be due to a 162 possible bimodal distribution in age at which females experience a HF outcome [Figure 163 2]. Median age of HF outcome in females with HF outcome \geq 26yo (n=7) and <26yo 164 (n=7) was 39 (28-47yrs) and 14 (11-20yrs) respectively (p=0.002). Additional analyses 165 stratifying females by age of HF outcome are presented below.

166

167 Echocardiographic Parameter Analyses

168 A total of 95 (82%) patients had echocardiographic results, of which 75 (92%) had serial 169 echocardiograms. Ages of first echocardiogram in patients with serial echocardiograms 170 were 15.9 years (11.3-19.9 years) and 25.8 years (17.0-42.2 years) in males and 171 females respectively. Median time from first to last echocardiogram in all patients was 172 4.7 years (IQR: 1.1-8.9 years), and 4.2 years (IQR: 0.7-6.1 years) and 6.1 years (IQR 173 1.2-11.3 years) in males and females respectively.

174

175	LV Function. In longitudinal analyses of LVEF which compared first and last LVEF by
176	echocardiogram, LVEF decreased in both males (p=0.003) and females (p=0.02) over
177	time. [Table 2] In analyses stratified by HF outcome, based on comparison of
178	coefficients and 95% confidence intervals from the linear mixed effects models, the rate
179	of LVEF decline is higher in patients who experience a HF outcome compared to those
180	who have not. [Figure 3] Specifically, mixed effects model coefficients in both males and
181	females, suggest a decrease in LVEF by \sim 2.4% per year in patients that experience a
182	HF outcome. [Table 3] Notably, in patients who experienced a HF outcome, LVEF from
183	baseline to last echocardiogram decreased from 58% to 33% (p=0.021) and from 57% to
184	37% (p=0.054) in males and females respectively. [Table 2]
185	
186	LV Structure. In regard to LV remodeling, LV dilation occurs in both females and males
187	over time, however, similar to LVEF, based on mixed model coefficients and non-
188	overlapping confidence intervals, LV dilation is more pronounced in patients who
189	experience a HF outcome compared to those who do not. [Figure 4] [Table 3] In mixed
190	effect modeling of z-scores that included only pediatric echocardiograms, LVEDD
191	increased in females who experienced a HF outcome (p<0.001). Females who did not
192	experience a HF outcome (p=0.516) and males regardless of HF outcome (p-values: HF
193	outcome 0.704, no HF outcome 0.157) had no significant change in LVEDD based on z-
194	scores during their pediatric years.
195	
196	In regards to LVH, males who experienced the HF outcome had thicker LV walls
197	(p=0.015) on first echocardiogram, however, progressive LV hypertrophy until the time of

HF outcome does not occur (p=0.734). LV hypertrophy continues in males who have not
 yet experienced a HF outcome (<0.001). [Table 3, Figure 5] Notably, in the mixed effect
 model of pediatric echocardiograms, LVH continues until the age of 18 years regardless

201 of HF outcome (p<0.001). In females, unlike males, there is regression in LV thickness 202 over time in both those who experience a HF outcome, as well as, those who do not. In 203 the mixed effect model of LV wall thickness in pediatric echocardiograms only, 204 regression in LV wall thickness was noted in females who experienced a HF outcome 205 (p<0.001), but not in females who did not (p=0.387). [Figure 5] LV mass increases in 206 males regardless of HF outcome and begins in childhood and continues through 207 adulthood. In females, LV mass does not change significantly with age, likely due to 208 progressive thinning and dilation that occurs over time in females. [Figure 6] In the 209 pediatric z-score analysis, mixed effect model showed decreasing LV mass in females 210 who experience a HF outcome (p=0.012). 211 212 Female stratified analyses

213 Given the results above, we chose to further evaluate outcomes specifically among 214 females. In stratified analyses of females by HF outcome before 26 years old (<26 yo, 215 n=7) and at or after 26 years old (\geq 26yo, n=7), age of diagnosis was significantly earlier 216 (p=0.025) in the <26yo cohort (14 years (10 – 20 years)) compared to the \geq 26yo cohort 217 (34 years (28 – 40 years)). Regarding clinical characteristics, prevalence of CIED (86% 218 vs 43%, p=0.094) and WPW (43% vs 0%, p=0.051) were numerically higher in the 219 <26yo compared to \geq 26yo groups. Analysis of echocardiographic parameters suggests 220 increased LV hypertrophy in the <26yo compared to \geq 26yo group, with higher numerical 221 values at both first and last echocardiogram [Table 6]. Notably, although all females 222 who reached a HF outcome met criteria for LV hypertrophy at some point during their 223 life, patients in the <26yo group developed more significant hypertrophy compared to 224 those in the \geq 26yo (2.36cm (2.30 - 3.26 cm) vs 1.4cm (0.9 - 1.5 cm); p=0.020). In 225 regards to overall longitudinal change in LVWT, in the <26yo group there was no change 226 in LVWT as these females aged, while in the \geq 26yo, there was LV thinning over time.

227 [Table 7] If longitudinal change in LVWT in the <26vo group was measured starting from the echocardiogram with the greatest LV hypertrophy, females in the <26yo group 228 229 (mixed effects coefficient: -0.3258 (-0.434, -0.218); p<0.001) were noted to have 230 ventricular thinning similar to the \geq 26yo group prior to experiencing a HF outcome. At 231 individual levels, some females (including those who experienced HF outcomes in the 232 <26yo group) appear to have had progressive hypertrophy with subsequent decreases 233 in LVWT and LVM. [Figures 5-7] LVEF decreased in both groups, however, the 234 progression of LV dysfunction was more pronounced in the <26vo compared to the 235 ≥26yo group. LVEDD increased in both groups, however, the rate of dilation over time 236 was higher in the <26yo compared to the \geq 26yo group. In longitudinal analysis, LV 237 mass continued to increase in the <26yo group, while in the \geq 26yo LV mass remained 238 unchanged. [Table 7]

239

240 Laboratory Analyses

241 The availability of laboratory values differed by lab test and sex. For males, availability 242 of laboratory values ranged from 44-63% and in females 31-50%. [Table 4] None of the 243 skeletal muscle, cardiac and liver biomarkers changed between first and last 244 measurement. First laboratory values in patients revealed higher CPK, AST, ALT and 245 alkaline phosphatase in males compared to females (p-value<0.001). In longitudinal 246 analyses by mixed effect models, in males, CPK decreased in patients who did not 247 experience a HF outcome (p<0.001) and AST and ALT decreased in patients who 248 experienced a HF outcome (p < 0.001 and p = 0.004 respectively). Alkaline phosphatase 249 decreased regardless of HF outcome in males (p<0.01). In females, AST and alkaline 250 phosphatase decreased in all patients regardless of HF outcome (p<0.02), and ALT 251 decreased only in females who did not experience a HF outcome (p=0.046). [Table 5] 252

253 **DISCUSSION**

254	To date, while there are several natural history studies and meta-analyses that provide
255	cross sectional analyses of patient characteristics and outcomes, none include
256	longitudinal echocardiographic data that parallel disease progression. ^{2, 5-8, 10} This current
257	study analyzes the largest DD cohort to date and is the only study that provides insight
258	into longitudinal changes in echocardiographic parameters with disease progression. By
259	stratifying analyses by HF outcome, this study provides insight into what changes in
260	specific echocardiographic parameters may suggest worsening disease.
261	
262	Heart Failure Outcomes
263	As an X-linked disease, disease penetrance in males with DD is complete, and males
264	will express a severe disease phenotype that results in death in the absence of left
265	ventricular assist device or cardiac transplantation by the 2 nd or 3 rd decade of life. ^{2, 5-8,10}
266	Consistent with this expected disease course, the incidence of HF outcome in our cohort
267	was greater in males compared to females. Similar to our previously published data on
268	DD patients who underwent transplantation, while there was a trend towards HF
269	outcome occurring at an earlier age in males compared to females, this did not reach
270	statistical significance. ⁴ This is likely due to there being a distinct subset of females who
271	experience a HF outcome at an earlier age in the absence of advanced heart failure
272	therapies. In this study group, when female patients who reached HF outcome were
273	stratified into early (less than 26 years old) and late (greater than or equal to 26 years
274	old) HF outcome groups, 2 distinct age groups were noted (p=0.002). Specifically,
275	median age at time of HF outcome in the early and late groups were 14 years and 39
276	years, respectively. Further research is needed to better characterize and identify
277	females who are at risk of a malignant clinical course similar to males.

278

279 Echocardiographic Changes Over Time

280 A corollary to characterizing longitudinal changes in LV structure over time is how this 281 data can impact clinical decision making. Specific to our findings is utilizing changes in 282 LVEF and structure to assist in patient management, risk stratification as well as 283 identification of surrogate markers of disease progression and clinical outcomes. Our 284 primary longitudinal findings are the differential changes in LV function and structure that 285 may discriminate patients who will experience a HF outcome from those who will not. 286 Specifically, while LVEF drops irrespective of sex and HF outcome over time, the 287 degradation of LVEF is more accelerated in those who experience a HF outcome. 288 Similarly, while LV dilation occurs regardless of sex and HF outcome, which may be due 289 to age-appropriate growth in this patient population that includes pediatric and adult 290 data, the rate of LV dilation is also higher in those who experience a HF outcome. This 291 may be contributed to by decreases in LVEF and stabilization of LVH in males who 292 experience a HF outcome and also observed thinning in females regardless of HF 293 outcome. These findings suggest that LVEF and LVEDD may be used to predict HF 294 outcome and can be used by clinicians to escalate surveillance intervals and risk stratify 295 DD patients for advanced therapies. Notably, progressive disease in hypertrophic cardiomyopathy is also marked by increasing LVEDD and also by decreased LVEF.¹¹ 296

297

A major difference in phenotypes between sexes is that in males who have not yet experienced HF outcome, LV hypertrophy continues. This suggests that eventual LVH stabilization may be a marker for end-stage disease in males particularly when paired with progressive LV dysfunction and dilation. The pattern of LV remodeling in this cohort of females was different, with LV thinning occurring over time regardless of HF outcome. Consistent with the aforementioned differences in LV remodeling between males and

304	females, LV mass increases over time in males, while no change was found in females.
305	Of note, the analyses stratifying females by age of HF outcome suggests that there may
306	be a female subgroup who are phenotypically similar to males, experiencing end-stage
307	heart failure or death earlier in life. Females who experience a HF outcome earlier in life
308	have more severe LV hypertrophy compared to females who experience a HF outcome
309	later in life. Additionally, like males, their LV mass increases significantly over time.
310	These finding highlight the importance of additional studies elucidating varying Danon
311	disease phenotypes and mechanisms impacting disease expression in females.
312	
313	Analyses of normalized pediatric echocardiographic parameters provides some insight
314	into disease progression as trends in LV hypertrophy and increasing LVEDD through
315	adulthood were not seen during the pediatric years, suggesting that several of the
316	variables that are seen in patients with HF outcome likely occur later in the disease
317	process. Prior case report studies utilizing cardiac MRI for tissue characterization, have
318	shown that increased late gadolinium enhancement and mass have been associated
319	with a composite endpoint that includes death, heart transplantation and ICD
320	implantation for secondary prevention. ¹²⁻¹⁴ Furthermore, a study evaluating longitudinal
321	strain in Danon disease patients found that strain was similarly associated with death
322	and advanced heart failure requiring either transplantation or ventricular assist device. ¹⁵
323	Additionally longitudinal studies to assess how progressive fibrosis may be contributing
324	to these sex specific changes with disease progression are needed.
225	

325

326 Laboratory Changes Over Time

Interpretation of laboratory values is limited by sample size, with majority of laboratory
values presented having ~50% completion, and the selection bias in those who ended
up getting repeat laboratory studies completed. To this end, interpretation of longitudinal

330	trends is challenging and instead will highlight the cross-sectional analysis that showed
331	that CPK, AST and ALT were all markedly elevated in males compared to females.
332	Notably, total bilirubin was neither elevated nor different between sexes and alkaline
333	phosphatase, while higher in males compared to females, was only mildly elevated.
334	These patterns suggest that the CPK, AST and ALT elevations are likely explained by
335	increased severity of skeletal myopathy in males compared to females.

336

337 Clinical Trial Design

338 Additionally, although cardiac transplantation remains the only therapeutic option with a 339 survival benefit, a Phase I gene therapy trial in DD has completed and a Phase II AAV9 340 gene therapy trial is pending enrollment.¹⁶ Major barriers to designing a DD comparative 341 effectiveness trial with a traditional control population include low disease prevalence, 342 incidence of outcomes and treatment effect sizes. To mitigate the effect of these 343 barriers, the FDA has encouraged: 1) non-traditional trial design, including the use of 344 historical controls and 2) pathways for accelerated drug approval which include using 345 surrogate endpoints that predict traditional clinical outcomes associated with improved patient functional status, quality of life and survival.^{17,18} To this end, natural history 346 347 studies are an important adjunct to understanding disease course and developing 348 therapeutics that will impact disease progression and outcomes. The results from this 349 study suggest that potential surrogate endpoints for therapeutic trials could include 350 LVEF, LV mass, LVEDD and LV wall thickness in males, and LVEF, LVEDD and LV wall 351 thickness in females. Additionally, because LV hypertrophy was a prominent feature in 352 those experiencing a HF outcome, particularly in males and also females who 353 experienced a HF outcome earlier in life, trial design including hypertrophy as an entry 354 criteria can be considered.

355

356 **Limitations.** While this study reports outcomes from the largest cohort of Danon 357 Disease patients, the sample size remains small and limits generalizability. Patient 358 registries often suffer from variability in data entry and due to the retrospective nature of 359 the study and also standard of care data collection that spanned enrollment over several 360 decades, data collection intervals and parameters were not consistent. Notably, 361 echocardiography was obtained in >80 percent of the patient population, however, 362 laboratory values were only collected in ~50%, with CPK and BNP only collected in 363 \sim 30% of female patients. All patients included within the study had outcomes data 364 collected though. Even with these limitations, this remains the largest cohort with 365 longitudinal echocardiographic and laboratory data. 366

367 CONCLUSIONS

368 DD is a disease without disease-modifying therapies, although gene therapy trials are

369 underway. Understanding the natural history of DD will inform patient selection and trial

370 design for new therapies. Disease progression as characterized by changes in

371 echocardiographic parameters can differ by sex and HF outcome suggesting that

372 longitudinal changes in LV structure and function should be used for clinical risk

373 stratification and incorporated into clinical trial endpoints as surrogates of clinical

374 progression and end stage heart failure or death.

375

376 Funding: Investigator-initiated sponsor research agreement with Rocket

377 Pharmaceuticals.

379 **TABLES/FIGURES**

Table 1. Summary statistics for patients stratified by sex.

		Males		Females	Total					
	#	IQR/%	#	IQR/%	#	IQR/%				
n	52	44.8	64	55.2	116					
Age (median)	19	16-23	26	14-39	20	16-27				
Hispanic	3	5.8	1	1.6	4	3.4				
White	38	73.1	46	71.9	84	72.4				
Black										
Asian	1	1.9	3	4.7	4	3.4				
WPW	12	23.1	11	17.2	23	19.8				
LVEF (%)										
At first echo	66.1	60-72	60.6	51.5-72.5	62.2	55-72				
At last echo	57.5	42.7-68	55	38.7-64.8	55	38.7-65				
LVWT (cm)										
At first echo	1.11	(0.86-1.93)	1.1	(0.81-1.50)	1.1	(0.83-1.60)				
At last echo	1.36	(0.95-2.18)	1.19	.19 (1.00-1.73)		(1.00-1.85)				
LV Mass (g)										
At first echo	140	(80-263)	159	(97-242)	91	(148-242)				
At last echo	430	(120-647)	235 (140-287)		238	(140-430)				
HF Outcome	21	40.4	14	21.9	35	30.2				
ТХР	17	32.7	13	20.3	30	25.9				
LVAD	2	3.8	2	3.1	4	3.4				
Death	7	13.5	2	3.1	6	5.2				
Age at HF Outcome	19	(16-23)	26	(14-39)	20	(16-27)				
CIED	19	36.5	26	40.6	45	38.8				
Pacemaker	2	3.8	0	0.0	2	1.7				
AICD	17	32.7	26	40.6	43	37.1				
2º prevention	2	3.8	4	6.3	6	5.2				

AICD: automatic implantable cardioverter defibrillator, CIED: Cardiac Implantable Electrical Devices, IQR: interquartile range, LVEF: left ventricular ejection fraction, LVAD: left ventricular assist device, TXP: heart transplant, WPW: Wolff-Parkinson-White

381 Table 2. Echocardiographic measurements at first and last exam stratified by sex. Within and between sex comparisons

382 between first and last measurement were completed and p-values reported. Statistically significant p-values were bolded.

		Total		ŀ	IF Outcome	(+)	ŀ	HF Outcome	(-)	
	Median	IQR	p-value*	Median	IQR	p-value*	Median	IQR	p-value*	p-value^
Males										
LVEF (%)										
First	66	(57-71)	0.003	58	(50-68)	0.021	67	(62-76)	0.0135	0.030
Last	55	(28-64)		33	(20-52)		58	(50-68)		0.011
Thickest LV wall (cm)										
First	1.2	(0.9-1.9)	0.245	1.7	(1.2-2.4)	0.713	1.1	(0.8-1.5)	0.173	0.015
Last	1.5	(1.0-2.5)		1.9	(1.6-2.5)		1.4	(1.0-2.3)		0.268
LV Mass (g)										
First	154	(87-413)	0.12	327	(209-541)	0.285	111	(80-163)	0.172	0.005
Last	275	(143-613)		596	(285-690)		161	(77-377)		0.020
LVEDD (cm)										
First	3.9	(3.4-4.6)	0.185	4	(3.6-4.6)	0.115	3.8	(3.4-4.7)	0.712	0.851
Last	4.4	(3.7-5.3)		6.3	(4.8-6.6)		4	(3.7-4.7)		0.038
Females										
LVEF (%)										
First	61	(55-70)	0.020	57	(52-77)	0.054	61	(55-69)	0.221	0.929
Last	56	(35-65)		37	(23-47)		56	(47-66)		0.014
Thickest LV wall						0.962			0.105	
First	1.1	(0.8-1.5)	0.162	1.1	(1.0-1.6)		1.1	(0.8-1.4)		0.416

Last	1.2	(1.0-1.7)		1.2	(0.9-2.0)		1.2	(1.0-1.7)		0.937	
LV Mass (g)											
First	165	(97-262)	0.132	296	(80-320)	0.723	157	(106-227)	0.088	0.381	
Last	224	(140-272)		232	(218-288)		187	(132-272)		0.554	
LVEDD											
First	4.3	(3.6-4.9)	0.012	4.4	(2.8-5.2)	0.018	4.3	(3.9-4.8)	0.144	0.974	
Last	4.7	(4.1-5.8)		5.9	(5.5-6.4)		4.5	(4.0-5.3)		0.003	
*comparing first and last echocardiograms; ^comparing HF Outcome (+) and HF Outcome (-)											
LVEF: left ventricular ejection fraction, LVEDD: left ventricular end diastolic dimension											

Table 3. Longitudinal trend analysis of echocardiographic parameters over time. Coefficients derived from mixed effect

386 regression models represent the magnitude of change in the parameter as patient ages.

			No HF Ou	tcome			HF Outcome				
	Patients	Values				Patients	Values				
	(n)	(n)	Coefficient	95%CI	p-value	(n)	(n)	Coefficient	95%CI	p-value	
Males											
LVEF*	20	97	-0.888	(-1.521, -0.254)	0.006	12	93	-2.461	(-3.026, -1.898)	<0.001	
LV wall thickness*	23	117	0.101	(0.069, 0.133)	<0.001	13	89	0.008	(-0.036, 0.051)	0.734	
LV mass	20	101	28.424	(19.094, 37.755)	<0.001	13	85	34.183	(20.548, 47.817)	<0.001	
LVEDD*	22	105	0.123	(0.082, 0.162)	<0.001	14	92	0.231	(0.176, 0.287)	<0.001	
Female											
LVEF*	34	161	-0.832	(-1.164, -0.500)	<0.001	9	72	-2.391	(-3.477, -1.305)	<0.001	
LV wall thickness	33	164	-0.012	(-0.022, -0.003)	<0.009	9	76	-0.026	(-0.0372, -0.016)	<0.001	
LV mass	29	150	-0.631	(-2.482, 1.219)	0.5037	9	72	1.868	(-3.342, 7.078)	0.482	
LVEDD*	31	156	0.05	(0.031, 0.069)	<0.001	9	76	0.175	(0.109, 0.240)	< 0.001	
*significant difference	in coefficie	nts by HF	outcome sta	tus based on non-c	verlapping	g 95% confi	dence int	ervals (CI)			

388 Table 4. Laboratory measurements at first and last exam stratified by sex. Within and between sex comparisons between

389 first and last measurement were completed and p-values reported. Statistically significant p-values were bolded.

			Males				Females	_	p-value^
	n	Median	IQR/%	p-value*	n	Median	IQR/%	p-value*	
СРК	27				20				
At first lab draw		891	609-1258	0.6		73.5	53-124	0.74	<0.001
At last lab draw		834	541-1868			77	42-114		<0.001
BNP	32				32				
At first lab draw		227	30-999	0.119		383	141-997	0.726	0.29
At last lab draw		746	129-1208			353	200-1321		0.518
AST	23				20				
At first lab draw		269	186-383	0.468		43	25-71	0.636	<0.001
At last lab draw		234	128-396			39	27-55		<0.001
ALT	32				32				
At first lab draw		234	113-381	0.6011		28	22-36	0.696	<0.001
At last lab draw		205	106-388			26	21-35		<0.001

Alk Phos	32				32							
At first lab draw		181	(111-264)	0.087		70	(55-93)	0.916	<0.001			
At last lab draw		117	(85-232)			70	(57-89)		<0.001			
Total bilirubin	33				32							
At first lab draw		0.8	(0.5-1.2)	0.152		0.7	(0.4-0.8)	0.59	0.128			
At last lab draw		0.5	(0.4-0.8)			0.5	(0.4-0.8)		0.763			
* comparing first and	* comparing first and last lab draw; ^ comparing male and female values											

391 Table 5. Longitudinal trend analysis of laboratory parameters over time. Coefficients derived from mixed effect regression

392 models represent the magnitude of change in the parameter as patient ages.

		No HF Outcome		HF Outcome			
	Coefficient	95%CI	p-value	Coefficient	95%CI	p-value	
Males							
СРК	99.99	(45.03, 154.96)	<0.001	-3.67	(-47.20, 39.85)	0.869	
AST	3.87	(-1.85, 9.59)	0.185	-21.63	(-30.45, -12.81)	<0.001	
BNP	88.45	(-53.47, 230.36)	0.222	-48.48	(-196.94, 99.97)	0.522	
ALT	-0.02	(-6.15, 6.11)	0.994	-12.17	(-20.39, -3.94)	0.004	
Alkaline Phosphatase	-35.03	(-57.63, -12.44)	0.002	-9.00	(-12.70, -5.31)	<0.001	
Total Bilirubin	0.01	(-0.15, 0.17)	0.897	-0.05	(-0.11, 0.02)	0.158	
		· · ·			· · ·		
Female							
СРК	-0.90	(-3.47, 1.67)	0.492	-4.47	(-11.12, 2.18)	0.187	
AST	-0.94	(-1.44, -0.43)	<0.001	-1.92	(-3.42, -0.42)	0.012	
BNP	-2.33	(-19.26, 14.60)	0.787	-42.09	(-114.90, 30.73)	0.257	
ALT	-0.32	(-0.63, -0.01)	0.046	-1.21	(-2.84, 0.42)	0.146	
Alkaline							
Phosphatase	-1.32	(-2.09, -0.54)	<0.001	-1.01	(-1.40, -0.62)	<0.001	
Total Bilirubin	-0.02	(-0.07, 0.03)	0.456	-0.06	(-0.25, 0.13)	0.550	
AST aspartate aminotransferase; ALT alanine transaminase; BNP B-type natriuretic peptide; CPK creatine phosphokinase							

394 Table 6. Echocardiographic measurements in females who experienced a HF outcome at first and last exam stratified by

395 age of HF outcome. Between group comparisons for first and last measurement were completed and p-values reported.

	<26 y	/ears old	≧26				
	Median	IQR	Median	IQR	p-value		
LVEF (%)							
First	77	(52-78)	55	(35-57)	0.302		
Last	37	(23-55)	30	(22-39)	0.739		
Thickest LV wall (cm)							
First	1.4	(1.1-2.3)	1.0	(0.90-1.02)	0.121		
Last	1.5	(1.0-2.3)	0.83	(0.55-1.10)	0.182		
LV Mass (g)							
First	318	(80-381)	170	(26-296)	0.302		
Last	232	(220-277)	194	(101-287)	0.643		
LVEDD (cm)							
First	3.9	(2.8-4.8)	5.2	(1.3-5.7)	0.796		
Last	6.1	(5.6-6.6)	5.8	(5.5-6.1)	0.643		
LVEF left ventricular ejection fraction; LVEDD left ventricular end diastolic dimension							

397 Table 7. Longitudinal trend analysis of echocardiographic parameters over time in female patients who experienced a HF

- 398 outcome stratified by age of HF outcome. Coefficients derived from mixed effect regression models represent the
- 399 magnitude of change in the parameter as patient ages.

400

	<26 years old				≧26 years old					
	Patients	Values	Coefficien	95%CI	n-value	Patients	Values	Coefficient	95%CI	n-value
	6	(1)	2 295		<0.001	2	20	1 220	(1684 0703)	<0.001
	0	42	-3.205	(-4.090, -1.000)	<0.001	3	- 30	-1.239	(-1.064, -0.793)	<0.001
LV wall thickness	6	45	-0.020	(-0.055, 0.016)	0.273	3	31	-0.021	(-0.033, -0.009)	<0.001
LV mass*	6	42	9.800	(3.440, 16.160)	0.003	3	30	-1.913	(-4.520, 0.695)	0.151
LVEDD*	6	42	0.249	(0.183, 0.315)	<0.001	3	34	0.068	(0.028, 0.109)	0.001
*significant difference in coefficients by age of HF outcome based on non-overlapping 95% confidence intervals (CI)										

402 **Figure 1.** Kaplan Meier Time to HF Outcome Analysis Stratified by Sex

405 **Figure 2.** Histogram of age at heart failure outcome stratified by sex. There is a

406 suggestion of a bimodal distribution for HF outcome in females.

- 409 **Figure 3.** LVEF changes over time, as represented by linear mixed effects regression
- 410 plot and individual spaghetti plots, stratified by sex and HF outcome. In females
- 411 experiencing HF outcome, mixed effects regression plot for patients experiencing HF
- 412 outcome prior to the age of 26 years old was graphed.

Figure 4. LVEDD over time by sex and HF outcome

418 Figure 5. LV wall thickness measurement over time by sex and HF outcome. Thickest

419 septal or posterior wall measurement reported.

422 Figure. 6 LV Mass measurement over time by sex and HF outcome

- 424 **Figure. 7** LVWT in females who experience HF outcome prior to 26 years of age at all
- 425 time points and from time of thickest LVWT.

427 **REFERENCES**

- 428 [1] Hong KN, Eshraghian EA, Arad M, Argirò A, Brambatti M, Bui Q, Caspi O, de Frutos
- 429 F, Greenberg B, Ho CY, Kaski JP, Olivotto I, Taylor MRG, Yesso A, Garcia-Pavia P,
- 430 Adler ED. International Consensus on Differential Diagnosis and Management of
- 431 Patients With Danon Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2023
- 432 Oct 17;82(16):1628-1647.
- 433 [2] Boucek D, Jirikowic J, Taylor M. Natural history of Danon disease. Genet Med.
- 434 2011;13(6):563-568.
- 435 [3] Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB, Almquist AK, Baffa
- 436 JM, Saul JP, Ho CY, Seidman J, Seidman CE. Clinical outcome and phenotypic
- 437 expression in LAMP2 cardiomyopathy. JAMA. 2009 Mar 25;301(12):1253-9. doi:
- 438 10.1001/jama.2009.371. PMID: 19318653; PMCID: PMC4106257.
- 439 [4] Hong KN, Battikha C, John S, Lin A, Bui QM, Brambatti M, Storm G, Boynton K,
- 440 Medina-Hernandez D, Garcia-Alvarez A, Castel MA, Garcia-Guereta L, Diez Lopez C,
- 441 Perez-Gomez L, Miani D, Symanski JD, Taylor MR, Garcia-Pavia P, Adler ED. Cardiac
- 442 Transplantation in Danon Disease. J Card Fail. 2022 Apr;28(4):664-669.
- 443 [5] Lotan D, Salazar-Mendiguchía J, Mogensen J, et al. Clinical Profile of Cardiac
- 444 Involvement in Danon Disease: A Multicenter European Registry. Circ Genomic Precis
- 445 Med. 2020:660-670.
- 446 [6] López-Sainz Á, Salazar-Mendiguchía J, García-Álvarez A et al. Clinical Findings and
- 447 Prognosis of Danon Disease. An Analysis of the Spanish Multicenter Danon Registry.
- 448 Rev Esp Cardiol (Engl Ed). 2019 Jun;72(6):479-486. English, Spanish. doi:
- 449 10.1016/j.rec.2018.04.035. Epub 2018 Aug 11. PMID: 30108015.

- 450 [7] Brambatti M, Caspi O, Maolo A, Koshi E, Greenberg B, Taylor MRG, Adler ED.
- 451 Danon disease: Gender differences in presentation and outcomes. Int J Cardiol. 2019
 452 Jul 1;286:92-98.
- 453 [8] Sugie K, Komaki H, Eura N, Shiota T, Onoue K, Tsukaguchi H, Minami N, Ogawa M,
- 454 Kiriyama T, Kataoka H, Saito Y, Nonaka I, Nishino I. A Nationwide Survey on Danon
- 455 Disease in Japan. Int J Mol Sci. 2018 Nov 8;19(11):3507.
- 456 [9] Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf
- 457 FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH,
- 458 Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for
- 459 cardiac chamber quantification by echocardiography in adults: an update from the
- 460 American Society of Echocardiography and the European Association of Cardiovascular
- 461 Imaging. J Am Soc Echocardiogr. 2015 Jan;28(1):1-39.e14.
- 462 [10] Cenacchi G, Papa V, Pegoraro V, Marozzo R, Fanin M, Angelini C. Review: Danon
- 463 disease: Review of natural history and recent advances. Neuropathol Appl Neurobiol.
- 464 2020 Jun;46(4):303-322. [11] Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of
- disease progression in hypertrophic cardiomyopathy: an individualized approach to
- 466 clinical staging. Circ Heart Fail. 2012 Jul 1;5(4):535-46.
- 467 [12] Rigolli M, Kahn AM, Brambatti M et al. Cardiac Magnetic Resonance Imaging in
- 468 Danon Disease Cardiomyopathy. JACC Cardiovasc Imaging. 2020 Sep 26:S1936-
- 469 878X(20)30728-2.
- 470 [13] Rigolli M, Kahn A, Brambatti M et al. Cardiomyopathy characterization and risk-
- 471 stratification by cardiac magnetic resonance in Danon Disease. Journal of the American
- 472 College of Cardiology. 2020 Mar 24;75(11 Supplement 1):1681.
- 473 [14] Wei X, Zhao L, Xie J, Liu Y, Du Z, Zhong X, Ye W, Wang Y, Chen Y, Lu M, Liu H.
- 474 Cardiac Phenotype Characterization at MRI in Patients with Danon Disease: A
- 475 Retrospective Multicenter Case Series. Radiology. 2021 May;299(2):303-310.

- 476 [15] Bui QM, Hong KN, Kraushaar M, Ma GS, Brambatti M, Kahn AM, Battiha CE,
- 477 Boynton K, Storm G, Mestroni L, Taylor MRG, DeMaria AN, Adler EA. Myocardial Strain
- 478 and Association With Clinical Outcomes in Danon Disease: A Model for Monitoring
- 479 Progression of Genetic Cardiomyopathies. J Am Heart Assoc. 2021 Dec
- 480 7;10(23):e022544. doi: 10.1161/JAHA.121.022544. Epub 2021 Nov 30. PMID:
- 481 34845930; PMCID: PMC9075351.
- 482 [16] https://clinicaltrials.gov/study/NCT06092034 [visited 11/11/2023]
- 483 [17] Rare Diseases: Natural History Studies for Drug Development. FDA Guidance
- 484 Document. March 2019. FDA Guidance for Industry. March 2019.
- 485 https://www.fda.gov/media/122425/download (accessed 11/11/2023)
- 486 [18] Fast Track, Breakthrough Therapy, Accelerated Approval, Priority Review. FDA. 23
- 487 February 2018. https://www.fda.gov/patients/learn-about-drug-and-device-
- 488 approvals/fast-track-breakthrough-therapy-accelerated-approval priority-review
- 489 (accessed 11/11/2023)