1	Time to Hyperkalemia and Other Outcomes Post-Implementation of the 2021
2	CKD-EPI Creatinine Equation: An Observational Cohort Study
3	Charlotte Baker, DrPH, MPH ¹ , Brianna M. Goodwin Cartwright, MS ¹ , Samuel Gratzl, PhD ¹ ,
4	Duy Do, PhD ¹ , Patricia J. Rodriguez, PhD, MPH ¹ , Michael Simonov, MD ¹ , Nicholas L Stucky,
5	MD, PhD^{1*}
6	¹ Truveta, Incorporated, Bellevue, WA
7	*Corresponding author:
8	Nicholas Stucky, MD, PhD
9	Truveta, Incorporated
10	1745 114th Ave SE, Bellevue, WA 98004
11	Email: nicholass@truveta.com
12	
13	Abstract
14	Background
15	Timely diagnosis can delay progression to poor clinical outcomes and biomarker endpoints in
16	CKD. Our objective was to analyze how the implementation of the 2021 CKD-EPI Creatinine
17	Equation (CKD-EPI 2021) affected time to the doubling of serum creatinine, prescription or
18	dispense of potassium-lowering drugs, hyperkalemia, and creation of arteriovenous graft fistula
19	for dialysis within one year of CKD diagnosis.
20	Methods
21	We used retrospective EHR data to create two cohorts of adult patients based on date of
22	diagnosis. We followed patients from their CKD diagnosis to the occurrence of each outcome,
23	their last medical encounter, or 1-year post diagnosis, whichever occurred first. The first cohort

24	was diagnosed in 2021 when the CKD-EPI 2009 Creatinine Equation (pre-update cohort) was
25	recommended. The second cohort was diagnosed in 2022 when CKD-EPI 2021 (post-update
26	cohort) was recommended. Multivariable models for the time relationship between cohort and
27	each outcome were adjusted for demographics, social determinants of health, and comorbidities.
28	As CKD-EPI 2021 was race-free, we also considered the interaction between cohort and race.
29	Results
30	We found 261,774 patients with a first-time CKD diagnosis. After implementation of CKD-EPI
31	2021, patients were less likely to have a diagnosis of hyperkalemia, potassium-lowering drug
32	prescription, a doubling of serum creatinine, or an arteriovenous graft fistula placement within a
33	year of CKD diagnosis. Black patients in the post-update cohort were less likely to be diagnosed
34	with hyperkalemia compared to Black patients in the pre-update cohort (AHR 0.83; CI 0.80,
35	0.86), but Black patients overall were significantly more likely than non-Black patients to have
36	hyperkalemia.
37	Conclusions
38	Time to poor clinical outcomes and biomarkers differs by the date of CKD diagnosis. Future
39	work should elucidate the mechanisms driving these differences, whether there have been
40	significant changes in treatment practices since the CKD-EPI 2021 recommendation, and long-
41	term effects of each outcome.
42	Introduction
43	Chronic kidney disease (CKD) is a major public health issue. In the Americas, CKD was
44	the 8 th leading cause of death and the 10 th leading cause of years of life lost as of 2019.(1) CKD
45	affects 15% of the US population (37 million adults); 100.6 people per 1,000 population die

46 annually.(1,2)

47	Timely diagnosis enables treatment and can delay progression. Suggested clinical
48	guidelines recommend annual screening for people with risk factors for CKD such as
49	hypertension, diabetes, or being over 50 years of age.(3) The National Kidney Foundation and
50	the American Society of Nephrology Task Force on Reassessing the Inclusion of Race in
51	Diagnosing Kidney Disease recommend estimating GFR using the race-free 2021 Chronic
52	Kidney Disease Epidemiology Collaboration (CKD-EPI) Creatinine Equation (CKD-EPI
53	2021).(4)
54	Black or African-American patients (Black) are four times more likely to be diagnosed
55	with end-stage kidney disease (ESKD) than white patients.(5) Hispanic patients are twice as
56	likely to be diagnosed compared to non-Hispanic or Latino white patients. Like differences in
57	diagnosis, ESKD treatment and outcomes vary by demographics and social determinants of
58	health (SDOH) such as age, race, geography, and access to care.(6,7)
59	Sixty-six percent of hemodialysis patients have an arteriovenous graft fistula (AVF), the
60	gold standard method for providing hemodialysis.(8-10) Yet, many patients have significant
61	morbidity prior to needing dialysis including having an increased risk of hyperkalemia;
62	medications to treat CKD and comorbidities (e.g. diabetes, hypertension) can induce this
63	condition.(10-14) Potassium-lowering drugs such as patiromer can be used alongside other
64	medicines to reduce blood potassium and lower cardiac risk.(10,15) A doubled serum creatinine
65	value is an accepted biomarker for a significant negative change in GFR, a sign of worsening
66	CKD.(16-18) This endpoint helps focus clinical trials and treatments for patients and those with
67	comorbidities.
C 0	

69	CKD-EPI 2021 uses age and sex to help estimate GFR.(4) Prior to this equation, race
70	(dichotomized as Black and non-Black) was included as a marker for a presumed higher muscle
71	mass in Black people.(19,20) The use of CKD-EPI 2021 has resulted in more severe especially
72	for Black patients.(21) Although we know there were changes in time-to-diagnosis with the
73	implementation of CKD-EPI 2021, it is unknown if implementation was also associated with a
74	change in time from diagnosis to poor clinical outcomes and biomarker endpoints. Further, it is
75	unknown if these differences are dependent on race.
76	This study examines the association between the implementation of the CKD-EPI 2021
77	and time from CKD diagnosis to each of the following outcomes: hyperkalemia, prescription or
78	dispense of a potassium-lowering drug, doubling of serum creatinine, and AVF placement.
79	Furthermore, the study investigates whether and how these associations vary by race.
80	Methods
81	Data source
82	This study used a subset of Truveta Data. Truveta provides access to continuously updated and
83	linked electronic health record (EHR) from a collective of US health care systems, including

84 structured information on demographics, encounters, diagnoses, vital signs (e.g., weight, BMI, 85 blood pressure), medication requests (prescriptions), medication administration, medication dispense (fills), laboratory and diagnostic tests and results, and procedures. Updated EHR data 86 87 are provided daily to Truveta by constituent health care systems. In addition to EHR data, SDOH 88 information are made available through linked third-party data. Data are normalized into a 89 common data model through syntactic and semantic normalization. Truveta Data are then de-90 identified by expert determination under the HIPAA Privacy Rule. In accordance with 45 C.F.R. 91 § 46.101 Protection of Human Subjects, our study did not require Institutional Review Board

approval because it used only deidentified medical records. Data for this study were accessed on
February 6, 2024.

94 *Study population*

95 We included patients first diagnosed with CKD at or after January 1, 2021 (using ICD-9, 96 ICD-10, and SNOMED CT codes; see supplement). Patients were categorized into two mutually 97 exclusive cohorts based on their first date of diagnosis. The first (pre-update cohort) was 98 diagnosed between January 1, 2021 and December 31, 2021 (inclusive). These patients were 99 diagnosed when the race-based 2009 CKD-EPI Creatinine Equation (CKD-EPI 2009) was 100 recommended. The second cohort (post-update cohort) was diagnosed between January 1, 2022 101 and December 31, 2022 (inclusive), when CKD-EPI 2021 was recommended. Patients in both 102 cohorts were followed from their index diagnosis of CKD until the first occurrence of the 103 outcome of interest (each outcome was studied separately), the last medical encounter recorded 104 in the data, or the end of the 1-year follow-up period, whichever occurred first. 105 Inclusion/Exclusion 106 We included adult patients aged 18 years and older at the time of their index CKD 107 diagnosis. Patients must have interacted with the health care system within 36 months prior to 108 their CKD diagnosis. We dichotomized race (Black and non-Black) to correlate with CKD-EPI 109 2009 race categories. All white, Asian, Native Hawaiian and Pacific Islander, American Indian 110 and Alaska Native, and 'other' patients were categorized as 'Not Black or African-American' 111 (non-Black). Unknown race and 'choose not to answer' were excluded.

112 Three outcomes had specific exclusion criteria independent of all other outcomes. These 113 included: patients with a history of hyperkalemia at or at least one day before CKD diagnosis 114 (time to hyperkalemia); patients that had a prescription or dispense of a potassium lowering drug

115	at or at least one day prior to CKD diagnosis (time to potassium lowering drugs); and evidence
116	of a procedure or condition for AVF at or at least one day prior to CKD diagnosis (AVF
117	placement).
118	Patients were excluded if they had a diagnosis of renal failure, polycystic kidney disease,
119	or acute kidney injury (AKI) (defined using ICD-10 or SNOMED billing codes) at any time prior
120	to their CKD diagnosis. AKI patients were excluded primarily due to 1) the potential for AKI to
121	occur because of CKD or for CKD to occur because of AKI (high collinearity); and 2) the
122	possibility of AKI patients to be sicker than other patients that develop CKD.(22-24) We were
123	unable to discern these issues accurately in the data.
124	Study Outcomes
125	We examined the time between the first CKD diagnosis and the first occurrence of four
126	independent outcomes. For all outcomes, we calculated time to event by finding the difference
127	between CKD diagnosis and the first time the outcome occurred. All ICD-9, ICD-10, SNOMED
128	CT, RXNORM, CPT, and LOINC codes used to define outcomes are available in the
129	supplement.
130	• Hyperkalemia
131	• We identified the first hyperkalemia diagnosis after CKD diagnosis using
132	laboratory values (LOINC codes).
133	Prescription of potassium-lowering drugs
134	• We identified the first date of either a prescription or dispense of a potassium
135	binder (i.e., patiromer, sodium zirconium cyclosilicate, sodium polystyrene
136	sulfonate, and calcium polystyrene sulfonate product) after diagnosis using
137	RXNORM codes.

138	• Doubling of serum creatinine
139	• We identified the first non-hospitalization related serum-creatinine laboratory
140	value for each patient at or after their CKD diagnosis using LOINC codes. We
141	allowed serum creatinine values on the day of diagnosis to be included to have
142	baseline value as close to diagnosis as possible. We identified the first date the
143	serum creatinine value was exactly or more than twice the baseline.
144	• AVF placement
145	\circ $$ To estimate time to dialysis, we identified the first AVF placement after CKD $$
146	diagnosis using diagnosis (SNOMED CT) and procedure (CPT) codes.
147	Statistics
148	Unadjusted Kaplan-Meier curves stratified by cohort and race were used to describe the
149	probability of the outcome within one year of CKD diagnosis. We fit Cox-proportional hazards
150	models assessing the relationship between cohort and time to event adjusting for demographics,
151	SDOH, and comorbidities present at least one day prior to CKD diagnosis. We extended these
152	models to include an interaction term between cohort and race to assess disparities in the time to
153	outcome. A two-sided p-value < 0.05 was considered statistical significance. We used Python
154	3.10.13 to clean the data and R 4.2.3 for statistics.
155	Covariates
156	We created binary variables (yes/no) for obesity (BMI≥30), type 2 diabetes, chronic
157	hypertension, and hyperlipidemia. We used the Elixhauser Comorbidity Index with van
158	Walraven weights as a summary measure of disease burden.(25,26) We excluded renal disease
159	from the list of comorbidities included in index.(26) For the interpretation of the Elixhauser
160	Comorbidity Index, weighted scores of less than 11 were categorized as "low comorbidity", 11 to

161 15 were categorized as "medium comorbidity", and greater than 15 were categorized as "high
162 comorbidity".(27) Comorbidities were defined using ICD-9, ICD-10, and SNOMED CT codes
163 (supplement).

Demographic variables included age (18 – 44, 45 – 64, and 65+ years), sex (female and male), and ethnicity (Hispanic or Latino, not Hispanic or Latino). Four SDOH variables were included. Income impacts health processes and outcomes including access to care. Annual patient income was categorized into 6 groups: \$0 – 30,000, 30,001 – 50,000, 50,001 – 80,000, 80,001 – 100,000, 100,001 – 120,000, and more than \$120,000.

169 As a marker of housing stability, we included the number of address changes in the last 170 year (0, 1, and 2 or more). We included two social and familial support determinants. First, we 171 included distance to a family or other close connection; categories were < 25 miles away, 25 to 172 100 miles away, 100 to 500 miles away, or > 500 miles away. Patients with no information on the 173 proximity of their closest tie were categorized as 'no information'. Second, if a patient was 174 divorced, widowed, in a domestic partnership or civil union, or married their marital status was 175 categorized as 'ever married or partnered'. Patients that were unmarried or never married were 176 categorized as 'unmarried or never married'; patients whose status was unknown or did not fit in 177 these categories was categorized as 'other'.

178

Results

179 We identified 261,774 patients with a first-time CKD diagnosis. Black patients accounted for

180 15% of the population (Table 1). Within a year of diagnosis, 140,995 (54.0%) had a diagnosis of

181 hyperkalemia, 5,283 (2.0%) patients had a prescription of a potassium-lowering drug, 2,446

182 (0.9%) had a doubling of serum creatinine, and 330 (0.1%) had an AVF.

183 In Figure 1 and Figure 2, the scale for the outcomes of prescription of potassium lowering 184 drugs (B) has a y-axis of 0% to 5% while doubling of serum creatinine (C) and placement of an AVF (D) and have a y-axis of 0% to 2% due to small probabilities. The probability of all 185 186 outcomes over time differed across cohorts (Figure 1) and across cohorts by race (Figure 2). In 187 Figure 1, we see patients in the post-update cohort were significantly less likely than patients in 188 the pre-update cohort to have any of the four outcomes. Black patients in the pre-update cohort 189 have a higher risk of being prescribed or dispensed a potassium-lowering drug than Black 190 patients in the post-update cohort (Figure 2) but Black patients in both cohorts have a greater probability than their non-Black counterparts, especially as time increases. 191 192 After controlling for comorbidities, SDOH, and demographics, we identified significant 193 interaction between race and cohort in the time-to-hyperkalemia (Table 2). Overall, while both 194 Black and Non-Black patients in the post-update cohort had reductions in the time-to-195 hyperkalemia compared to patients in the pre-update cohort, we found a greater reduction in the 196 diagnosis of hyperkalemia within a year of CKD diagnosis for Non-Black patients compared to 197 Black patients (Table 2, Table 3; p < 0.001). Non-Black patients in the post-update cohort were 198 less likely than those in the pre-update cohort to be diagnosed with hyperkalemia within a year of 199 CKD diagnosis (AHR 0.78; CI 0.77, 0.79). Black patients in the post-update cohort were less 200 likely than those in the pre-update cohort to be diagnosed with hyperkalemia (AHR 0.83; CI 201 0.80, 0.86). Patients with hyperlipidemia (AHR 1.34; CI 1.23, 1.26) and patients with high 202 comorbidity (AHR 1.29; CI 1.27, 1.31) were more likely to be diagnosed with hyperkalemia than 203 patients without hyperlipidemia and patients with low comorbidity. 204 We found a significant difference by cohort in time to prescription of potassium-lowering 205 drugs (Table 4), doubling of serum creatinine (Table 5), and AVF placement (Table 6) after

206 controlling for all covariates. However, changes in the chance of each outcome were not different207 for Black and non-Black patient in each cohort. (Table 2).

- 208 Prescription of potassium-lowering drugs was less likely for patients in the post-update
- 209 cohort than those in the pre-update cohort when considering covariates (AHR 0.87; CI 0.82,
- 210 0.93). Black patients were more likely (AHR 1.27; CI 1.17, 1.38) to obtain potassium lowering
- drugs than non-Black patients. Patients that were obese (AHR 0.84; CI 0.79, 0.90) and those that
- had chronic hypertension (AHR 0.73; CI 0.68, 0.78) were less likely to have a prescription or
- 213 dispense of a potassium-lowering drug.

214 The probability of serum creatinine doubling within one year was lower for patients in

the post-update cohort compared to patients in the pre-update cohort (AHR 0.74; CI 0.68, 0.81).

216 This probability significantly decreased as income increased (Table 5). Patients with chronic

217 hypertension experienced a lower probability of serum creatinine doubling than patients without

218 chronic hypertension (AHR 0.74; CI 0.67, 0.81). Patients with Type 2 diabetes were more likely

to have a doubled serum creatinine than patients without Type 2 diabetes (AHR 1.53; CI 1.40,

220 1.68).

The probability of having an AVF within a year after CKD diagnosis was 23% lower for patients in the post-update cohort than patients in the pre-update cohort (AHR 0.67; CI 0.53, 0.85). Non-Hispanic or Latino patients (AHR 0.43; CI 0.31, 0.59), patients that were ever married or partnered (AHR 0.65; CI 0.49, 0.87), and patients with chronic hypertension (AHR 0.25; CI 0.19, 0.33) were less likely to get an AVF within a year of diagnosis compared to Hispanic or Latino patients, patients that were never married or partnered, and patients without chronic hypertension respectively.

228

Discussion

229	The purpose of this retrospective cohort study was to identify changes in time between
230	first CKD diagnosis and four clinical endpoints tied to ESKD – hyperkalemia, prescription of
231	potassium-lowering drugs, doubling of serum creatinine, and hemodialysis (as measured by AVF
232	placement) – after the implementation of the race-free CKD-EPI 2021. Hyperkalemia was the
233	most probable of the four outcomes investigated in this study of 261,774 patients within the first
234	year after CKD diagnosis after controlling for comorbidities, demographics, and SDOH.
235	Hyperkalemia was the only outcome with a significant change in probability of diagnosis when
236	considering the interaction of the recommended equation (cohort) and race.
237	Hyperkalemia disparities by race
238	Both non-Black and Black patients were less likely to be diagnosed with hyperkalemia
239	after the CKD-EPI 2021 implementation than before the implementation. However, Black
240	patients were still significantly more likely than Non-Black patients to be diagnosed with
241	hyperkalemia within a year of diagnosis. This is consistent with literature suggesting Black
242	patients have high levels of serum potassium and have a higher risk of hyperkalemia within one
243	year of diagnosis compared to white patients.(28) The observed increased risk in this study for
244	Black patients is potentially due to the CKD-EPI 2009 race-adjustment that led to late diagnosis
245	and worse staging at diagnosis than non-Black patients; however, this question is outside the
246	scope of this study.
247	Prescription of potassium lowering drugs does not show the same trend
248	Hyperkalemia can be treated with potassium binders; newer medications include
249	patiromer and sodium zirconium cyclosilicate. Longer term potassium-lowering drug use has
250	been associated with lower mortality for patients with hyperkalemia.(32) These drugs can be
251	expensive in the US, especially for patients that are underinsured or uninsured, which may drive
252	the low utilization in this study and in others.(12)

Fifty-four percent of the present study's patient population developed hyperkalemia but only 0.1% of patients obtained a prescription for potassium-lowering drugs (Table 1). The higher probability of prescription observed for Black patients could be due to earlier diagnosis, lower staging of disease at diagnosis, and earlier access to treatment since race was removed from the CKD-EPI creatinine equation.(21) The longer CKD-EPI 2021 is used, more data will be available to observe time based changes in treatment and diagnosis.

259 Doubling of serum creatinine

260 Doubling of serum creatinine is accepted by the US Food and Drug Administration as a 261 surrogate for kidney failure development and mortality in clinical trials.(16,18,38) Other studies 262 have estimated that the doubling of serum creatinine is equal to a 30% to 50% decrease in a 263 patient's GFR.(18,39,40) The race-inclusive CKD-EPI 2009 equation and the race-free CKD-EPI 264 2021 equation provide different GFR estimations especially for Black patients, affecting both the initial GFR estimation and calculations of GFR change over time. Whereas the change in GFR is 265 266 also dependent on other baseline patient characteristics, treatments, and comorbidities, the 267 present study findings support including the CKD-EPI GFR estimation recommendation as a 268 factor in clinical trials and longitudinal studies to reduce bias in study results. (16,17,38,39) 269 Placement of an AVF

We found a difference in time to AVF placement based on which equation was recommended at time of CKD diagnosis. However, the results were non-informative as we did not have a large enough population of patients with an AVF placement within one year of CKD diagnosis. While disparities exist and are known to exist for the timing to start dialysis, we did not see a significant difference in placement of an AVF by race in this study.(41,42) A longer study period may improve our ability to examine this outcome.

276 The impact of SDOH and comorbidities

277	SDOH and disease comorbidities are important for the development of CKD and disease
278	progression.(5,21,28,43) These factors were significant contributors to potassium-lowering drug
279	prescription and serum creatinine doubling within a year of CKD diagnosis. This may be due to a
280	lack of consistent medical care due to frequent moves, poor access to care or medications,
281	structural barriers leading to late diagnosis, or biased diagnostic guidelines such as CKD-EPI
282	2009.
283	Further statistical exploration of individual comorbidities, multimorbidity, and utilizing
284	alternative SDOH variables could result in a stronger understanding of how patient and system
285	factors contribute to these outcomes and when intervention may be needed.
286	Calculating incidence as future work
287	Most available population estimates of CKD, including those from the CDC, Kidney
288	Disease Surveillance System, and the United States Renal Data System, are prevalence estimates
289	not incidence.(5,44–46) However, incidence numbers are readily available for ESKD.(44,45)
290	The Kidney Disease Surveillance System's published healthcare system estimate of CKD
291	incidence uses Veterans Health Administration data, a population not representative of the adult
292	US population.(47) Determining the incidence of CKD from prevalence is difficult as the
293	average duration of the disease differs by stage and age.(48) While challenging, future work
294	should target systematically identifying an accurate incidence for the US adult population.
295	Strengths and limitations
296	Strengths

This study included 261,774 patients with CKD and had equal follow-up for patients diagnosed before and after the change in the CKD-EPI GFR estimation equation in 2021. The richness of our SDOH data allowed us to consider and adjust for individual level factors that are

300 important for the occurrence of both the development of CKD and each outcome. Having this 301 information at the patient level strengthened our belief in how race and ethnicity affected the 302 time to event for CKD patient outcomes before and after the recommendations to adopt CKD-303 EPI 2021; it has highlighted additional areas for future research. Using EHR data allowed us to 304 easily examine individual level time-based aspects surrounding the time between CKD diagnosis 305 and each outcome of interest. 306 Limitations Our study had several limitations. First, we used the placement of an AVF as opposed to a 307 308 direct measure of dialysis treatment, which likely underestimated the true probability of receipt 309 of dialysis within one year of diagnosis. Second, until 2021, primary diagnosis for CKD was 310 based on equations that incorporated race and have demonstrated racial bias. (4,19,49) As we 311 used the race categories that match CKD-EPI 2009 – Black and non-Black – we did not extend 312 the study to examine a change in outcomes across more groups. Examining these outcomes 313 across more diverse populations is necessary to improve clinical care. EHR data is subject to a variety of limitations.(50) We are only able to identify events 314 315 that are captured by the constituent health care systems that are a part of the Truveta member 316 system. This means we will not capture disease diagnoses, medications, procedures, or

317 laboratory values reported or diagnosed by a health care system that is not a part of the Truveta
318 data. This limitation means we may have missed patients in the implementation of our inclusion
319 and exclusion criteria.

320

Conclusions

We found that the change in recommended CKD-EPI equation to CKD-EPI 2021 combined with race significantly decreased the time to hyperkalemia diagnosis within one year of CKD diagnosis. After the change to CKD-EPI 2021, there was a significant drop in the

324	likelihood of patients being prescribed potassium-lowering drugs or having a doubled serum
325	creatinine within a year of CKD diagnosis. While we expected the implementation of the race-
326	free CKD-EPI 2021 to have a greater effect for Black patients than non-Black patients, we did
327	not see this for most clinical endpoints. We did see decreased probabilities of all four outcomes
328	in the post-update cohort which may indicate that implementation of the race-free CKD-EPI
329	equation may result in the diagnosis of patients earlier in their disease course. Future work
330	should elucidate the mechanisms driving these differences, whether there have been significant
331	changes in treatment practices since the change in the GFR estimation equation, and long-term
332	effects of each outcome.
333	
334	

336		References
337 338 339	1.	Pan American Health Organization: The burden of kidney diseases in the Region of the Americas, 2000-2019 [Internet]. 2021 Available from: https://www.paho.org/en/enlace/burden-kidney-diseases
340 341 342 343 344 345	2.	Centers for Disease Control and Prevention, National Center for Health Statistics: National Vital Statistics System, Provisional Mortality on CDC WONDER Online Database. Data are from the final Multiple Cause of Death Files, 2018-2021, and from provisional data for years 2022-2024, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. [Internet]. 2024 Available from: http://wonder.cdc.gov/mcd-icd10-provisional.html
346 347 348	3.	Farrell DR, Vassalotti JA: Screening, identifying, and treating chronic kidney disease: why, who, when, how, and what? <i>BMC Nephrol</i> [Internet] 25: 34, 2024 Available from: https://doi.org/10.1186/s12882-024-03466-5
349 350 351 352 353 354	4.	Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, Mendu ML, Miller WG, Moxey-Mims MM, Roberts GV, St. Peter WL, Warfield C, Powe NR: A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. <i>J Am Soc Nephrol</i> [Internet] 32: 2994, 2021 Available from: http://jasn.asnjournals.org/content/32/12/2994.abstract
355 356 357	5.	Centers for Disease Control and Prevention: Chronic Kidney Disease in the United States, 2023 [Internet]. Available from: https://www.cdc.gov/kidneydisease/publications-resources/CKD-national-facts.html
358 359	6.	Snow KK, Patzer RE, Patel SA, Harding JL: County-Level Characteristics Associated with Variation in ESKD Mortality in the United States, 2010-2018. <i>Kidney360</i> 3: 891–899, 2022
360 361 362	7.	Smothers L, Patzer RE, Pastan SO, DuBay D, Harding JL: Gender Disparities in Kidney Transplantation Referral Vary by Age and Race: A Multiregional Cohort Study in the Southeast United States. <i>Kidney Int Rep</i> 7: 1248–1257, 2022
363 364 365 366	8.	Davita Inc.: Arteriovenous (AV) Fistula — The Gold Standard Hemodialysis Access [Internet]. 2024 Available from: https://www.davita.com/treatment- services/dialysis/preparing-for-dialysis/arteriovenous-av-fistula-the-gold-standard- hemodialysis-access
367 368 369	9.	Lee T: Fistula First Initiative: Historical Impact on Vascular Access Practice Patterns and Influence on Future Vascular Access Care. <i>Cardiovasc Eng Technol</i> [Internet] 8: 244–254, 2017 Available from: https://doi.org/10.1007/s13239-017-0319-9
370 371	10.	National Kidney Foundation: Facts About High Potassium in Patients with Kidney Disease [Internet]. 2024 Available from: https://www.kidney.org/atoz/content/hyperkalemia/facts

372 373 374 375	11.	Provenzano M, Minutolo R, Chiodini P, Bellizzi V, Nappi F, Russo D, Borrelli S, Garofalo C, Iodice C, De Stefano T, Conte G, Heerspink HJL, De Nicola L: Competing-Risk Analysis of Death and End Stage Kidney Disease by Hyperkalaemia Status in Non-Dialysis Chronic Kidney Disease Patients Receiving Stable Nephrology Care. <i>J Clin Med</i> 7: 2018
376 377 378 379	12.	Esposito P, Conti NE, Falqui V, Cipriani L, Picciotto D, Costigliolo F, Garibotto G, Saio M, Viazzi F: New Treatment Options for Hyperkalemia in Patients with Chronic Kidney Disease. <i>J Clin Med</i> [Internet] 9: 2337, 2020 Available from: https://www.mdpi.com/2077-0383/9/8/2337 [cited 2024 May 2]
380 381 382 383	13.	Montford JR, Linas S: How Dangerous Is Hyperkalemia? <i>J Am Soc Nephrol</i> [Internet] 28: 2017 Available from: https://journals.lww.com/jasn/fulltext/2017/11000/how_dangerous_is_hyperkalemia8.asp x
384 385 386	14.	Sarnowski A, Gama RM, Dawson A, Mason H, Banerjee D: Hyperkalemia in Chronic Kidney Disease: Links, Risks and Management. <i>Int J Nephrol Renov Dis</i> 15: 215–228, 2022
387 388 389 390 391	15.	Pitt B, Bakris GL, Bushinsky DA, Garza D, Mayo MR, Stasiv Y, Christ-Schmidt H, Berman L, Weir MR: Effect of patiromer on reducing serum potassium and preventing recurrent hyperkalaemia in patients with heart failure and chronic kidney disease on RAAS inhibitors. <i>Eur J Heart Fail</i> [Internet] 17: 1057–1065, 2015 Available from: https://doi.org/10.1002/ejhf.402 [cited 2024 Apr 23]
392 393 394	16.	Inker L, Levey A, Coresh J, Greene T, Lambers Heerspink H: How can we better define outcomes in progression of CKD? [Internet]. 2016 Available from: https://kdigo.org/wp-content/uploads/2017/02/Inker_CKD-outcomes_final.pdf
395 396 397 398 399	17.	Heerspink HJL, Jongs N, Neuen BL, Schloemer P, Vaduganathan M, Inker LA, Fletcher RA, Wheeler DC, Bakris G, Greene T, Chertow GM, Perkovic V: Effects of newer kidney protective agents on kidney endpoints provide implications for future clinical trials. <i>Kidney Int</i> [Internet] 104: 181–188, 2023 Available from: https://doi.org/10.1016/j.kint.2023.03.037 [cited 2024 Apr 23]
400 401 402 403 404	18.	Levey AS, Inker LA, Matsushita K, Greene T, Willis K, Lewis E, de Zeeuw D, Cheung AK, Coresh J: GFR Decline as an End Point for Clinical Trials in CKD: A Scientific Workshop Sponsored by the National Kidney Foundation and the US Food and Drug Administration. <i>Am J Kidney Dis</i> [Internet] 64: 821–835, 2014 Available from: https://doi.org/10.1053/j.ajkd.2014.07.030 [cited 2024 Apr 24]
405 406 407 408	19.	Eneanya ND, Boulware LE, Tsai J, Bruce MA, Ford CL, Harris C, Morales LS, Ryan MJ, Reese PP, Thorpe RJ, Morse M, Walker V, Arogundade FA, Lopes AA, Norris KC: Health inequities and the inappropriate use of race in nephrology. <i>Nat Rev Nephrol</i> [Internet] 18: 84–94, 2022 Available from: https://doi.org/10.1038/s41581-021-00501-8
409 410	20.	Deyrup A, Graves JL: Racial Biology and Medical Misconceptions. <i>N Engl J Med</i> [Internet] 386: 501–503, 2022 Available from: https://doi.org/10.1056/NEJMp2116224

 411 21. 412 413 414 415 	Baker C, Gratzl S, Rodriguez PJ, Simonov M, Cartwright BMG, Brar R, Stucky NL: Effects of changes in calculating GFR using KDIGO standards: Discordance in the Staging and Timing of Diagnosis of Chronic Kidney Disease. <i>medRxiv</i> [Internet] 2023.12.21.23300415, 2024 Available from: http://medrxiv.org/content/early/2024/01/03/2023.12.21.23300415.abstract
416 22. 417 418 419	He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z: AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. <i>Kidney</i> <i>Int</i> [Internet] 92: 1071–1083, 2017 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0085253817304994 [cited 2024 May 3]
420 23. 421 422	Bedford M, Farmer C, Levin A, Ali T, Stevens P: Acute Kidney Injury and CKD: Chicken or Egg? <i>Am J Kidney Dis</i> [Internet] 59: 485–491, 2012 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272638611013989 [cited 2024 May 3]
423 24. 424 425	Rifkin DE, Coca SG, Kalantar-Zadeh K: Does AKI Truly Lead to CKD? <i>J Am Soc Nephrol</i> [Internet] 23: 979–984, 2012 Available from: https://journals.lww.com/00001751-201206000-00007 [cited 2024 May 3]
426 25. 427 428 429	Van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ: A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. <i>Med Care</i> [Internet] 47: 626–633, 2009 Available from: https://pubmed.ncbi.nlm.nih.gov/19433995/
430 26. 431	Elixhauser A, Steiner C, Harris DR, Coffey RM: Comorbidity measures for use with administrative data. <i>Med Care</i> 36: 8–27, 1998
432 27. 433 434	Velu JF, Jr. JB: Elixhauser Comorbidity Score Is the Best Risk Score in Predicting Survival After Mitraclip Implantation. <i>Struct Heart</i> [Internet] 2: 53–57, 2018 Available from: https://doi.org/10.1080/24748706.2017.1404172
435 28. 436 437 438	Kim T, Rhee CM, Streja E, Soohoo M, Obi Y, Chou JA, Tortorici AR, Ravel VA, Kovesdy CP, Kalantar-Zadeh K: Racial and Ethnic Differences in Mortality Associated with Serum Potassium in a Large Hemodialysis Cohort. <i>Am J Nephrol</i> [Internet] 45: 509–521, 2017 Available from: https://www.karger.com/Article/FullText/475997 [cited 2024 May 2]
439 29. 440	Cleveland Clinic: Hyperkalemia (High Potassium) [Internet]. 2023 Available from: https://my.clevelandclinic.org/health/diseases/15184-hyperkalemia-high-blood-potassium
441 30. 442 443 444	De Nicola L, Di Lullo L, Paoletti E, Cupisti A, Bianchi S: Chronic hyperkalemia in non- dialysis CKD: controversial issues in nephrology practice. <i>J Nephrol</i> [Internet] 31: 653– 664, 2018 Available from: http://link.springer.com/10.1007/s40620-018-0502-6 [cited 2024 May 2]
445 31.446447	Sarafidis PA, Blacklock R, Wood E, Rumjon A, Simmonds S, Fletcher-Rogers J, Ariyanayagam R, Al-Yassin A, Sharpe C, Vinen K: Prevalence and Factors Associated with Hyperkalemia in Predialysis Patients Followed in a Low-Clearance Clinic. <i>Clin J Am Soc</i>

448 Nephrol [Internet] 7: 1234–1241, 2012 Available from: https://journals.lww.com/01277230-449 201208000-00008 [cited 2024 May 2] 32. Obi Y, Thomas F, Dashputre AA, Goedecke P, Kovesdy CP: Long-term Patiromer Use and 450 451 Outcomes Among US Veterans With Hyperkalemia and CKD: A Propensity-Matched 452 Cohort Study. Kidney Med [Internet] 6: 100757, 2024 Available from: 453 https://linkinghub.elsevier.com/retrieve/pii/S2590059523001759 [cited 2024 May 2] 454 33. Little DJ, Nee R, Abbott KC, Watson MA, Yuan CM: Cost-utility analysis of sodium 455 polystyrene sulfonate vs. potential alternatives for chronic hyperkalemia. Clin Nephrol 456 [Internet] 81: 259–268, 2014 Available from: 457 http://www.dustri.com/article response page.html?artId=11324&doi=10.5414/CN108103 458 &L=0 [cited 2024 May 2] 459 34. Larivée NL, Michaud JB, More KM, Wilson J-A, Tennankore KK: Hyperkalemia: 460 Prevalence, Predictors and Emerging Treatments. Cardiol Ther [Internet] 12: 35-63, 2023 461 Available from: https://link.springer.com/10.1007/s40119-022-00289-z [cited 2024 May 2] 462 35. Jaques DA, Stucker F, Ernandez T, Alves C, Martin P-Y, De Seigneux S, Saudan P: 463 Comparative efficacy of patiromer and sodium polystyrene sulfonate on potassium levels in 464 chronic haemodialysis patients: a randomized crossover trial. Clin Kidney J [Internet] 15: 465 1908–1914, 2022 Available from: https://academic.oup.com/ckj/article/15/10/1908/6583291 466 [cited 2024 May 2] 467 36. Huda AB, Langford C, Lake J, Langford N: Hyperkalaemia and potassium binders: 468 Retrospective observational analysis looking at the efficacy and cost effectiveness of 469 calcium polystyrene sulfonate and sodium zirconium cyclosilicate. J Clin Pharm Ther 470 [Internet] 47: 2170–2175, 2022 Available from: 471 https://onlinelibrary.wiley.com/doi/10.1111/jcpt.13766 [cited 2024 May 2] 472 37. Bakris GL, Pitt B, Weir MR, Freeman MW, Mayo MR, Garza D, Stasiv Y, Zawadzki R, 473 Berman L, Bushinsky DA: Effect of Patiromer on Serum Potassium Level in Patients With 474 Hyperkalemia and Diabetic Kidney Disease: The AMETHYST-DN Randomized Clinical 475 Trial. JAMA [Internet] 314: 151, 2015 Available from: 476 http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2015.7446 [cited 2024 May 2] 477 38. Badve SV, Palmer SC, Hawley CM, Pascoe EM, Strippoli GFM, Johnson DW: Glomerular 478 filtration rate decline as a surrogate end point in kidney disease progression trials. Nephrol 479 Dial Transplant [Internet] 31: 1425–1436, 2016 Available from: 480 https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfv269 [cited 2024 May 16] 481 39. Inker LA, Lambers Heerspink HJ, Mondal H, Schmid CH, Tighiouart H, Noubary F, Coresh 482 J, Greene T, Levey AS: GFR Decline as an Alternative End Point to Kidney Failure in 483 Clinical Trials: A Meta-analysis of Treatment Effects From 37 Randomized Trials. Am J 484 Kidney Dis [Internet] 64: 848–859, 2014 Available from: 485 https://linkinghub.elsevier.com/retrieve/pii/S0272638614011846 [cited 2024 May 16]

486 487 488 489	40.	Greene T, Teng C-C, Inker LA, Redd A, Ying J, Woodward M, Coresh J, Levey AS: Utility and Validity of Estimated GFR–Based Surrogate Time-to-Event End Points in CKD: A Simulation Study. <i>Am J Kidney Dis</i> [Internet] 64: 867–879, 2014 Available from: https://linkinghub.elsevier.com/retrieve/pii/S027263861401186X [cited 2024 May 16]
490 491 492 493 494	41.	Norris KC, Williams SF, Rhee CM, Nicholas SB, Kovesdy CP, Kalantar-Zadeh K, Ebony Boulware L: Hemodialysis Disparities in African Americans: The Deeply Integrated Concept of Race in the Social Fabric of Our Society. <i>Semin Dial</i> [Internet] 30: 213–223, 2017 Available from: https://onlinelibrary.wiley.com/doi/10.1111/sdi.12589 [cited 2024 May 16]
495 496 497 498 499	42.	Vélez-Bermúdez M, Adamowicz JL, Askelson NM, Lutgendorf SK, Fraer M, Christensen AJ: Disparities in dialysis modality decision-making using a social-ecological lens: a qualitative approach. <i>BMC Nephrol</i> [Internet] 23: 276, 2022 Available from: https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-022-02905-5 [cited 2024 May 16]
500 501	43.	Norton JM, Moxey-Mims MM, Eggers PW, Narva AS, Star RA, Kimmel PL, Rodgers GP: Social Determinants of Racial Disparities in CKD. <i>J Am Soc Nephrol</i> 2016
502 503 504	44.	Centers for Disease Control and Prevention: Kidney Disease Surveillance System, Trends in Prevalence of CKD among U.S. Adults [Internet]. 2024 Available from: https://nccd.cdc.gov/CKD/detail.aspx?Qnum=Q9#refreshPosition
505 506 507 508	45.	United States Renal Data System: 2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States [Internet]. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD %8, 2023 Available from: https://adr.usrds.org/2023
509 510 511 512	46.	Ying M, Shao X, Qin H, Yin P, Lin Y, Wu J, Ren J, Zheng Y: Disease Burden and Epidemiological Trends of Chronic Kidney Disease at the Global, Regional, National Levels from 1990 to 2019. <i>Nephron</i> [Internet] 148: 113–123, 2024 Available from: https://karger.com/doi/10.1159/000534071 [cited 2024 May 16]
513 514 515	47.	Centers for Disease Control and Prevention: Trends in Incidence Rate of CKD among U.S. Veterans, Kidney Disease Surveillance System [Internet]. 2024 Available from: https://nccd.cdc.gov/CKD/detail.aspx?Qnum=Q89&topic=1#refreshPosition
516 517	48.	Neild GH: Life expectancy with chronic kidney disease: an educational review. <i>Pediatr Nephrol Berl Ger</i> 32: 243–248, 2017
518 519 520	49.	Levey AS, Titan SM, Powe NR, Coresh J, Inker LA: Kidney Disease, Race, and GFR Estimation. <i>Clin J Am Soc Nephrol</i> [Internet] 15: 1203–1203, 2020 Available from: http://cjasn.asnjournals.org/content/15/8/1203.abstract
521 522 523	50.	Kataria S, Ravindran V: Electronic Health Records: A Critical Appraisal of Strengths and Limitations. <i>J R Coll Physicians Edinb</i> [Internet] 50: 262–268, 2020 Available from: https://doi.org/10.4997%2Fjrcpe.2020.309

524 Tables

- 525 Table 1. Descriptive statistics of patients with poor outcomes within 1 year of chronic kidney
- 526 disease diagnosis by Recommended CKD-EPI Creatinine Equation

Characteristic	Overall , N = 261,774	CKD-EPI 2009 (Pre- update),	CKD-EPI 2021 (Post- update),
	· - ,· ·	N = 87,903	N = 173,871
Race, n (%)			
Not Black*	222,647 (85%)	76,038 (87%)	146,609 (84%)
Black*	39,127 (15%)	11,865 (13%)	27,262 (16%)
Age Group, n (%)			
18-44	11,748 (4.5%)	4,041 (4.6%)	7,707 (4.4%)
45-64	55,848 (21%)	18,877 (21%)	36,971 (21%)
65+	194,178 (74%)	64,985 (74%)	129,193 (74%)
Sex, n (%)			
Female	135,909 (52%)	45,327 (52%)	90,582 (52%)
Male	125,865 (48%)	42,576 (48%)	83,289 (48%)
Ethnicity, n (%)			
Hispanic or Latino	20,481 (7.8%)	6,960 (7.9%)	13,521 (7.8%)
Not Hispanic or Latino	227,193 (87%)	76,307 (87%)	150,886 (87%)
Unknown	14,100 (5.4%)	4,636 (5.3%)	9,464 (5.4%)
Marital Status, n (%)			
Unmarried and Never Married	43,449 (17%)	14,115 (16%)	29,334 (17%)
Ever Married or Partnered	200,434 (77%)	67,363 (77%)	133,071 (77%)
Other	1,546 (0.6%)	457 (0.5%)	1,089 (0.6%)
Unknown	16,345 (6.2%)	5,968 (6.8%)	10,377 (6.0%)
Distance in Miles to Closest Ties, n (%)			
Less than 25 miles	204,375 (91%)	70,511 (91%)	133,864 (91%)
25 - 100 miles	3,949 (1.8%)	1,420 (1.8%)	2,529 (1.7%)

Characteristic	Overall,	CKD-EPI 2009 (Pre-	CKD-EPI 2021 (Post-
	N = 261,774	update),	update),
		N = 87,903	N = 173,871
100 - 500 miles	3,636 (1.6%)	1,239 (1.6%)	2,397 (1.6%)
Over 500 miles	4,411 (2.0%)	1,559 (2.0%)	2,852 (1.9%)
No Information	7,789 (3.5%)	2,894 (3.7%)	4,895 (3.3%)
Estimated Annual Income Range, n (%)			
0 - 30,000	20,338 (9.1%)	6,897 (9.0%)	13,441 (9.2%)
30,001 - 50,000	99,636 (45%)	34,607 (45%)	65,029 (45%)
50,001 - 80,000	71,460 (32%)	23,958 (31%)	47,502 (33%)
80,001 - 100,000	17,761 (8.0%)	6,565 (8.5%)	11,196 (7.7%)
100,001 - 120,000	8,396 (3.8%)	3,087 (4.0%)	5,309 (3.6%)
More than 120K	4,849 (2.2%)	1,812 (2.4%)	3,037 (2.1%)
Number of Address Changes in Last 12 Months, n (%)			
0	201,368 (90%)	69,776 (90%)	131,592 (90%)
1	19,349 (8.6%)	6,668 (8.6%)	12,681 (8.7%)
2 or More	3,446 (1.5%)	1,179 (1.5%)	2,267 (1.5%)
Elixhauser Comorbidity Index Score**, n (%)			
0- < 11	186,444 (71%)	62,350 (71%)	124,094 (71%)
11 - 15	29,832 (11%)	10,046 (11%)	19,786 (11%)
> 15	45,498 (17%)	15,507 (18%)	29,991 (17%)
Chronic Hypertension (Yes/No), n (%)			
No	99,532 (38%)	33,323 (38%)	66,209 (38%)

Characteristic	Overall,	CKD-EPI 2009 (Pre-	CKD-EPI 2021 (Post-
	N = 261,774	update),	update),
		N = 87,903	N = 173,871
Yes	162,242 (62%)	54,580 (62%)	107,662 (62%)
Type 2 Diabetes (Yes/No), n (%)			
No	141,577 (54%)	47,255 (54%)	94,322 (54%)
Yes	120,197 (46%)	40,648 (46%)	79,549 (46%)
Hyperlipidemia (Yes/No), n (%)			
No	73,074 (28%)	24,970 (28%)	48,104 (28%)
Yes	188,700 (72%)	62,933 (72%)	125,767 (72%)
Obesity (Yes/No), n (%)			
No	128,164 (49%)	42,481 (48%)	85,683 (49%)
Yes	133,610 (51%)	45,422 (52%)	88,188 (51%)
Hyperkalemia, n (%)			
No	120,779 (46%)	34,538 (39%)	86,241 (50%)
Yes	140,995 (54%)	53,365 (61%)	87,630 (50%)
Potassium Drug Prescription Request, n (%)			
No	256,491 (98%)	85,907 (98%)	170,584 (98%)
Yes	5,283 (2.0%)	1,996 (2.3%)	3,287 (1.9%)
Doubling of Serum Creatinine, n (%)			
No	259,328 (99%)	86,868 (99%)	172,460 (99%)
Yes	2,446 (0.9%)	1,035 (1.2%)	1,411 (0.8%)
Fistula Placement, n (%)			
No	261,444 (100%)	87,750 (100%)	173,694 (100%)
Yes	330 (0.1%)	153 (0.2%)	177 (0.1%)

*Black refers to Black or African American Individuals

**Elixhauser Comorbidity Index computed using van Walraven weights. Categories correlate to low, medium, and high comorbidity.

527

- 529 Table 2. Comparison of adjusted cox-proportional hazard ratios by cohort and race for time to
- 530 prescription of potassium-lowering drugs, arteriovenous graft fistula placement, hyperkalemia
- 531 diagnosis, and doubling of serum creatinine after chronic kidney disease diagnosis

	Hyperkalemia Diagnosis	Prescription of Potassium- lowering Drugs	Doubling of Serum Creatinine	Arteriovenous Graft Fistula Placement
AHR Black* Post-Update (Reference Black* Pre-Update)	0.83	0.79	0.82	0.78
AHR Non-Black* Post-Update (Reference Non- Black* Pre- Update)	0.78	0.90	0.72	0.64
p-value**	< 0.001	0.12	0.25	0.53

*Black refers to Black or African American Individuals

**Each p-value from the respective adjusted Cox-proportional hazards model for each outcome. Each model measures the time to the outcome by cohort (CKD-EPI 2021 and CKD-EPI 2009) considering interaction of cohort with race (Black* and non-Black*). A significant p-value (≤ 0.05) that does not include 1.00 indicates that there is interaction between cohort and race in the respective model.

All models are adjusted for age group, sex, ethnicity, marital status, distance in miles to closest ties, estimated annual income range, number of address changes in the last 12 months, Elixhauser Comorbidity Index Score with van Walraven weights, chronic hypertension, type 2 diabetes, hyperlipidemia, and obesity.

	Definitions: AHR = adjusted hazard ratio; CKD-EPI 2021 = CKD-EPI 2021 Creatinine Equation; CKD-EPI 2009 = CKD-EPI 2009 Creatinine Equation
532	
533	
534	
535	
536	

537 Table 3. Impact of Demographics, Social Determinants and Comorbidities on Hyperkalemia

538 After Chronic Kidney Disease Diagnosis

Characteristic	\mathbf{HR}^{I}	95% CI ¹	p-value
CKD-EPI Serum Creatinine Formula			
CKD-EPI 2009 (Pre-update)			
CKD-EPI 2021 (Post-update)	0.78	0.77, 0.79	< 0.001
Race			
Not Black*			
Black*	1.02	0.99, 1.04	0.26
Age Group			
18-44			
45-64	1.03	1.00, 1.07	0.049
65+	1.03	1.0, 1.06	0.10
Sex			
Female			
Male	0.95	0.94, 0.96	< 0.001
Ethnicity			
Hispanic or Latino			
Not Hispanic or Latino	0.93	0.91, 0.95	< 0.001
Unknown	0.84	0.81, 0.87	< 0.001
Marital Status			
Unmarried and Never Married			
Ever Married or Partnered	1.08	1.06, 1.10	< 0.001
Other	1.06	0.98, 1.14	0.13
Unknown	1.18	1.15, 1.22	< 0.001
Distance in Miles to Closest Ties			
Less than 25 miles			
25 - 100 miles	1.04	1.00, 1.09	0.050
100 - 500 miles	1.04	0.99, 1.08	0.13
Over 500 miles	1.05	1.01, 1.09	0.019
No Information	1.04	1.01, 1.08	0.005
Estimated Annual Income Range (USD\$)			
0 - 30,000			
30,001 - 50,000	1.03	1.00, 1.05	0.016
50,001 - 80,000	1.06	1.04, 1.08	< 0.001
80,001 - 100,000	1.08	1.05, 1.12	< 0.001
100,001 - 120,000	1.09	1.05, 1.13	< 0.001

Characteristic	\mathbf{HR}^{I}	95% CI ¹	p-value
More than 120K	1.05	1.00, 1.09	0.045
Number of Address Changes in Last 12 Months			
0			
1	1.02	1.00, 1.05	0.018
2 or More	1.08	1.03, 1.13	0.001
Elixhauser Comorbidity Index Score**			
0- < 11			
11 - 15	1.12	1.11, 1.14	< 0.001
≥ 15	1.29	1.27, 1.31	< 0.001
Chronic Hypertension (Yes/No)			
No			
Yes	1.00	0.99, 1.02	0.52
Type 2 Diabetes (Yes/No)			
No			
Yes	1.08	1.06, 1.09	< 0.001
Hyperlipidemia (Yes/No)			
No			
Yes	1.24	1.23, 1.26	< 0.001
Obesity			
No			
Yes	1.11	1.10, 1.12	< 0.001
CKD-EPI Serum Creatinine Formula * Race			
CKD-EPI 2021 * Black*	1.06	1.02, 1.09	< 0.001

*Black refers to Black or African American Individuals

**Elixhauser Comorbidity Index computed using van Walraven weights. Categories correlate to low, medium, and high comorbidity

¹HR = Hazard Ratio, CI = Confidence Interval

539

540

542 Table 4. Impact of Demographics, Social Determinants and Comorbidities on Prescription of

543 Potassium-lowering Drugs After Chronic Kidney Disease Diagnosis

Characteristic	\mathbf{HR}^{I}	95% CI ¹	p-value
CKD-EPI Serum Creatinine Formula			
CKD-EPI 2009 (Pre-update)			
CKD-EPI 2021 (Post-update)	0.87	0.82, 0.93	< 0.001
Race			
Not Black*			
Black*	1.27	1.17, 1.38	< 0.001
Age Group			
18-44			
45-64	1.00	0.87, 1.14	0.96
65+	0.76	0.67, 0.87	< 0.001
Sex			
Female			
Male	1.33	1.25, 1.42	< 0.001
Ethnicity			
Hispanic or Latino			
Not Hispanic or Latino	0.57	0.52, 0.64	< 0.001
Unknown	0.72	0.61, 0.85	< 0.001
Marital Status			
Unmarried and Never Married			
Ever Married or Partnered	0.81	0.75, 0.89	< 0.001
Other	1.49	1.12, 1.98	0.007
Unknown	1.03	0.90, 1.19	0.66
Distance in Miles to Closest Ties			
Less than 25 miles			
25 - 100 miles	1.30	1.06, 1.60	0.011
100 - 500 miles	0.96	0.75, 1.24	0.78
Over 500 miles	1.17	0.95, 1.45	0.13
No Information	0.86	0.72, 1.03	0.11
Estimated Annual Income Range (USD\$)			
0 - 30,000			
30,001 - 50,000	0.73	0.67, 0.81	< 0.001
50,001 - 80,000	0.64	0.58, 0.72	< 0.001
80,001 - 100,000	0.55	0.47, 0.65	< 0.001
100,001 - 120,000	0.57	0.46, 0.70	< 0.001

Characteristic	\mathbf{HR}^{1}	95% CI ¹	p-value
More than 120K	0.54	0.41, 0.71	< 0.001
Number of Address Changes in Last 12 Months			
0			
1	1.27	1.15, 1.40	< 0.001
2 or More	1.32	1.07, 1.64	0.009
Elixhauser Comorbidity Index Score**			
0- < 11			
11 - 15	1.02	0.91, 1.13	0.79
≥ 15	1.14	1.04, 1.24	0.006
Chronic Hypertension (Yes/No)			
No			
Yes	0.73	0.68, 0.78	< 0.001
Type 2 Diabetes (Yes/No)			
No			
Yes	1.82	1.70, 1.95	< 0.001
Hyperlipidemia (Yes/No)			
No			
Yes	0.72	0.67, 0.77	< 0.001
Obesity (Yes/No)			
No			
Yes	0.84	0.79, 0.90	< 0.001

*Black refers to Black or African American Individuals

**Elixhauser Comorbidity Index computed using van Walraven weights. Categories correlate to low, medium, and high comorbidity

¹HR = Hazard Ratio, CI = Confidence Interval

544

546 Table 5. Impact of Demographics, Social Determinants and Comorbidities on Doubling of Serum

547 Creatinine After Chronic Kidney Disease Diagnosis

Characteristic	\mathbf{HR}^{I}	95% CI ¹	p-value
CKD-EPI Serum Creatinine Formula			
CKD-EPI 2009 (Pre-update)			
CKD-EPI 2021 (Post-update)	0.74	0.68, 0.81	< 0.001
Race			
Not Black*			
Black*	1.33	1.19, 1.49	< 0.001
Age Group			
18-44			
45-64	0.81	0.67, 0.97	0.024
65+	0.60	0.50, 0.72	< 0.001
Sex			
Female			
Male	0.93	0.85, 1.02	0.12
Ethnicity			
Hispanic or Latino			
Not Hispanic or Latino	0.80	0.68, 0.93	0.005
Unknown	0.75	0.58, 0.97	0.026
Marital Status			
Unmarried and Never Married			
Ever Married or Partnered	0.95	0.84, 1.07	0.37
Other	0.98	0.60, 1.62	0.94
Unknown	1.17	0.96, 1.43	0.12
Distance in Miles to Closest Ties			
Less than 25 miles			
25 - 100 miles	1.08	0.79, 1.47	0.64
100 - 500 miles	0.95	0.67, 1.34	0.75
Over 500 miles	1.06	0.79, 1.44	0.69
No Information	0.86	0.67, 1.11	0.24
Estimated Annual Income Range (USD\$)			
0 - 30,000			
30,001 - 50,000	0.71	0.63, 0.81	< 0.001
50,001 - 80,000	0.59	0.51, 0.68	< 0.001
80,001 - 100,000	0.65	0.53, 0.80	< 0.001
100,001 - 120,000	0.51	0.38, 0.69	< 0.001

Characteristic	\mathbf{HR}^{1}	95% CI ¹	p-value
More than 120K	0.60	0.42, 0.85	0.005
Number of Address Changes in Last 12 Months			
0			
1	1.16	1.01, 1.34	0.035
2 or More	1.08	0.78, 1.50	0.63
Elixhauser Comorbidity Index Score**			
0- < 11			
11 - 15	1.14	0.99, 1.31	0.066
≥ 15	1.46	1.30, 1.64	< 0.001
Chronic Hypertension (Yes/No)			
No			
Yes	0.74	0.67, 0.81	< 0.001
Type 2 Diabetes (Yes/No)			
No			
Yes	1.53	1.40, 1.68	< 0.001
Hyperlipidemia (Yes/No)			
No			
Yes	1.00	0.90, 1.11	>0.99
Obesity (Yes/No)			
No			
Yes	1.07	0.98, 1.18	0.12

*Black refers to Black or African American Individuals

**Elixhauser Comorbidity Index computed using van Walraven weights. Categories correlate to low, medium, and high comorbidity

¹HR = Hazard Ratio, CI = Confidence Interval

548

550 Table 6. Impact of Demographics, Social Determinants and Comorbidities on Fistula Placement

551 After Chronic Kidney Disease Diagnosis

Characteristic	\mathbf{HR}^{I}	95% CI ¹	p-value
CKD-EPI Serum Creatinine Formula			
CKD-EPI 2009 (Pre-update)			
CKD-EPI 2021 (Post-update)	0.67	0.53, 0.85	< 0.001
Race			
Not Black*			
Black*	1.13	0.83, 1.55	0.44
Age Group			
18-44			
45-64	1.13	0.74, 1.73	0.56
65+	0.64	0.42, 1.00	0.048
Sex			
Female			
Male	1.36	1.07, 1.72	0.013
Ethnicity			
Hispanic or Latino			
Not Hispanic or Latino	0.43	0.31, 0.59	< 0.001
Unknown	0.35	0.18, 0.69	0.002
Marital Status			
Unmarried and Never Married			
Ever Married or Partnered	0.65	0.49, 0.87	0.004
Other	1.29	0.47, 3.53	0.62
Unknown	0.67	0.39, 1.16	0.15
Distance in Miles to Closest Ties			
Less than 25 miles			
25 - 100 miles	1.44	0.71, 2.91	0.32
100 - 500 miles	0.21	0.03, 1.47	0.12
Over 500 miles	0.92	0.38, 2.24	0.86
No Information	1.06	0.58, 1.96	0.84
Estimated Annual Income Range (USD\$)			
0 - 30,000			
30,001 - 50,000	1.40	0.93, 2.11	0.10
50,001 - 80,000	1.27	0.81, 1.98	0.30
80,001 - 100,000	0.64	0.31, 1.35	0.24
100,001 - 120,000	1.24	0.57, 2.67	0.59

Characteristic	\mathbf{HR}^{1}	95% CI ¹	p-value
More than 120K	1.59	0.68, 3.69	0.29
Number of Address Changes in Last 12 Months			
0			
1	1.11	0.77, 1.61	0.58
2 or More	0.69	0.26, 1.86	0.46
Elixhauser Comorbidity Index Score**			
0- < 11			
11 - 15	0.40	0.21, 0.75	0.004
≥ 15	0.34	0.18, 0.63	< 0.001
Chronic Hypertension (Yes/No)			
No			
Yes	0.25	0.19, 0.33	< 0.001
Type 2 Diabetes (Yes/No)			
No			
Yes	1.66	1.30, 2.13	< 0.001
Hyperlipidemia (Yes/No)			
No			
Yes	0.64	0.49, 0.82	< 0.001
Obesity (Yes/No)			
No			
Yes	0.75	0.58, 0.96	0.022

*Black refers to Black or African American Individuals

**Elixhauser Comorbidity Index computed using van Walraven weights. Categories correlate to low, medium, and high comorbidity

¹HR = Hazard Ratio, CI = Confidence Interval

552

553

555 Figures

556 Figure 1. Time to Poor Chronic Kidney Disease Outcomes After Diagnosis by Cohort

Time to Poor Chronic Kidney Disease Outcomes After Diagnosis By Cohort

For visibility, the four Kaplan-Meier curves have different axes. Plot A is scaled from 0 - 20% on the y-axis; Plot B is scaled from 0 - 5% on the y axis; and Plots C and D are scaled from 0 - 2% on the y axis.

All outcomes are within one year of chronic kidney disease diagnosis:

A - Hyperkalemia.

B - Prescription or dispense of potassium-lowering drugs.

- C Doubling of serum creatinine.
- D Arteriovenous Fistula Graft Placement.

Strata specific time to event were compared using the log-rank test. P-values from this test are presented on each graph.

558

557

560 Figure 2. Time to Poor Chronic Kidney Disease Outcomes After Diagnosis by Cohort and Race

Time to Poor Chronic Kidney Disease Outcomes After Diagnosis By Cohort and Race

For visibility, the four Kaplan-Meier curves have different axes. Plot A is scaled from 0 - 20% on the y-axis; Plot B is scaled from 0 - 5% on the y axis; and Plots C and D are scaled from 0 - 2% on the y axis.

All outcomes are within one year of chronic kidney disease diagnosis:

A - Hyperkalemia.

B - Prescription or dispense of potassium-lowering drugs.

- C Doubling of serum creatinine.
- D Arteriovenous Fistula Graft Placement.

Strata specific time to event were compared using the log-rank test. P-values from this test are presented on each graph.

561

562

563

565	Declarations
566	• Funding
567	\circ No external funding was obtained for this work.
568	Competing interests
569	• All authors are employees of Truveta, Incorporated.
570	• Ethics approval and consent to participate
571	• Normalized electronic health record data are de-identified by expert determination
572	under the HIPAA Privacy Rule before being made available to researchers. In
573	accordance with 45 C.F.R. § 46.101 Protection of Human Subjects, our study did
574	not require Institutional Review Board approval because it used only deidentified
575	medical records. All data used in this study are publicly available to Truveta
576	subscribers and may be accessed at studio.truveta.com.
577	• Availability of Data and Materials
578	• The data and code used in this study is available to all Truveta subscribers and
579	may be accessed at <u>http://studio.truveta.com</u> .
580	Author contributions
581	• Conceptualization: CB, NLS, PJR, MS. Methodology: CB, PJR, RB, SG. Data
582	acquisition: CB, SG, BMGC, RB. Data analysis: CB, SG, BMGC, PJR.
583	Interpretation: CB, MS, NLS, PJR. Initial draft: CB. Revisions: CB, SG,
584	BMGC, NLS, MS, PJR. Final document review and approval for publication: All
585	authors.
586	
587	