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Abstract 27 

Physicians could greatly benefit from automated diagnosis and prognosis tools to help address 28 

information overload and decision fatigue. Intensive care physicians stand to benefit greatly from such 29 

tools as they are at particularly high risk for those factors. Acute Respiratory Distress Syndrome (ARDS) 30 

is a life-threatening condition affecting >10% of critical care patients and has a mortality rate over 40%. 31 

However, recognition rates for ARDS have been shown to be low (30-70%) in clinical settings. In this 32 

work, we present a reproducible computational pipeline that automatically adjudicates ARDS on 33 

retrospective datasets of mechanically ventilated adult patients. This pipeline automates the steps outlined 34 

by the Berlin Definition through implementation of natural language processing tools and classification 35 

algorithms. We train an XGBoost model on chest imaging reports to detect bilateral infiltrates, and 36 

another on a subset of attending physician notes labeled for the most common ARDS risk factor in our 37 

data. Both models achieve high performance—a minimum area under the receiver operating characteristic 38 

curve (AUROC) of 0.86 for adjudicating chest imaging reports in out-of-bag test sets, and an out-of-bag 39 

AUROC of 0.85 for detecting a diagnosis of pneumonia. We validate the entire pipeline on a cohort of 40 

MIMIC-III encounters and find a sensitivity of 93.5% — an extraordinary improvement over the 22.6% 41 

ARDS recognition rate reported for these encounters — along with a specificity of 73.9%. We conclude 42 

that our reproducible, automated diagnostic pipeline exhibits promising accuracy, generalizability, and 43 

probability calibration, thus providing a valuable resource for physicians aiming to enhance ARDS 44 

diagnosis and treatment strategies. We surmise that proper implementation of the pipeline has the 45 

potential to aid clinical practice by facilitating the recognition of ARDS cases at scale.  46 
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Introduction 47 

Physicians, including intensivists, process large amounts of dispersed information on many 48 

patients. This potential information overload poses serious risks to patient safety. Several studies1–3 have 49 

estimated that 100,000-400,000 fatalities per year may be due to medical errors. While information 50 

overload is a challenge for humans, vast amounts of information become advantageous if used as an input 51 

for machine learning (ML) approaches. Recent advances in artificial intelligence, ML, and data science 52 

are enabling the development of protocols to extract knowledge from large datasets. However, some of 53 

those approaches lack interpretability and have been shown to be fragile (e.g., recent re-analysis of 54 

attempts to diagnose COVID-19 from chest X-ray images4). 55 

In this study, we report the development and validation of a ML pipeline to help physicians 56 

adjudicate acute respiratory distress syndrome (ARDS). ARDS, a syndrome of severe acute hypoxemia 57 

resulting from inflammatory lung injury5,6, is an ideal case for the development of a diagnostic aid tool. 58 

ARDS recognition requires physicians to synthesize information from multiple distinct data streams and 59 

determine whether it fits a standard definition of ARDS. The criteria of the clinically-based Berlin 60 

Definition of ARDS include quantitative data (paO2:FIO2 ≤ 300 mm Hg), unstructured data (bilateral 61 

opacities on chest imaging), and subjective data (assessing for the presence of ARDS risk factors and 62 

cardiac failure)5. Despite ARDS’ high prevalence, morbidity, and mortality, prior research has shown that 63 

many patients with ARDS are not recognized by their treating physicians6,7. The poor recognition rate of 64 

ARDS is at least partially due to the difficulty in evaluating the Berlin Definition criteria, which requires 65 

the physician to access laboratory data, chest images or radiology notes, other physicians’ notes, and 66 

echocardiographic data or notes, then apply the Berlin criteria to determine whether ARDS is present. 67 

Under-recognition of ARDS plays an important role in under-utilization of evidence-based ARDS 68 

treatment (e.g., low tidal volume ventilation and prone positioning), even when physicians believe these 69 

interventions are warranted8. An automated approach to help identify ARDS diagnostic criteria has the 70 

potential to be a powerful aid to physician decision-making, leading to improved ARDS recognition and 71 

therefore improved ARDS management. 72 
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Previous studies have demonstrated some success in automating the recognition of individual 73 

ARDS diagnostic components using electronic health record (EHR) screening “sniffers”9–11. In addition, a 74 

ML algorithm to risk stratify patients for ARDS using structured clinical data derived from the EHR was 75 

shown to have good discriminative performance12. Regarding automating the entire ARDS diagnostic 76 

algorithm, two studies13,14 have recently reported implementation of keyword search (i.e. rule-based 77 

approach) in the EHR with validation conducted for 100 intensive care unit (ICU) admissions from a 78 

single time period and from a single institution. A third study recently reported on a computable Berlin 79 

Definition which employed a previously developed neural network approach to adjudicate chest imaging 80 

reports restricted to patients with a single, known ARDS risk factor (COVID-19), with promising 81 

performance (93% sensitivity, 92% specificity)15. However, no study has successfully and reproducibly 82 

automated the entire sequence of steps required by the Berlin Definition of ARDS or tested the 83 

discriminative performance of the tool on a general population of critically ill patients who received 84 

invasive mechanical ventilation. Addressing this gap is the goal of this study. 85 

 86 

Data and Methods 87 

Cohort Development and Data Collection 88 

We developed three patient cohorts for this study: Cohort MC1-T1, Cohort MC1-T2, and Cohort 89 

MC2-T3, where MC indicates the “Medical Center'' and T indicates the “Time Period.” In addition, we 90 

obtained data from the Medical Information Mart for Intensive Care (MIMIC-III) database 16,17. MIMIC-91 

III is a large, single-center database of critically ill patients at a tertiary care medical center. It includes all 92 

the components necessary to identify ARDS and therefore apply our pipeline, and the data is freely 93 

available. For all four cohorts, patients were included if they were at least 18 years old; were admitted to 94 

an adult ICU; and had acute hypoxemic respiratory failure requiring invasive mechanical ventilation (at 95 

least one recorded PaO2/FIO2 ≤300 mm Hg while receiving positive-end expiratory pressure ≥ 5cm H2O)7. 96 

The study was approved by the Institutional Review Boards of Northwestern University (STU00208049) 97 

and Endeavor Health (EH17-325). Table 1 summarizes the data collected for the four cohorts. 98 
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 99 

Table 1. Cohort characteristics and data annotation. MC refers to “Medical Center”, T refers to “Time 100 

Period”. 101 

  

Source 

  

Report type 

   

Number   

% bilateral 

infiltrates 

Rater 

IDs 

MC1-T1 
Chest imaging 

reports 

5,839 reports 

(800 patients) 
60% 1 

MC1-T1 
Attending 

physician notes 

12,582 notes 

(790 patients) 
  

MC1-T1  

Adjudicated 

Attending 

physician notes  

2,034 notes 

(400 patients) 
 1, 5 

MC1-T1 
Echocardiogram 

reports 

1,006 reports 

(681 patients) 
  

MC1-T2 
Chest imaging 

reports 

6,040 reports 

(749 patients) 
44% 1 

MC2-T3 
Chest imaging 

reports 

631 reports 

(90 patients) 
34% 1, 2, 3, 4 

MIMIC-III 
Chest imaging 

reports 

975 reports 

(100 patients) 
22% 1,6 

MIMIC-III 
Attending 

physician notes 

887 notes 

(100 patients) 
 1,6 

MIMIC-III 
Echocardiogram 

reports 

89 reports 

(100 patients) 
 1,6 

 102 

Cohort MC1-T1 103 

We previously characterized a cohort of 943 patients, which we denote here as MC1-T1, who met 104 

the above inclusion criteria at a single academic medical center between June and December 2013. We 105 

collected the following data: all PaO2/FIO2 ratios; the unstructured text of all radiologist reports for chest 106 

imaging (radiographs and CT scans), critical care attending physician notes, and echocardiogram reports; 107 

and B-type natriuretic peptide (BNP) values obtained from hospital admission to the earliest of 108 

extubation, death, or discharge. Data were reviewed by study personnel to determine whether each 109 
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individual Berlin Definition criterion was present, and whether all criteria taken together were consistent 110 

with a diagnosis of ARDS 7. 111 

We collected 5,839 chest imaging reports from 800 Cohort MC1-T1 patients. Study personnel 112 

adjudicated 57% of these chest imaging reports as describing bilateral infiltrates consistent with the Berlin 113 

Definition5. We developed our machine learning (ML) approach to bilateral infiltrate adjudication using 114 

these Cohort MC1-T1 reports. 115 

For 790 of the 800 Cohort MC1-T1 patients with a chest imaging report, we also had at least one 116 

attending physician note. We collected 12,582 attending physician notes for these patients, of which 2,034 117 

notes from a subset of 400 patients were annotated by study personnel for the presence of ARDS risk 118 

factors (e.g., pneumonia, sepsis, aspiration, etc.)5. We used this annotated subset of 2,034 notes to develop 119 

our ML and regular expression (regex) approach for finding ARDS risk factors and cardiac failure 120 

language in attending physician notes. 121 

We collected 1,006 echocardiogram (echo) reports from 681 Cohort MC1-T1 patients. Study 122 

personnel from a prior analysis7 text-matched and adjudicated each echo report for the presence or 123 

absence of: left ventricular ejection fraction < 40%, cardiopulmonary bypass at time of echo, left 124 

ventricular hypertrophy, left atrial dimension > 4cm or left atrial volume index > 28 mL/m2, and Grade II 125 

or III diastolic dysfunction. Separately, 35 BNP values were included for 32 patients in Cohort MC1-T1. 126 

We used echo reports and BNP values to develop our objective cardiac failure rule-out approach.7 127 

Since identification of Berlin Definition-consistent bilateral infiltrates is the most challenging 128 

task11,18 in our computational pipeline, we analyzed the chest imaging reports from two additional cohorts 129 

of patients to test our ML algorithm, Cohort MC1-T2 and Cohort MC2-T3. 130 

Cohort MC1-T2 131 

Cohort MC1-T2 comprises 749 patients admitted during 2016 at the same medical center as 132 

Cohort MC1-T1 and meeting the same inclusion criteria. We collected 6,040 chest imaging reports for 133 

these patients. Study personnel adjudicated 44% of Cohort MC1-T2 reports as describing bilateral 134 

infiltrates. We used this cohort only to train a second ML algorithm for bilateral infiltrate adjudication. 135 
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Cohort MC2-T3 136 

Cohort MC2-T3 comprises 90 patients admitted to a different medical center in 2017–2018 and 137 

meeting the same inclusion criteria as Cohorts MC1-T1 and MC1-T2. We collected 631 chest imaging 138 

reports for these 90 patients. Study personnel adjudicated 34% of these chest imaging reports as 139 

describing bilateral infiltrates. We used these reports from Cohort MC2-T3 only to test ML algorithms for 140 

bilateral infiltrate adjudication. 141 

MIMIC-III 142 

We identified the set of patients in the MIMIC-III dataset who satisfied the inclusion criteria used 143 

to develop cohort MC1-T1. This resulted in a set comprising 3,712 encounters. We then used our 144 

automated pipeline to adjudicate the presence or absence of ARDS for all those encounters, and randomly 145 

selected a balanced cohort comprising 100 encounters, which we denote as the MIMIC-III cohort. Each of 146 

the encounters in the MIMIC-III cohort was adjudicated by one critical care physician and one internal 147 

medicine physician for whether each individual Berlin Definition criterion was present, and whether all 148 

criteria taken together were consistent with a diagnosis of ARDS. This cohort, with physician 149 

adjudications, is publicly available at Northwestern’s ARCH database. 150 

The records of these 100 MIMIC-III patients included 975 chest imaging reports, 887 attending 151 

physician notes, and 89 echocardiogram (echo) reports. The critical care physician adjudicated 22.3% of 152 

these chest imaging reports as describing bilateral infiltrates consistent with the Berlin Definition5. The 153 

same individual also annotated 887 attending physician notes for the presence of ARDS risk factors5 and 154 

cardiac failure language, and 89 echo reports for the presence or absence of: left ventricular ejection 155 

fraction < 40%, cardiopulmonary bypass at time of echo, left ventricular hypertrophy, left atrial 156 

dimension >  4cm or left atrial volume index > 28 mL/m2, and Grade II or III diastolic dysfunction.7 We 157 

used these adjudicated datasets to evaluate the performance of our ML algorithm. 158 

Analysis 159 

Adjudication of bilateral infiltrates from chest imaging reports 160 
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We preprocessed chest imaging reports to remove patient information, non-informative sections 161 

(e.g. technique, indication, history, etc.), and non-informative words. We then tokenized the remaining 162 

sections (i.e., separated the text into sets of unigrams and bigrams) and prepared the data for use of a “bag 163 

of words” approach (i.e, we vectorized these tokens according to their counts in the imaging reports). 164 

When training a ML model on a given corpus, we used the 200 most frequently appearing tokens across 165 

the imaging reports in the respective corpus as model features. 166 

We trained four different ML models (decision trees, logistic regression, random forest 167 

classifiers, and extreme gradient boosting ‘XGBoost’19) on chest imaging reports from Cohort MC1-T1, 168 

which was also used to perform hyperparameter tuning for the four models. We performed 169 

hyperparameter tuning using Bayesian optimization, which is available through the hyperopt package 170 

(v.0.2.7)20 for Python (v.3.10.12). For each model, we performed 5-fold cross-validation to obtain the 171 

mean Area under the Receiver Operating Characteristic (AUROC) curve for each hyperparameter 172 

combination considered. We then selected the optimal combination of hyperparameters as the one 173 

yielding the highest 5-fold cross-validation mean AUROC after at least 100 iterations. We also derived 174 

another set of optimal hyperparameters for XGBoost trained with chest imaging reports from Cohort 175 

MC1-T2 in the same fashion. 176 

Unless otherwise noted, all cross-validation strategies used healthcare encounters (a.k.a, patient 177 

admissions), not individual reports. We split the reports this way to avoid having chest imaging reports 178 

from the same encounter found in both the training and validation data (a problem known as “data 179 

leakage”). Thus, we ensured all reports from a given encounter can only be found on either the training or 180 

validation data (but not both). We also used nested cross-validation to prevent data leakage, as this avoids 181 

tuning hyperparameters on validation data. 182 

For comparing the performance of the four models, we used nested cross-validation by doing 5-183 

fold cross-validation to obtain a mean AUROC across five different folds. Furthermore, each fold’s 184 

training set was used to tune that model’s hyperparameters as described above (i.e., five separate 185 

hyperparameter tuning exercises). However, we note that we used a 3-fold cross-validation strategy for 186 
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this tuning due to the computational cost of running nested cross-validation. We repeated this nested cross 187 

validation 10 times, each time with a different resampling with replacement of the data (i.e. a bootstrap) 188 

to yield a distribution of mean AUROCs on test sets. 189 

We used 95% confidence intervals to compare ROC curves and AUROCs across different 190 

models. For obtaining feature/token importance during training, we employed the default “importance” 191 

method that version 1.1.3 of the scikit-learn package implements for decision tree, logistic regression, and 192 

random forest algorithms, and version 1.7.4 of xgboost package for XGBoost. For decision tree and 193 

random forest, feature importance corresponds to the mean decrease in Gini impurity; for logistic 194 

regression, importances correspond to the mean value of coefficients in the fitted linear equation; and for 195 

XGBoost, the importance corresponds to the mean gain in predictive performance obtained by including a 196 

particular feature in the trees. 197 

We also evaluated the inter-rater disagreement rate for chest imaging reports from MIMIC III. 198 

For this purpose, we obtained two independent adjudications (one critical care physician and one internal 199 

medicine physician) for 975 reports available, and split imaging reports into three groups according to 200 

XGBoost output probabilities. For each group, we then calculated the fraction of imaging reports for 201 

which these independent raters disagreed on their adjudications. 202 

Finally, to assess how our XGBoost implementation for chest imaging reports generalizes to other 203 

datasets, we tuned hyperparameters and then trained XGBoost models on all chest imaging reports from 204 

Cohort MC1-T1 and MC1-T2, separately. We then tested each of the two models on the two other chest 205 

imaging corpora the model had not yet seen by comparing the AUROC values. We used 100 bootstrapped 206 

samples to gather 95% confidence intervals for the mean AUROC values. 207 

Adjudication of risk factors from physician notes 208 

The Berlin Definition of ARDS requires the presence of at least one risk factor — e.g., 209 

pneumonia, sepsis, shock, inhalation, pulmonary contusion, vasculitis, drowning, drug overdose — within 210 

seven days of non-cardiogenic acute respiratory failure. We preprocessed attending physician notes from 211 

Cohort MC1-T1 to remove identifiable information from the text of these notes. We then used regular 212 
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expressions (regex v2022.10.31) to match keywords related to risk factor and heart failure language (see 213 

SI: Regular expression list 1, for a complete list of risk factors). To validate this strategy, we ensured that 214 

this regex approach matched 100% of the notes that had a positive adjudication for a particular risk factor 215 

(or close to 100% as possible). We also corrected common spelling errors on important keywords, such as 216 

‘pneunonia’, ‘spetic’ or ‘cardigenic’. To prevent data leakage during ML development, we again split the 217 

adjudicated notes into train and test sets by encounter, not note. 218 

Adjudicating the presence of a risk factor is not as simple as finding a particular keyword in a 219 

physician note. For example, a note stating “patient is unlikely to have pneumonia” should not be 220 

classified as evidence of pneumonia. To account for such possibilities, we implemented a strategy in 221 

which, after matching a particular keyword, we extract a text string from the note starting 100 characters 222 

prior to the occurrence of the keyword and extending 100 characters post the keyword. Subsequently, we 223 

tokenized and vectorized the strings as described in the previous subsection. 224 

Using the vectorized tokens, we trained XGBoost models for a select group of risk/cardiac failure 225 

factors, employing a similar nested cross-validation strategy as the one pursued for the adjudication of 226 

chest imaging reports (except in this case we used 100 resamples instead of 10). Note that not all risk 227 

factors were amenable to a ML approach: we chose risk factors that had more than 100 notes annotated, 228 

were risk factors for ARDS (or a cardiac failure criterion) and had relatively balanced yes/no proportions 229 

after regex-matching (between 33% and 66%, see SI Table 1). This resulted in the use of 1409 230 

adjudicated attending notes from 337 patients for ML development (see SI Table 1 for a breakdown of 231 

notes used for each risk factor/cardiac failure criterion). 232 

Objective adjudication of cardiac failure from echocardiogram reports 233 

We preprocessed echo reports from MC1-T1 to remove identifiable information from text. We 234 

then developed regex patterns that first matched keywords associated with the following parameters: left 235 

ventricular ejection fraction, cardiopulmonary bypass, left atrial diameter, left atrial volume index, left 236 

ventricular hypertrophy, and grade II or III diastolic dysfunction (see SI: Regular expression list 2 for 237 

regex patterns). Once these parameters were found in the echo report text, we then extracted numerical 238 
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values of numerical variables (left ventricular ejection fraction, left atrial diameter, and left atrial volume 239 

index), and the matched text otherwise. 240 

Design of ARDS adjudication pipeline: chaining Berlin Definition steps 241 

Each of the steps outlined above automates the adjudication of specific criteria in the Berlin 242 

Definition, with the modifications specified previously7. We integrate the different criteria into a single 243 

pipeline to build an automated ARDS adjudication pipeline. 244 

The ARDS adjudication pipeline first flags encounters with at least one hypoxemia measurement 245 

(i.e., one instance of PF ratio ≤ 300 mm Hg while PEEP ≥ 5 cm H20), and then uses the predictions of an 246 

XGBoost model trained on chest imaging reports from MC1-T1 to adjudicate presence of bilateral 247 

infiltrate language in chest imaging reports. Upon settling these two criteria, the pipeline flags whether 248 

the hypoxemia record and the report consistent with bilateral infiltrates have timestamps within 48 hours 249 

of each other (which we term “qualified hypoxemia”). In addition, at this step the pipeline ensures that the 250 

hypoxemia record was taken at or after intubation. Next, the pipeline uses the predictions of an XGBoost 251 

model trained on attending physician notes that have pneumonia keywords to adjudicate pneumonia on all 252 

notes and uses regex to flag presence of other risk factors, cardiac failure language (e.g., cardiac arrest), 253 

and indicators of cardiogenic and noncardiogenic language. Finally, the pipeline flags whether an 254 

attending physician note has a timestamp that falls between one day prior to and seven days after the latter 255 

timestamp of any of the qualifying hypoxemia-bilateral infiltrates pairs. Once these annotations are 256 

integrated, the pipeline proceeds to adjudicate whether an ARDS diagnosis is warranted. 257 

If any risk factor is identified in this time window for an encounter, via XGBoost or regex, the 258 

pipeline adjudicates the encounter as an ARDS case.  If no risk factors are identified, but cardiac failure 259 

language is identified in the notes through the use of regex, the pipeline adjudicates the encounter as a 260 

“No ARDS” case. 261 

For all other encounters not meeting the risk factor or cardiac failure language criteria described 262 

above, the pipeline flags the case for objective cardiac failure assessment7. This assessment is done 263 

sequentially instead of by flagging. If any encounter had BNP greater than 100 pg/mL (an indicator of 264 
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heart failure), the pipeline adjudicates “No ARDS” for such an encounter. The pipeline then considers the 265 

remaining encounters for each subsequent criteria, adjudicating “No ARDS” if the encounter had any of 266 

the following: left ventricular ejection fraction < 40%, cardiopulmonary bypass found in echocardiogram 267 

report, or at least two of the following present in the echocardiogram report: (i) left atrial diameter > 4 cm 268 

or left atrial volume index > 28 mL/m2, (ii) left ventricular hypertrophy, or (iii) Grade II or III diastolic 269 

dysfunction. 270 

Any encounter that is not ruled out for ARDS after the objective cardiac failure assessment step is 271 

adjudicated as an ARDS case. That is, the pipeline adds these encounters to those adjudicated as positive 272 

for ARDS via risk factor identification. 273 

 274 

Results 275 

Adjudication of bilateral infiltrates 276 

Figure 1a shows the Receiver Operator Characteristic (ROC) curves for the decision tree model 277 

applied to chest imaging reports from Cohort MC1-T1. We quantify model predictive performance using 278 

the areas under the ROC curves (AUROCs). We observe that once hyperparameters for each model are 279 

optimized, all models trained on chest imaging reports from MC1-T1 achieve AUROCs of at least 0.90 280 

on the training set (Decision tree: AUROC = 0.89, 95%CI = [0.89, 0.91]; logistic regression: AUROC = 281 

0.92, 95%CI = [0.91, 0.93]; random forest: AUROC = 0.94, 95%CI = [0.93, 0.95]; XGBoost: AUROC = 282 

0.95, 95%CI = [0.94, 0.95]) (Fig. 1b). 283 

We next calculated the importance that each model assigned to the 200 tokens used as features. 284 

Reassuringly, we find that the four models consistently identify tokens such as edema, bilateral, clear, and 285 

atelectasis as the most predictive (Fig. 1c). These tokens correspond closely to the inclusion/exclusion 286 

language we developed to address Berlin Definition shortcomings7, which we also observed when 287 

implementing Shapley-additive explanations (SHAP) values to assess feature importance (SI Fig. 1). 288 

 289 
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Figure 1. Machine learning (ML) models achieve high-performance in adjudicating the presence of bilateral 290 

infiltrates from chest imaging reports.  Error bars show 95% confidence intervals for estimates of the mean 291 

obtained using bootstrapping. a) Receiver operating characteristic (ROC) curve for the decision tree model trained 292 

on chest imaging reports from Cohort MC1-T1. b) Bootstrapped mean area under the ROC (AUROC) show that all 293 

four ML approaches yield AUROCs greater or equal to 0.90. c) Feature importances for the four different ML 294 

approaches considered. Features in bold are highly ranked in importance in at least 3 of the 4 approaches. 295 

 296 

 297 

We then assessed how calibrated were the outcome probabilities from the models by comparing 298 

model outcome probability after training to actual probability of occurrence in considered encounters 299 

from MC1-T1 chest imaging reports. Figures 2a-c suggest that logistic regression and XGBoost models 300 

output probabilities that are well calibrated, which is expected given their use of similar loss functions for 301 
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fitting (log-loss). In contrast, random forest produces poorly calibrated probabilities, being over-confident 302 

when forecasting with confidence levels lower than 50%, and under-confident with confidence levels 303 

greater than 50%. We thus select XGBoost as the implemented approach for our pipeline as it offers the 304 

highest predictive performance (AUROC = 0.95, 95%CI = [0.94, 0.95]) and well-calibrated forecasts on 305 

the training set (Durbin-Watson statistic = 1.55, 95%CI = [1.10-1.87]). 306 

 307 

Figure 2. Assessment of ML implementation probabilities. Comparing calibration of MC1-T1 probabilities by a) 308 

logistic regression, b) random forest, and c) XGBoost. A perfectly calibrated model would have a 1:1 relationship 309 

between fraction of positive labels and mean probabilities (i.e., it would overlay the diagonal line). The Durbin-310 

Watson statistic, DW, probes for correlations in the residuals, if DW is close to 2, then one can rule out correlations 311 

in the residuals, implying good linear behavior. d) Comparing inter-rater disagreement rate to the confidence in 312 

adjudicating bilateral infiltrates from chest imaging reports from MIMIC III by an XGBoost model trained on chest 313 

imaging reports from Cohort MC1-T2. 314 

 315 

 316 

The good calibration of the prediction of the XGBoost model prompted us to test the hypothesis 317 

that the estimated probabilities by the model may contain information regarding the agreement rate of 318 
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physician adjudications of the same chest imaging reports. To this end, we leveraged MIMIC III report 319 

annotations by two independent raters, a critical care physician and an internal medicine physician. We 320 

evaluated how the agreement between these two independent raters in adjudicating chest imaging reports 321 

from MIMIC III associated with the output probabilities of an XGBoost classifier trained on chest 322 

imaging reports from Cohort MC1-T1. Specifically, we binned predictions into three groups: high-323 

confidence ‘No’ (probability of bilateral infiltrates <10%), high-confidence ‘Yes’ (probability of bilateral 324 

infiltrates >90%), low confidence (all other probabilities of bilateral infiltrates). As seen on Figure 2d, the 325 

interrater disagreement was highest (16.6%) for the cases of high confidence ‘Yes’ predictions. This 326 

suggests that the model could be an effective way to avoid false negatives by a physician’s 327 

misinterpretation of chest imaging reports and can be used to alert that there is a high chance of a report 328 

being consistent with bilateral infiltrates. It also suggests that this model is most reliable when it indicates 329 

a low probability of a chest imaging report showing bilateral infiltrates. 330 

 331 

Figure 3. Evaluation of XGBoost’s generalization performance to MC2-T3 and MIMIC-III cohorts. We show 332 

AUROCs with bootstrapped 95% confidence intervals as error bars for XGBoost models trained on a) chest imaging 333 

reports from cohort MC1-T1, and b) chest imaging reports from cohort MC1-T2. 334 

 335 

 336 

 337 

To assess how a model developed for a specific cohort generalizes to a different health system 338 

dataset, we tested this MC1-T1-trained XGBoost model on chest imaging reports from Cohort MC2-T3 339 
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and MIMIC-III (Fig. 3a). The MC1-T1-trained XGBoost model yields AUROCs of 0.88 (95%CI = [0.84, 340 

0.91]) and 0.87 (95%CI = [0.83, 0.90]) when applied to Cohort MC2-T3 and MIMIC-III, respectively. 341 

We also trained a second XGBoost model on chest imaging reports from Cohort MC1-T2 and tested this 342 

model against chest imaging reports from MC2-T3 and MIMIC-III. We found similar results to the first 343 

XGBoost model, with an AUROC of 0.90 (95%CI = [0.87, 0.92]) when applying this MC1-T2-trained 344 

model to chest imaging reports from MC2-T3, and an AUROC of 0.86 (95%CI = [0.82, 0.89]) when 345 

applying this model to chest imaging reports from MIMIC-III (Fig. 3b). 346 

 347 

Figure 4. Confusion matrices for the performance of regex approach to capture risk factors in attending 348 

physician notes. ‘Sepsis’ and ‘shock’ are the most prevalent risk factors for ARDS after pneumonia. ‘Cardiogenic’ 349 

and ‘cardiac arrest’ are the most prevalent cardiac failure keywords in attending physician notes. Notice the absence 350 

of false negatives, which indicates that regex-matching can capture all instances in which a physician adjudicated 351 

the language as being present in the attending physician note. 352 

 353 

 354 

 355 
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Extracting ARDS risk factors in attending physician notes 356 

We first developed regex patterns to match keywords for the risk factors. As shown in Fig. 4, the 357 

developed regex patterns match 100% of the notes that were annotated ‘yes’ for a particular risk factor in 358 

MC1-T1. When we count the total number of notes annotated as either yes or no, the most prevalent 359 

matches were sepsis (744 notes annotated vs. 748 notes regex-matched), pneumonia (636 notes annotated 360 

vs. 955 regex-matched), and shock (604 notes annotated vs. 607 regex-matched). For the cardiac failure 361 

criteria, the relevant matches were the cardiogenic keyword (176 notes annotated vs. 725 regex-matched) 362 

to qualify the matching of shock, and congestive heart failure (254 notes annotated vs. 352 regex-363 

matched). We thus feel confident that the built regex-patterns can match nearly the entirety of the notes 364 

annotated as “yes” for specific risk factors. 365 

Next, we trained an XGBoost model on attending physician notes from Cohort MC1-T1 to 366 

adjudicate pneumonia, aspiration, congestive heart failure, and sepsis. We chose these risk factors for ML 367 

because at least 100 attending physician notes were annotated for them, and their annotations have 368 

relatively balanced yes/no proportions after regex-matching (between 33% and 66%, with the exception 369 

of sepsis; see Table S1). We did not use all 2,034 records from Cohort MC1-T1 to train each of the 370 

models since not every record had an annotation or a keyword for a given risk factor. For instance, only 371 

636 notes in Cohort MC1-T1 included an annotation for pneumonia, whereas we were able to match 955 372 

notes for pneumonia using regex. Therefore, our training dataset for each of the three models consisted of 373 

all notes that were regex-matched for that particular risk factor. For notes that were regex-matched but did 374 

not have an annotation, we imputed the annotation as ‘No’, or zero. 375 

We used nested cross-validation for every XGBoost implementation (pneumonia, sepsis, etc.). 376 

This involved splitting data into a train and test set, tuning hyperparameters on the train set using 3-fold 377 

cross validation and measuring AUROC on the test set. Since we used 5-fold cross-validation, this 378 

process was repeated 5 times per bootstrapped sample, yielding 5 AUROCs. We repeated the above 379 

process for a total of 100 bootstrapped data samples to evaluate the mean AUROCs obtained by each of 380 

the models. We observed that out of the three XGBoost implementations, the pneumonia model yielded 381 
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the best discriminative performance during cross-validation (Pneumonia: AUROC = 0.93, 95%CI = [0.90, 382 

0.95]; CHF: AUROC = 0.82, 95%CI = [0.75, 0.88]; Aspiration: AUROC = 0.73, 95%CI = [0.60, 0.83]; 383 

Sepsis: AUROC = 0.76, 95%CI = [0.66, 0.85]; Fig. 5a), the best calibration (DW = 1.70, 95%CI = [1.13-384 

2.22]; Fig. 5b), and the overall better generalizability to attending notes from MIMIC-III (Pneumonia: 385 

AUROC = 0.86, 95%CI = [0.81, 0.89];  Aspiration: AUROC = 0.42, 95%CI = [0.31, 0.51]; Sepsis: 386 

AUROC = 0.81, 95%CI = [0.70, 0.91]; Fig. 5c). This is in stark contrast to the XGBoost models for 387 

congestive heart failure, aspiration, and sepsis: These models have underwhelming performance on cross-388 

validation, generalizability to MIMIC-III, and turn out poorly calibrated on attending notes from MC1-T1 389 

(Fig. 5d). Thus, we decided against integrating these three ML models into our pipeline. 390 

 391 

Figure 5. XGBoost model performance in adjudicating for presence of risk factors in attending physician 392 

notes amenable to ML techniques. a) Cross-validated performance of XGBoost models trained to adjudicate 393 

pneumonia, congestive heart failure, aspiration, and sepsis on MC1-T1 attending notes. b) Training set calibration 394 

curve for the pneumonia XGBoost model. c) Test set performance of XGBoost models trained to adjudicate 395 

pneumonia, aspiration, and sepsis using MC1-T1 attending notes. We did not have labels for CHF available for 396 

MIMIC-III, therefore we did not explore the generalizability of this model. d) Training set calibration curve for the 397 

sepsis XGBoost model. 398 

 399 
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Instead, we use regex-matching and a simple heuristic to adjudicate other ARDS risk 400 

factor/cardiac failure language in Cohort MC1-T1. Note that this is not a limitation since many other 401 

types of ARDS risk factor/cardiac failure language are more predictable in their adjudication. For 402 

example, of the 105 attending physician notes matching for ‘cardiac arrest’, 103 were annotated as ‘yes’ 403 

(Table S1). Thus, our heuristic was to adjudicate a risk factor as ‘present’ if it was annotated as ‘yes’ in 404 

more than 80% of the matched notes. These included shock, cardiac arrest, pulmonary contusion, 405 

vasculitis, drowning, and overdose. 406 

Adjudication of cardiac failure from echocardiogram (echo) reports 407 

The criteria for the objective assessment of cardiac failure rely on the following six factors: left 408 

ventricular ejection fraction, cardiopulmonary bypass, left atrial diameter, left atrial volume index, left 409 

ventricular hypertrophy, and grade II or III diastolic dysfunction. Because echo reports are highly 410 

standardized, it is possible to extract these factors from the reports using regex. Moreover, we had access 411 

to echo reports from Cohort MC1-T1 which were previously text-matched, enabling us to validate our 412 

regex approach. 413 

Using the regex patterns listed in the SI, we analyze Cohort MC1-T1’s echo reports for the 414 

presence or absence of each of the six factors of interest. Figure 6 demonstrates that not all six factors 415 

were present in every echo report. For three of the six factors — ‘left ventricular ejection fraction’, ‘left 416 

atrial dimension/diameter’, and ‘left atrial volume index’— we found excellent agreement between regex 417 

and text-matching. Two of the other three, ‘cardiopulmonary bypass’ and ‘diastolic function’, were not 418 

text-matched, so no comparison can be made. For ‘left ventricular hypertrophy’, the regex-matching 419 

procedure correctly captured the desired language, indicating that the original text-matching procedure 420 

failed to identify 13 echo reports. In addition, we validated the numerical values extracted through this 421 

regex approach by randomly selecting 10% of echo reports for visual inspection of values and comparing 422 

against values extracted through regex. We found 100% concordance between values extracted and those 423 

retrieved manually (SI Table 2). 424 

 425 
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Figure 6. Confusion matrices comparing the flagging performance of regex-matching against text-matching 426 

for ‘Left ventricular ejection fraction’, ‘Left atrial dimension/diameter’, ‘Left atrial volume index’, and ‘Left 427 

ventricular hypertrophy’. Note the large discrepancy for the annotations of ‘left ventricular hypertrophy’, which is 428 

explained in text. 429 

 430 

 431 

 432 

Adjudication of ARDS for entire MC1-T1 cohort 433 

We are now ready to compare the performance of our complete pipeline against the previously 434 

reported ARDS adjudication7. For the XGBoost model components of the pipeline (chest imaging reports 435 

and pneumonia risk factor adjudications), we use a threshold of 50% to map estimated probabilities into 436 

binary yes/no decisions. 437 

We conduct the evaluation of our pipeline for the 943 patients in the MC1-T1 ARDS adjudication 438 

cohort who were 18 years and older, received invasive mechanical ventilation, and had acute hypoxemic 439 

respiratory failure (Fig. 7). 143 patients had no chest imaging report available and were adjudicated as 440 
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negative for ARDS. The remaining 800 patients had at least one chest imaging report available. The 441 

XGBoost model trained on MC1-T1 adjudicated bilateral infiltrates within 48 h of a hypoxemic episode 442 

for 529 patients. Of these 529 patients, 448 had at least one of the qualified hypoxemic events occurring 443 

post-intubation and 322 had a risk factor within 7 days of the qualified hypoxemia event, and were 444 

adjudicated as being positive for ARDS. 445 

 446 

Figure 7. Machine learning computational pipeline for adjudication of MC1-T1 cohort yields a small fraction 447 

of false negatives and a manageable fraction of false positives. a) Flowchart of ARDS diagnosis by 448 

computational pipeline (blue) vs. physician (black). b) Confusion matrix comparing physician adjudication from 449 

previous publication7 against ML computational adjudication pipeline. 450 

 451 

 452 

The remaining 126 patients were then evaluated for cardiac failure. For 21 patients, the physician 453 

notes indicated cardiac failure and they were adjudicated as negative for ARDS. The last 105 patients 454 
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were then adjudicated using the objective cardiac failure assessment step; 62 were adjudicated to have 455 

cardiac failure and thus negative for ARDS and the remaining 43 were adjudicated as positive for ARDS. 456 

In total, the pipeline adjudicated 365 patients as positive for ARDS and 578 as negative for ARDS. 457 

In summary, using a simple 50% probability cutoff for both ML algorithms, our pipeline yields 458 

close agreement with the physician adjudication of ARDS for this cohort7 (Fig. 7a). Specifically, the 459 

pipeline yields a sensitivity or true positive rate of 93.4% on this cohort, which compares favorably to the 460 

19% ARDS diagnosis rate we found on this cohort7. Importantly, this high sensitivity is achieved while 461 

maintaining a very low 12.5% rate of false positives. 462 

 463 

Figure 8. Machine learning computational pipeline for adjudication of MIMIC-III cohort yields a small 464 

fraction of false negatives and a manageable fraction of false positives. a) Flowchart of ARDS diagnosis by 465 

computational pipeline (blue) vs. physician (black). b) Confusion matrix comparing physician adjudication (ground 466 

truth) against ML computational adjudication pipeline (left panel), and physician adjudication (ground truth) against 467 

a less experienced physician adjudication. 468 

 469 
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Adjudication of ARDS for MIMIC-III labeled subset 470 

We applied our automated ARDS adjudication to the 100 patient encounters in the MIMIC-III 471 

cohort. We then compared physician adjudication against the pipeline’s (Fig. 8). Reassuringly, and again 472 

using a simple 50% probability cutoff for both ML algorithms, we find that the overall performance of 473 

our pipeline on the MIMIC-III cohort subset is strikingly similar to its performance on the development 474 

cohort7 (Fig. 8b). Specifically, the pipeline yields a sensitivity or true positive rate of 93.5% on this 475 

cohort, which compares favorably to the 22.6% ARDS documentation rate we found in this subset. This 476 

high sensitivity is achieved while maintaining a relatively low 26.1% rate of false positives. Moreover, 477 

the false negative rate of pipeline adjudication is lower than that of a less experienced physician, 478 

highlighting the pipeline's potential to aid physicians in ARDS diagnosis. 479 

 480 

Discussion 481 

We believe that computational pipelines aiming to help physicians with the diagnosis of complex 482 

conditions must follow two principles. First, they should act as physician aids, not physician 483 

replacements. That is, they should flag a potential diagnosis for consideration by the responsible 484 

physician, rather than mandate a diagnosis as certain. Second, and a consequence of the first, they should 485 

provide interpretable insights. Others have pointed out21 that machine learning (ML) should only be 486 

considered as the final decision maker for problems that can be interpreted as deterministic, such as 487 

differentiating a dog from a cat in a photo. However, for tasks where the characteristics of the two classes 488 

overlap and the outcome of the decision has important consequences, such as medical decision-making, 489 

the ML approaches should be used to provide an estimation of probabilities, not a final determination. 490 

In this study, we construct and validate a ML pipeline for automating the adjudication of ARDS 491 

according to the Berlin Definition based on data from EHRs. We constructed high performing decision 492 

tree-based models (XGBoost) to adjudicate chest imaging reports for bilateral infiltrate language and 493 

attending physician notes for the presence of pneumonia. These tree-based methods estimate probabilities, 494 
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the first stage of any classification problem, and enable physicians to optimize the false positive vs. false 495 

negative tradeoff by adjusting the decision cutoff. In addition, our implementation of XGBoost allows 496 

language-level interpretation of estimated probabilities, which can enhance physician trust in ML models. 497 

Supplementing the above XGBoost models with regular expressions to identify other ARDS risk 498 

factors and cardiac failure, and additional structured data to objectively rule out cardiac failure,7 enabled 499 

the automated adjudication of the complete set of Berlin Definition criteria. This pipeline demonstrated 500 

excellent test characteristics, including false negative and false positive rates of 6.9% and 12.4%, 501 

respectively, at the 50% decision cutoff. We then validated the generalizability of the pipeline on a subset 502 

of the MIMIC-III dataset, demonstrating a similar – high – level of performance. 503 

To our knowledge, this study is the first to automate the entire Berlin Definition process using 504 

ML and rules-based methods in a multi-center, open-source, generalizable manner. Previous attempts at 505 

automated ARDS adjudication used single-center EHR data to adjudicate individual Berlin criteria or 506 

used non-reproducible methods. Afshar et. al. used text features in chest imaging reports for ARDS 507 

identification, achieving a maximum AUROC of 0.80 for that task22. However, our work identifies ARDS 508 

by considering data beyond chest imaging reports. Sathe et. al. developed EHR-Berlin, evaluating the 509 

Berlin Definition using ML and rules-based methods, but their focus was limited to COVID-19 patients15; 510 

by using a cohort of patients who were already defined as having an ARDS risk factor, they effectively 511 

eschewed the need to identify ARDS risk factors or cardiac failure. In contrast, our study considers any 512 

adult patient placed on mechanical ventilation, which requires evaluating all Berlin Definition 513 

components. Finally, Song and Li developed a fully rules-based tool that automates the entire Berlin 514 

Definition, both achieving identical high performance13,14. However, their models were constructed within 515 

a single hospital, which may not be reproducible across different health systems. Conversely, the 516 

generalizability and reproducibility of our ARDS adjudication pipeline have been demonstrated 517 

conclusively. 518 

Machine learning offers a powerful solution for efficiently analyzing large volumes of data that 519 

would otherwise require countless hours of human effort. A recent study that combined NLP techniques 520 
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with manual chart abstraction to evaluate clinical trial outcomes confirms this assertion. The time spent 521 

on review decreased from 2,000 laborious hours for manual chart abstraction to just 34.3 hours with NLP-522 

screened manual chart abstraction23. Similarly, our pipeline demonstrates the ability to adjudicate ARDS 523 

for multiple cohorts of hundreds of patients in under five minutes by training XGBoost models at runtime 524 

(with even faster runtimes possible using pre-trained models on inference mode). 525 

A potential limitation is that previous studies have shown significant variability in the diagnosis 526 

of ARDS among critical care physicians, particularly in relation to interpretation of chest imaging18. We 527 

attempted to mitigate concerns raised by this challenge by only relying on chest imaging reports written 528 

by radiologists. This allowed us to use previously developed Berlin Definition-based inclusion and 529 

exclusion language as a guideline for critical care physicians reviewing chest imaging reports to minimize 530 

interrater disagreements7. As a consequence, we are also able to leverage this inclusion and exclusion 531 

language for the NLP processing of chest imaging reports needed for our ML approach. We believe this 532 

choice allowed us to increase the signal-to-noise ratio of the data used for ML development; however, we 533 

recognize that choosing chest imaging reports over the images themselves might limit implementation of 534 

this pipeline for real-time use. On the other hand, we explored the relationship between interrater 535 

disagreement and ML model confidence. We found that lower disagreement rates among our raters 536 

correlated with relatively lower model confidence of “yes”, indicating that our algorithm can confidently 537 

“discard” cases which are not likely to have bilateral infiltrates. Interestingly, we also observed that our 538 

raters exhibited higher levels of disagreement when the model had high model confidence of “yes”. We 539 

speculate this could be attributed to MIMIC III containing more reports that are not consistent with 540 

bilateral infiltrates (88%). 541 

Concerning the adjudication of ARDS risk factors, we faced a significant challenge in 542 

implementing machine learning techniques for parsing attending physician notes due to the lack of clearly 543 

defined inclusion/exclusion language for adjudicating ARDS risk factors. In addition, we only had 744 544 

attending physician notes labeled for sepsis, the most of any risk factor, compared to more than 12,000 545 
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labeled chest imaging reports. Nonetheless, it is striking that even a regex approach for this step yielded 546 

high overall pipeline performance and a small fraction of false negatives. 547 

A possible path to improve performance could involve refining the note-parsing process using 548 

advanced natural language processing techniques such as Med-BERT, cTAKES, or leveraging the 549 

capabilities of open-source large language models. The latter technique has the potential to eliminate 550 

laborious pre-processing steps and facilitate the development of general-purpose models instead of task-551 

specific ones23. This is especially true since we use regex patterns for attending physician notes and 552 

echocardiogram reports, which would very likely need redevelopment for each health system in which 553 

our pipeline would get implemented. However, while such advanced approaches offer exciting 554 

opportunities, we must remain cautious as it is in the interest of patients and physicians to implement 555 

approaches that prioritize interpretability and transparency. Not to mention the cost-effectiveness of 556 

developing and deploying pipelines such as ours instead of those relying on large language models (in 557 

token consumption and computational resources, among other costs).  558 

Our pipeline compellingly answers the specific question being posed: can we automate the 559 

identification of ARDS in a way that is clinically relevant? In the clinical realm, minimizing the false 560 

negative rate (at the expense of a still manageable but higher false positive rate) means applying ARDS 561 

treatment to patients who do not have ARDS, which is likely to be less harmful than not treating patients 562 

who do have ARDS but were not recognized as such 26,27. The pipeline powerfully addresses this clinical 563 

goal. 564 

While our pipeline could aid researchers and quality reviewers during retrospective reviews, its 565 

greatest potential impact lies in its integration with clinical decision support systems, enabling timely 566 

alerts to critical care physicians about the probability of ARDS in their patients. Future studies should 567 

evaluate the pipeline in several ways, such as a physician fully trusting the pipeline when ML exhibits 568 

high confidence in its probability estimations, or a physician double-checking a case only if their 569 

adjudication differs from the pipeline. 570 
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To properly implement this pipeline, decision theory considerations should be taken into account. 571 

The XGBoost models in our pipeline generate probabilities that need to be binarized into “yes” or “no” 572 

for each component of the Berlin Definition. In this regard, Youden's J statistic is used by some to 573 

identify optimal thresholds that yield a good balance between false negatives and false positives24. While 574 

the use of Youden's J for cutoff determination is common practice in theoretical studies, it assumes a 575 

similar degree of undesirability for false positives and false negatives while implicitly using disease 576 

prevalence as a cost ratio25. We believe that implementation is more likely to be successful if a health 577 

system explicitly considers the particulars of ARDS when deciding on optimal probability cutoffs. Given 578 

the poor recognition of ARDS in clinical practice, prioritizing comparatively low false negative rates is 579 

crucial for making life-saving decisions, such as implementing low tidal volume ventilation and prone-580 

positioning strategies28. This benefit must be balanced with the potential risk of alert fatigue caused by 581 

excessive false positives29–31. An implementation study that explores the attitudes of critical care 582 

physicians towards the balance of false positives and false negatives could provide valuable insights for 583 

implementing decision-support tools like our pipeline.  584 
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