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Key Points 
 
Question: Can non-probability survey data accurately track institutionally confirmed COVID-19 
cases in the United States, and provide estimates of unaccounted infections when rapid at-
home tests are popularized and institutionalized tests are discontinued?  
 
Findings: The proportion of individuals reporting a positive COVID-19 infection in a 
longitudinal non-probability survey closely tracked the institutionally reported proportions in the 
US, and nationally-aggregated wastewater SARS-CoV-2 viral concentrations, from April 2020 
to February 2022. Survey estimates suggest that a high number of confirmed infections may 
have been unaccounted for in official records starting in February 2022, when large-scale 
distribution of rapid at-home tests occurred. This is further confirmed by viral concentrations in 
wastewater.   
 
Meaning:  Non-probability online surveys can serve as an effective complementary method to 
monitor infections during an emerging pandemic. They provide an alternative for estimating 
infections in the absence of institutional testing when at-home tests are widely available. 
Longitudinal surveys have the potential to guide real-time decision-making in future public 
health crises.  
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Abstract  

Importance:  Identifying and tracking new infections during an emerging pandemic is crucial to 
design and deploy interventions to protect populations and mitigate its effects, yet it remains a 
challenging task.  

Objective:  To characterize the ability of non-probability online surveys to longitudinally 
estimate the number of COVID-19 infections in the population both in the presence and 
absence of institutionalized testing.  

Design: Internet-based non-probability surveys were conducted, using the PureSpectrum 
survey vendor, approximately every 6 weeks between April 2020 and January 2023. They 
collected information on COVID-19 infections with representative state-level quotas applied to 
balance age, gender, race and ethnicity, and geographic distribution. Data from this survey 
were compared to institutional case counts collected by Johns Hopkins University and 
wastewater surveillance data for SARS-CoV-2 from Biobot Analytics. 
 
Setting: Population-based online non-probability survey conducted for a multi-university 
consortium —the Covid States Project. 
 
Participants: Residents of age 18+ across 50 US states and the District of Columbia in the 
US.  
 
Main Outcomes and Measures: The main outcomes are: (a) survey-weighted estimates of 
new monthly confirmed COVID-19 cases in the US from January 2020 to January 2023, and 
(b) estimates of uncounted test-confirmed cases, from February 1, 2022, to January 1, 2023. 
These are compared to institutionally reported COVID-19 infections and wastewater viral 
concentrations. 
 
Results:  The survey spanned 17 waves deployed from June 2020 to January 2023, with a 
total of 408,515 responses from 306,799 respondents with mean age 42.8 (STD 13) years; 
202,416 (66%) identified as women, and 104,383 (34%) as men. A total of 16,715 (5.4%) 
identified as Asian, 33,234 (10.8%) as Black, 24,938 (8.1%) as Hispanic, 219,448 (71.5%) as 
White, and 12,464 (4.1%) as another race. Overall, 64,946 respondents (15.9%) self-reported 
a test-confirmed COVID-19 infection. National survey-weighted test-confirmed COVID-19 
estimates were strongly correlated with institutionally reported COVID-19 infections (Pearson 
correlation of r=0.96; p=1.8 e-12) from April 2020 to January 2022 (50-state correlation 
average of r=0.88, SD = 0.073). This was before the government-led mass distribution of at-
home rapid tests. Following January 2022, correlation was diminished and no longer 
statistically significant (r=0.55, p=0.08; 50-state correlation average of r=0.48, SD = 0.227). In 
contrast, survey COVID-19 estimates correlated highly with SARS-CoV-2 viral concentrations 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2024. ; https://doi.org/10.1101/2024.05.21.24307697doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307697


 

4 

in wastewater both before (r=0.92; p=2.2e-09) and after (r=0.89; p=2.3e-04) January 2022. 
Institutionally reported COVID-19 cases correlated (r = 0.79, p=1.10e-05) with wastewater viral 
concentrations before January 2022, but poorly (r = 0.31, p=0.35) after, suggesting both 
survey and wastewater estimates may have better captured test-confirmed COVID-19 
infections after January 2022. Consistent correlation patterns were observed at the state-level. 
Based on national-level survey estimates, approximately 54 million COVID-19 cases were 
unaccounted for in official records between January 2022 and January 2023. 
 
Conclusions and Relevance:   
Non-probability survey data can be used to estimate the temporal evolution of test-confirmed 
infections during an emerging disease outbreak. Self-reporting tools may enable government 
and healthcare officials to implement accessible and affordable at-home testing for efficient 
infection monitoring in the future. 
 
Trial Registration: NA  
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Introduction 

Identifying and tracking new infections during the earlier and most intense phases of the 

COVID-19 pandemic was crucial for the design of mitigation strategies. Yet it was extremely 

challenging due to the novel nature of the pathogen 1,2. The significant number of 

asymptomatic COVID-19 infections, the limited availability of resources to identify and treat 

infections across locations, and people's lack of trust and willingness to seek medical attention 

were some of the most important challenges of estimating incidence numbers 3–6. Multiple 

approaches to characterize the incidence of COVID-19 in the population were deployed in the 

US as infections spread 7 These included (a) clinical-based individual testing (via polymerase 

chain reaction, PCR, or rapid tests) 8, (b) tracking the number of patients in hospital visits with 

COVID-19 symptoms, such as fever, cough, sore throat, anosmia (referred to as “syndromic 

surveillance”)9; (c) the continuous monitoring of the presence of antibodies against SARS-

CoV-2, the virus that causes COVID-19 infections, in the blood serum of a population (referred 

to as antigen testing and serosurveillance) 3,10 and (d) measuring the amount of SARS-CoV-2 

viral concentration in wastewater samples shed by infected individuals 4,11,12. 

 

Among all these, widespread institutional individual testing was the most heavily relied-upon 

indicator to determine the severity of local outbreaks, allocate resources, and deploy or lift non-

pharmaceutical mitigation interventions. Throughout the pandemic, however, testing availability 

and reporting were inconsistent in the US 13. For example, the COVID-19 tests —designed by 

the US Centers for Disease Control and Prevention, (CDC)— were recalled due to a faulty 

reagent 14 during the earlier months of 2020, heterogenous state policies regarding access to 

free institutional testing led to inconsistencies in interpreting case count data15, and the 

massive government-led distribution of rapid at-home tests starting in January 2022, without a 

concurrent deployment of a centralized infection reporting system, meant low coverage took 

place. 

 

Here, we study the ability of data collected from large US-based nonprobability surveys –the 

COVID States Project (CSP)– to estimate the number of COVID-19 infections from January 

2020 to January 2023, at national and state levels. Multiple studies have investigated how 

surveys can be leveraged to monitor infections, people’s behaviors, and trust in vaccine in 

specific periods and particular geographies during the COVID-19 pandemic 16,17. In this study, 

we further sought to assess the extent to which carefully-analyzed survey data could have 
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been used to monitor the number of COVID-19 infections continuously and longitudinally at the 

national and state levels during the first 3 years of the pandemic in the US. 

 

Methods 

Study Design. We used data collected by an ongoing large-scale internet-based 

nonprobability survey conducted by an academic consortium approximately every 6 weeks 

from April 2020 onwards, inclusive of all 50 states and the District of Columbia. Survey 

participants were individuals aged 18 years or older who resided in the United States. 

Importantly, before accepting to participate in the survey, respondents were not aware that the 

survey would include questions related to the COVID-19 pandemic, in order to minimize 

selection bias. The survey used national and state-level representative quotas for gender, age, 

and race/ethnicity to represent the US population in the most recent census data. Participants 

were recruited using PureSpectrum, an online survey panel aggregator, and they provided 

informed consent online before survey access. 

 

From the 5th survey wave (June 2020) onwards, the surveys asked two questions to identify 

the COVID-19 test frequency of participants, positive test results, and the month when they 

experienced symptoms. The precise wording of the questions can be found in Supplemental 

Materials.  

 

Measures. All respondents were asked if they had been tested for COVID-19 in the past (not 

distinguishing between PCR test or antigen test in some waves), and those who indicated a 

positive test result were asked when they experienced symptoms. To estimate the number of 

infections happening in each month, we aggregated the number of respondents who indicated 

having a positive test result and were sick in each month, only using the immediately 

subsequent survey wave after each individual’s infection to minimize potential participants’ 

recall errors. About 16% of respondents participated in multiple survey waves, and if they 

reported multiple infections in different months, we included their health status in each month 

they reported an infection. Sensitivity analyses were conducted to test whether including more 

than one infection per respondent would yield different results compared to only including at 

most one (randomly selected) infection per respondent. The aggregated responses were 

demographically reweighted to represent the most recent US Census and normalized by the 

sample size, to estimate the proportion of infected individuals at the national and state levels. 
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The sample sizes and percent of respondents who were sick in each month at the national 

level are shown in the Supplementary Materials.  Institutionally-confirmed COVID-19 infections 

were obtained from state and local governments and health departments by the Coronavirus 

Resource Center of Johns Hopkins University (JHU), and compiled by the New York Times 

(covid-19-data). Finally, as an additional and independent measure of COVID-19 prevalence in 

the US, we used monthly aggregated wastewater SARS-CoV-2 viral concentrations from 

Biobot Analytics.18 

 

Statistical Analysis. We conducted our statistical analyses in two different and non-

overlapping time periods within the first three years of the pandemic in the US, selected a 

priori. The first one was from April 1, 2020 to January 31, 2022, a time when institutional efforts 

to test individuals were most active –according to the number of daily PCR COVID-19 tests 

conducted --see Supplementary Materials. The second one, from February 1, 2022, to January 

1, 2023, a time when rapid at-home tests were massively distributed to the general public by 

the federal government. During this period, there was not a centralized system to record the 

rapid test outcomes, and an overall decrease in governmental resources allocated to monitor 

COVID-19 infections gradually occurred; culminating with the federal Public Health Emergency 

for COVID-19 expiring in May 2023. 

 

Correlation analysis. We calculated pairwise correlation coefficients between the proportion of 

infected individuals as inferred by survey data (referred to as CSP) and the institutional 

numbers reported in the Johns Hopkins University (JHU) COVID-19 dashboard, for the two 

time periods described above at the national and state levels. We also calculated pairwise 

correlations between SARS-CoV-2 viral load in wastewater and both the CSP estimates JHU 

reported infections, during the two distinct periods. This was done at the national and state 

levels. 

 

Survey Mean Estimates and Standard Errors. We measured the distance between the official 

numbers and our survey estimates as multiples of the survey-based standard errors (standard 

deviation of mean) of our estimates. We report both these standardized differences and the 

95% confidence intervals in Figure 1 for the national level. 
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Excess infection estimates. We estimated the number of infections that were likely 

unaccounted for by institutional surveillance systems starting in February 2022 using two 

approaches. The first one involved calculating the cumulative infections estimated from survey 

data from February 1, 2022, until January 1, 2023. This was achieved by multiplying the 

percent of weight-corrected self-reported infected participants in each month by the total 

population of the US, and then by adding all these estimates across time.  We then simply 

subtracted the cumulative number of infections reported by the JHU from the survey’s 

cumulative estimates. A second approach involved calibrating a linear regression model to 

map CSP COVID-19 estimated incidence onto JHU’s reported COVID-19 incidence from April 

2020 to January 2022, to identify the relationship between the two in the first 2 years when 

they closely tracked each other. We then used this model to predict confirmed infections after 

February 2022 –with the assumption that we only had access to CSP information. We 

computed cumulative values for the predicted JHU that would have been observed in the 

absence of any disruption (intervention) to the institutional COVID-19 surveillance, and then 

compared these estimates to the cumulative cases calculated from JHU data. This method is 

detailed in De Salazar et al 2021 in the context of COVID-19 vaccine effectiveness, and is 

frequently referred to as interrupted time-series analysis.19,20  

Results 

The survey spanned 17 waves deployed from June 2020 to January 2023, with a total of 

408,515 responses from 306,799 respondents with mean age 42.8 (STD 13) years; 202,416 

(66%) identified as women, and 104,383 (34%) as men. A total of 16,715 (5.4%) identified as 

Asian, 33,234 (10.8%) as Black, 24,938 (8.1%) as Hispanic, 219,448 (71.5%) as White, and 

12,464 (4.1%) as another race. Overall, 64,946 respondents (15.9%) self-reported a test-

confirmed COVID-19 infection. In aggregate and at the national level, COVID-19 case counts 

inferred from CSP surveys are highly correlated with JHU reports from April 2020 to January 

2022 (Pearson r=0.96; p=1.8e-12), as seen in Figure 1 and Table 1 –with state-level Pearson 

correlations average of r=0.88 (STD 0.074) and all significant. After February 2022, soon after 

at-home rapid tests were massively distributed by the federal government, and up to January 

2023, the Pearson correlation between CSP and JHU case counts dropped to r=0.55 (p=0.08) 

with state-level Pearson correlations average of r=0.48 (SD = 0.227) and mostly not 

statistically significant. Sensitivity analysis shown in the supplementary materials led to very 
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similar temporal infection curves when including repeat participants only (randomly) once in 

our study.  

Additionally, Table 1 shows that concentrations of SARS-CoV-2 in wastewater data (WW) 

closely correlate with CSP surveys’ case counts both between April 2020 and January 2022 

(r=0.92 p=2.2e-09), and between February 2022 and January 2023 (r=0.89 p=2.3e-04). While 

SARS-CoV-2 in wastewater (WW) correlates (r=0.79 p=1.10e-05) with JHU case counts before 

January 2022, this correlation drops dramatically to r= 0.31 (p=0.35) between February 2022 

and January 2023. Consistent correlation patterns are observed at the state-level and are 

reported in the Supplementary Materials. 

 

 
 

 
 
Figure 1. The percent of respondents in our survey who reported having a confirmed COVID-19 infection in each 
month is shown in red (CSP), the institutionally reported percent of individuals infected in each month as monitored 
by JHU is shown in black, and the wastewater viral concentration of SARS-CoV-2 is shown in blue. A vertical green 
dashed line shows the time when at-home rapid test were widely delivered in February 2022.  
 

Using the first approach to calculate cumulative infections from February 1, 2022, to January 1, 

2023 (post at-home tests distribution) at the national level, our survey estimates suggest that 

about 79 million (95% CI: 71 million – 86 million) confirmed cases may have occurred; 

compared to 25 million reported in the JHU data. This indicates that 54 million cases, more 

than twice as many of those reported, were likely unaccounted for in institutional surveillance. 

At the state level, the number of potentially unaccounted cases vary between 59K in Wyoming 
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to 6.3 million in California. Our second (interrupted time-series) approach, the linear regression 

(JHU = 0.96*CSP-0.1) calibrated during the April 2020 to January 2022 nationally, yields 

consistent results, and predicts that the cumulative number of positive cases from February 1, 

2022, to January 1, 2023 was 73 million (95% CI: 65 million – 81 million) at the national level. 

State-level results are consistent and shown in the Supplementary Materials. 

 
 

 Apr 2020 – Jan 2022 
(pre-rapid test period) 

Feb 2022 – Jan 2023 
(rapid test period) 

Apr 2020 – Jan 2023 
(full time period) 

CSP – JHU 0.96 (p=1.8e-12) 0.55 (p=0.08) 0.78 (p=1.1e-07) 

CSP – WW 0.92 (p=2.2e-09) 0.89 (p=2.33e-04) 0.87 (p=3.8e-11) 

JHU – WW 0.79 (p=1.1e-05) 0.31 (p=0.35) 0.74 (p=1.1e-06) 

 
Table 1. National-level pairwise Pearson correlation and p-values between survey test-confirmed infections 

estimates (CSP), Institutionally reported COVID-19 (JHU), and Wastewater SARS-CoV-2 viral concentrations 
(WW) in three time periods. 

 
For 22 months, from April 2020 when reliable institutionalized testing in the US accelerated, 

until February 2022, the official data fell within 2 to 3 SEs away from our estimates, except the 

months January, November, and December 2021. However, from February 2022 onward, 

when the distribution of rapid at-home tests started, the distance between survey estimates 

and the officially reported cases started to diverge significantly, ranging from 6 SEs in February 

2022 to 16 SEs during the peak of July 2022.  

Discussion 

Our results support the hypothesis that nonprobability surveys serve as a reliable and 

complementary method to monitor the proportion of test-confirmed infections in real-time 

during a public health crisis. Specifically, by analyzing data from nonprobability surveys 

deployed approximately every 6 weeks during the first three years of the pandemic in the US, 

we found that COVID-19 infections inferred from survey data closely tracked institutionally 

reported infections when institutional testing was at its best in the US. When institutional efforts 

to monitor COVID-19 infections diminished and rapid at-home tests were made widely 

accessible – with no centralized system to collect at-home test results – survey data suggested 
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that a high proportion of test-confirmed infections were unaccounted for in institutional reports. 

When comparing with COVID-19 activity estimates obtained from SARS-CoV-2 concentrations 

in wastewater data, we find high consistency with the COVID-19 trends observed in surveys 

throughout this study.   

 

The alignment of the three – JHU, CSP, and WW– COVID-19 activity estimates before 

January 2022 suggests that these surveillance systems were consistent and compatible with 

one another before the mass distribution of at-home tests. After February 2022, the 

consistency between CSP and WW COVID-19 activity, and the pronounced discordance 

between these two sources and JHU cases, suggest that both (a) CSP and WW data may 

have continued properly capturing COVID-19 infections trends, and (b) the introduction of at-

home rapid tests and the discontinuation of institutional testing disrupted institutional efforts 

(JHU) to track COVID-19 trends. Similar alignment between the three data sources is 

observed before January 2022, at the state level. There also were clear discrepancies 

between both CSP and WW with JHU data after February 2022 at the state level, as shown in 

the Supplementary Materials.  

 

While there have been multiple attempts to monitor or estimate the number of confirmed 

COVID-19 cases using alternative Internet-based data sources, such as digital Internet traces 

(e.g. general population’s Internet search queries, Clinicians’ searches, among others 21), 

human mobility data from smartphones 22–24, self-test reporting systems 25, and surveys like 

ours 26, our study presents among the most comprehensive assessments of the quality of 

COVID-19 activity estimates using non-probability surveys, both at the national and state 

levels, and for the first three years of the pandemic. 

 

Other attempts to track COVID-19 cases have employed cross-sectional (or limited-period) 

surveys starting in the early stages of the pandemic. Most of them conclude that only a small 

fraction of COVID-19 cases were captured by institutional testing, consistent with our findings 

post-February 2022 –and perhaps also during the early weeks of the pandemic 5. For example, 

a study by Gallup suggested that the number of COVID-19 infections on April 3, 2020, would 

be 2.5 times more than what the official numbers had suggested back then if more people 

were to get officially tested. Another survey-based study conducted by Qasmieh et al. fielded 

between 14 – 16 March 2022, asked 1030 adult residents of New York City about COVID-19 
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testing and related outcomes from January 2022 onwards27. They applied representative 

survey weights like our methodology to estimate the number of infections in New York City. 

They estimated that 1.8 million adults (95% CI: 1.6 – 2.1 million) had a COVID-19 infection 

from 1 January to 16 March 2022, compared to 1.1 million cases that our survey numbers 

suggest for the same period in New York state.  

 

In another online survey-based (N = 97,707) study led by Rader, Gertz, and Brownstein, 

researchers estimate that “2.6 million cases [95% CI: 1,874.549 to 3,853,341] were diagnosed 

by at-home tests and not included in the official case count” over the period March 20 – May 

21, 2022. Our surveys’ temporal resolution does not allow for a direct comparison, but when 

scaling our monthly estimates (March estimate*1/3 + April estimate + May estimate*2/3) we 

estimate that approximately 6 million infections nationally were not included in reported case 

counts in the same period.  

 

In another survey-based study, Qasmieh et al. estimated COVID-19 cumulative incidence, 

during the preceding 14-day period (April 23 – May 8), to be 31 times the official case count: 

1.5 million (95% CI 1.3-1.8 million) versus 50 thousand28. In comparison, our estimates for 

April – May 2022 suggest that there were 1.2 million cases in New York state, much closer to 

Qasmieh et al. estimates. Government-led efforts aimed at centralizing information about 

individual at-home test results include a National Institutes of Health initiative tasked with 

developing a self-test reporting standard.  

 

We identify large discrepancies in COVID-19 estimates among all three data sources – CSP. 

JHU, and WW – before May 2020. Both CSP and WW data show significantly higher estimates 

of COVID-19 activity than those reported by JHU. While testing was very sparse and 

inconsistent in this period, our estimates align with other attempts, for example 21, that have 

employed statistical corrections, and multiple complementary data streams, to estimate the 

total number of COVID-19 infections before April 2020.  Specifically, Lu et al. find the 

cumulative number of suspected (symptomatic, either test-confirmed or not) infections as of 

April 4, 2020, to be as many as 2.3 to 4.8 million cases, or about 25 times the number of 

institutionally reported cases in the United States. Our estimates do not point to such high 

numbers since, by design, our goal was to track only test-confirmed infections.  
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Since our surveys were not specifically designed to attract the participation of individuals with 

COVID-19 symptoms or particular interest in COVID-19 more broadly, our infection-rate 

estimates should be less biased than those obtained from COVID-19 specific surveys such as 

the “Facebook-CMU” survey or “Outbreaks near me” 29,30. Indeed, it has been documented that 

people who are experiencing symptoms are more motivated to report their experience in 

surveys 31,32 and as such, incidence rates tend to be inflated in disease-specific surveys since 

fewer healthy individuals participate in them.   

 

It is important to note that one strength of survey-based infection cases surveillance is that it 

allows for the multivariate collection of disease activity information in parallel to other socio-

demographic variables. Institutional data collection, in contrast, rarely allows for access to 

demographic details of those reported infected and thus precludes looking at subgroup 

infection rates. Indeed, future studies of the survey data will closely analyze infection trends in 

different socio-demographic groups. 

 

In future public health crises, survey-based approaches to monitor confirmed infections should 

be deployed in conjunction with either widely available institutional testing or diagnostic at-

home tests. In absence of that, no gold standard will exist to assess the historical validity of 

survey-based approaches and thus, their robustness and generalizability may be limited. 

 

Limitations 
Our study has multiple limitations. The first one is potential participants’ recall error. We utilized 

the answers from the most contemporaneous wave to estimate the number of infections in a 

month to mitigate recall bias. Another potential limitation might be entry errors in low frequency 

responses. An expected low frequency response in our study was whether the respondent was 

sick or not at the very beginning of the pandemic33. Entry errors for low frequency responses in 

a (big) ~20,000-respondent wave could have inflated our test-confirmed infection estimates in 

the first three months of the pandemic. Although we have a robust statistical power nationally 

and within big states as shown in the Supplementary Materials, our state-level analyses are far 

less precise, especially for states where we had smaller sample sizes.  
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Conclusion 

Our study supports the potential for applying surveys to complement government-led disease 

surveillance in future public health crises, despite some limitations that may be addressable in 

future deployments. 
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