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Abstract 

Extracapsular extension (ECE) is detected in approximately one-third of newly 
diagnosed prostate cancer (PCa) cases at stage T3a or higher and is associated with 
increased rates of positive surgical margins and early biochemical recurrence following 
radical prostatectomy (RP). This study presents the development of AutoRadAI, an end-
to-end, user-friendly artificial intelligence (AI) pipeline designed for the identification of 
ECE in PCa through the analysis of multiparametric MRI (mpMRI) fused with prostate 
histopathology. The dataset consists of 1001 patients, including 510 pathology-
confirmed positive ECE cases and 491 negative ECE cases. AutoRadAI integrates 
comprehensive preprocessing followed by a sequence of two novel deep learning (DL) 
algorithms within a multi-convolutional neural network (multi-CNN) strategy. The 
pipeline exhibited strong performance during its evaluation. In the blind testing phase, 
AutoRadAI achieved an area under the curve (AUC) of 0.92 for assessing image quality 
and 0.88 for detecting the presence of ECE in individual patients. Additionally, 
AutoRadAI is implemented as a user-friendly web application, making it ideally suited 
for clinical applications. Its data-driven accuracy offers significant promise as a 
diagnostic and treatment planning tool. Detailed instructions and the full pipeline are 
available at https://autoradai.anvil.app and on our GitHub page at 
https://github.com/PKhosravi-CityTech/AutoRadAI. 
 
Introduction 
 

Accurate preoperative staging of prostate cancer (PCa) plays a pivotal role in tailoring 
optimal treatment strategies, ensuring that patients neither undergo undertreatment nor 
overtreatment. Among the critical determinants of disease progression, the presence of 
extracapsular extension (ECE), identified as stage T3a or beyond, emerges as a 
prominent factor, encompassing approximately one-third of newly diagnosed PCa cases 
1,2. ECE's significance lies in its close association with elevated rates of positive surgical 
margins and early biochemical recurrence following radical prostatectomy (RP), making 
it a key consideration in clinical decision-making 3,4. ECE has a significant prognostic 
value, decisively marking whether the cancer has infiltrated beyond the confines of the 
prostate gland. Many studies have proposed that not only the presence but also the 
amount of ECE is an independent predictive factor for biochemical recurrence (BCR) 5,6. 
This further highlights the relevance of accurately predicting the presence of ECE 
before surgery.  
 
While predictive nomograms based on clinicopathological attributes as well as MRI 
have been previously developed and validated 7,8, the intricate anatomy of the prostate 
and the subtle contrast between cancerous and healthy tissues present formidable 
challenges for ECE detection on magnetic resonance imaging (MRI) images. In the 
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ever-evolving landscape of medical imaging and diagnosis, machine learning (ML) and 
deep learning (DL) algorithms have emerged as revolutionary tools with widespread 
applications 9–12. Within this context, DL models, a subset of ML, have demonstrated 
remarkable capabilities in deciphering intricate patterns and relationships within medical 
images 13. This extends to the domain of PCa diagnosis, where DL algorithms have 
shown promise 14–17. Also, with the lack of a truly objective method of assessment to 
evaluate the presence of PCa on MRI, one must turn to indirect signs to confirm or 
reject the likelihood of a cancer diagnosis.  
 
Traditionally, identifying ECE as well as lesion identification (PIRADS classification) on 
MRI images has been a time-intensive process heavily reliant on the expertise of 
radiologists. However, the advent of DL has opened new avenues for automating this 
intricate task. By training convolutional neural networks (CNNs) on extensive datasets 
of annotated MRI scans, these algorithms can learn to recognize subtle visual cues 
indicative of ECE 18,19. The utilization of lightweight CNN architectures, such as the ones 
proposed in this study, further optimizes the delicate balance between accuracy and 
efficiency. 
 
As we explore the landscape of current diagnostic technologies and their limitations in 
detecting ECE, the need for innovative solutions becomes clear. In response to this 
challenge, we introduce AutoRadAI (Figure 1) in this paper. AutoRadAI represents a 
breakthrough in medical imaging technology: a comprehensive, fully automated pipeline 
specifically designed for ECE detection. By leveraging the capabilities of two advanced 
DL models, ProSliceFinder and ExCapNet, AutoRadAI offers a systematic framework 
for the processing and refinement of images. This process extends from the radiologist's 
bench, through a series of sophisticated analytical stages, to the generation of 
outcomes that are easily interpretable by medical professionals. Our development is not 
just about technological innovation; it aims to streamline and enhance the diagnostic 
workflow. Our study leverages the largest cohort to date, encompassing 1001 patients, 
to predict ECE in PCa, setting a new benchmark in the field. This extensive population 
size not only enhances the statistical power of our analysis but also underscores the 
potential for our findings to be generalized across diverse clinical settings. A key 
component of this enhancement is the development of a web application that utilizes 
user-friendly, end-to-end pipelines as its core. Designed for clinical use, the application 
promises to facilitate the rapid and reliable identification of ECE across diverse MRI 
datasets. By improving both the accuracy and consistency of diagnoses, this new 
approach seeks to transform patient management. It emphasizes early diagnostic 
intervention and supports more precise treatment planning, thereby making a significant 
contribution to the advancement of patient care.  
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Figure 1: Schematic representation of the AutoRadAI pipeline. This figure illustrates the end-to-end
workflow of our proposed system, starting from the initial image acquisition at the radiologist's bench,
through the processing and analysis by multi-CNN (ProSliceFinder and ExCapNet), to the final ECE
detection. The output from Step 2 is utilized as the input for training the first deep learning model in Step
3, while the output from Step 4 serves as the input for training the second deep learning model in Step 5. 
 
Results 
 
Distinct Scans and ECE Detection Evaluation 
 
Our analysis of the AutoRadAI system, which integrates a sophisticated multi-CNN
architecture, underscores its remarkable effectiveness in detecting ECE in preoperative
MRI scans of PCa patients. Specifically, Figure 2 demonstrates the proficiency of the
ProSliceFinder and ExCapNet models in identifying relevant scans and accurately
predicting ECE. The ProSliceFinder algorithm, designed to analyze individual image
slices, exhibited impressive performance metrics on a blind test set comprising 467 MRI
slices. It achieved an AUC of 0.92, Sensitivity of 0.91, Specificity of 0.80, and an overall
ACC of 0.85, thereby effectively identifying slices depicting the prostate gland using
T2W imaging, as illustrated in Figure 2a. Figure 2a's ROC curve and confusion matrix
reveal a high degree of diagnostic accuracy. The confusion matrix shows that 183
distinctive slices and 216 non-distinctive slices were correctly identified, underscoring
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the model's capability to discriminate between distinctive and non-distinctive scans
effectively. 
 

 
 
Figure 2: Performance of ProSliceFinder (a) and ExCapNet (b) for detecting Distinct (visible prostate
gland) slices and ECE detection, respectively using ROC curves and confusion matrix. 
 

 
Complementing this, the ExCapNet model, which assesses data at the patient level,
garnered an AUC of 0.88, Sensitivity of 0.84, Specificity of 0.80, and ACC of 0.82. This
analysis, performed on a blind test set featuring 100 randomly selected patients, is
highlighted in Figure 2b. The ROC curve and confusion matrix for the ExCapNet model
illustrates its capability to effectively classify ECE status with a notable balance between
sensitivity and specificity—42 true positives and 40 true negatives. This model
capitalizes on the slice-level insights provided by ProSliceFinder to make informed
patient-level ECE predictions, thereby supporting its application in clinical settings
where accurate ECE assessment is crucial for effective treatment planning. 
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Decision Tree Analysis for Predicting Extracapsular Extension 
 
In our investigation, we undertook a comparative analysis of three ML models—
Decision Tree, Random Forest, and XGBoost—to assess their efficacy in predicting
ECE using the ISUP grade group and patient age across a cohort of 1001 patients.
Additionally, we explored the impact of incorporating AI-derived features on the
predictive accuracy within a subset of 100 randomly selected test patients. Initially, our
dataset, comprising 1001 patients, was analyzed holistically, followed by a nuanced
evaluation of two distinct 100-patient groups within our blind test set, differentiated by
the integration of AI-derived features. 
 
 

 
Figure 3: Analytical performance of Decision Tree, Random Forest, and XGBoost models, which
incorporate histopathological grades and patient age for predictive analysis. It provides a comparative
evaluation of these models' predictive accuracy in two distinct scenarios: across a dataset of 1001
patients (Panel a) and within a subset of 100 patients, distinguished by the absence (Panel b) and
presence (Panel c) of AI-derived features. The lower portion of the figure enumerates the key features
determined by each algorithm to be most critical for predictive performance, segmented by model and
dataset. 
 
For the larger cohort of 1001 patients, our findings revealed moderate predictive
capabilities across the models, with the Decision Tree achieving an ACC of 0.64 and an
AUC of 0.65, Random Forest with an ACC of 0.62 and AUC of 0.65, and XGBoost
leading slightly with an ACC of 0.63 and an AUC of 0.68 (illustrated in Figure 3a). This
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initial analysis highlighted XGBoost’s marginal superiority in AUC, suggesting nuanced 
variations in model performance. 
 
Upon excluding AI-derived features in the subsequent 100-patient cohort (Figure 3b), a 
noticeable decrement in performance metrics was observed across all models, 
underscoring the significant role AI features play in enhancing predictive accuracy. 
Conversely, the integration of AI features not only recuperated but also enhanced the 
performance of the models. Specifically, the Decision Tree, Random Forest, and 
XGBoost models showed a significant increase, with their AUC values rising to 0.81, 
0.81, and 0.78, respectively. Additionally, all three models achieved the same ACC of 
0.73. This improvement accentuates the additive value of AI insights to the predictive 
analytics framework. 
 
Further elucidating the impact of AI integration, Figure 3c presents the feature 
importance rankings, highlighting a pivotal shift toward AI predictions as a significant 
determinant of ECE, surpassing traditional clinical markers such as patient age and 
ISUP grade. This evolution in feature importance rankings evidences the potent synergy 
between clinical attributes and AI-derived features, fostering a refined approach to 
patient stratification. 
 
The empirical evidence from our analysis strongly advocates for the amalgamation of 
traditional clinical features with AI-driven insights. This integration not only enriches the 
predictive landscape but also significantly elevates the performance of ML models 
within clinical settings, paving the way for more informed and nuanced patient care 
strategies. 
 
Comparative Performance: Radiologist Assessment vs. AutoRadAI  
 
In the concluding phase of our study, we tasked three board-certified radiologists with 
independently assessing the presence of ECE in MRI scans, without prior knowledge of 
actual pathology outcomes or the existing formal radiology reports. This blind evaluation 
involved the same cohort of 100 patients previously examined by our AI system, 
AutoRadAI, aiming to compare the diagnostic accuracy of radiologists and AI against 
the ground truth from pathology reports (Figure 4). 
 

The radiologists' diagnostic performance quantified using AUC and ACC, recorded 
values of 0.61, 0.65, and 0.54, respectively, with the formal radiology report yielding an 
ACC of 0.58 (Figure 4a and 4b). These figures suggest that determining ECE status 
solely through imaging remains challenging, even for seasoned practitioners. In 
contrast, AutoRadAI demonstrated superior classification capabilities with an ACC of 
0.82. Its agreement with the gold-standard pathology results, measured by Cohen’s 
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kappa score, was Substantial (kappa = 0.64), notably higher than that of the individual
radiologists (kappa = 0.22, 0.30, and 0.08) and the radiology report (kappa = 0.16),
indicating a significant advancement in reliability and accuracy (Figure 4a). 

 
 
Figure 4: Performance comparison of AutoRadAI for ECE detection in MRI scans against radiologists,
including Cohen’s Kappa, Sensitivity, Specificity, and Accuracy metrics (a), AUC (b), Circular heatmap
(c), and Dendrogram (d) for AI versus radiologist predictions. 

 
 
To visualize these findings, Figure 4c employs a circular heatmap, and Figure 4d
shows a dendrogram. The heatmap illustrates the degrees of concordance and
discordance among the assessments by the radiologists, the formal radiology report,
and the confirmed pathology cases, highlighting the spectrum of diagnostic alignment.
Meanwhile, the dendrogram, constructed using the Jaccard distance index, clusters the
radiologists based on the similarity of their diagnostic decisions and contrasts these with
AutoRadAI’s outcomes. Jaccard distances of 0.57, 0.69, 0.68, and 0.79 were observed
among the radiologists, with the AI system showing a closer alignment to the ground
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truth (Jaccard distance = 0.30), revealing distinct diagnostic approaches and accuracy 
levels (Figure 4d). 
 
These analyses, especially the stark contrast in performance between the human 
experts and AutoRadAI, underline the significant potential of AI to enhance medical 
diagnostics by providing more reliable and accurate ECE assessments. 
 
Discussion 
 
The preoperative detection of ECE significantly influences the surgical approach during 
RARP, directly impacting the postoperative recovery of erectile function. ECE, an 
adverse pathological sign present in a third of prostate cancer patients at diagnosis 2, is 
associated with increased rates of positive surgical margins and early biochemical 
recurrence post-prostatectomy. This underscores the critical need for accurate 
preoperative ECE prediction to tailor surgical plans and ensure safe margin resection 
without compromising functional outcomes. Despite the validation of clinical nomograms 
for ECE prediction 7,8,20,21, these were developed prior to the widespread adoption of 
mpMRI, highlighting a gap in leveraging modern imaging in surgical planning. 
 
MRI's superior sensitivity (>90%) in detecting clinically significant prostate cancer  22 
offers a rich dataset for surgical planning. Recent advances in ML and DL, particularly in 
radiomics, have shown promise in enhancing ECE prediction. 18 reported that a PAGNet 
model using a single-slice image yielded a moderate AUC (95% CI, 0.63-0.81), with AI 
assessments outperforming expert radiologists in external validation datasets. Recent 
advancements in ML for medical imaging have led to significant achievements in 
predicting ECE in prostatectomy specimens. 23 developed a logistic regression model 
using a dataset from 139 patients, incorporating clinical, semantic, and radiomic data. 
This model demonstrated superior predictive performance, with an area under the AUC 
of 0.93 and an accuracy of 78%. Notably, this model's performance on the test dataset 
was superior to that on the training dataset, with an AUC of 0.93 compared to 0.88. This 
unusual finding suggests an exceptional generalization of the model but also raises 
questions about the potential overfitting or the representativeness of the test dataset, 
given the small sample size. This anomaly highlights the need for further validation to 
ensure the model's robustness and generalizability. 24 utilized a support vector machine 
(SVM) model trained on a dataset from 193 patients, achieving an accuracy of up to 
79% and an AUC of 0.80 on an independent test dataset. The relatively modest 
performance of the SVM model, despite the larger dataset size, underscores the 
importance of feature selection and the challenges in generalizing models across 
diverse patient cohorts. This comparison illustrates the critical balance between dataset 
size, feature selection, and model complexity, suggesting avenues for future research to 
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enhance model performance and generalizability, especially in the context of limited 
data availability. 
 
Our study extends these findings by demonstrating the value of multi-slice image 
analysis through ProSliceFinder, providing a richer dataset and accommodating the 
variability inherent in MRI scans. Our approach using ExCapNet at the patient level 
revealed an AUC of 0.88 and ACC of 0.82, markedly surpassing the diagnostic 
accuracy of radiologists and traditional radiology reports. This suggests the AI model's 
proficiency in detecting nuanced cues within MRI slices—cues that may elude even 
expertly trained eyes. Incorporating texture analysis-based radiomics, as suggested by 
25, could further refine our ability to distinguish ECE, supporting the potential of a 
multifaceted AI approach in augmenting diagnostic precision. In our decision tree 
model, we integrated clinical parameters like Gleason score and age to highlight the 
synergistic potential of melding clinical factors with AI predictions for detecting ECE. 26 
demonstrated that the inclusion of key radiomics features alongside clinical parameters 
(age, PSA, Gleason grade, PIRADS) significantly improves predictive accuracy. This 
supports the effectiveness of a multimodal approach in clinical diagnostics, aligning with 
the insights from a recent review study by 27. One of the distinguishing features of our 
investigation is the utilization of the largest study population thus far in the realm of ECE 
prediction, with 1001 patients. This unprecedented scale not only fortifies the credibility 
of our findings but also positions our study as a pivotal reference point for future 
research in accurately predicting ECE in prostate cancer patients.  
 
Nevertheless, our study is not without limitations, including potential biases due to its 
retrospective nature and the exclusive use of T2W axial images, which, despite being 
favored by radiologists for ECE detection, may limit the scope of our analysis. We did 
obtain the patient pool from one single clinical practice, despite the MRI images being 
obtained from several different machines. We classified the images according to the 
staging information obtained from the final surgical pathology without reanalyzing the 
slides. While external validation is a common step in affirming the applicability of 
diagnostic tools across varied populations, the unique nature of our dataset, primarily 
sourced from patients presenting to one institution, presents a limitation in this regard. 
This dataset, however, is not without its strengths. Its heterogeneity is a testament to its 
comprehensive coverage, encompassing a wide array of patient demographics, clinical 
presentations, and imaging characteristics. The diversity within our dataset ensures that 
our findings are not only robust but also generalizable to a broad spectrum of clinical 
scenarios. External validation remains a future priority to ensure the model's 
effectiveness in clinical practice, and expanding the dataset to include a broader range 
of MRI sequences could further enhance its diagnostic capabilities. 
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The exceptional performance of our multi-CNN model, AutoRadAI, underscores the 
transformative potential of DL in the preoperative assessment of PCa. Not only does it 
facilitate accurate ECE detection, but it also supports nuanced clinical decision-making, 
impacting treatment strategies and patient outcomes. Looking ahead, expanding 
external collaborations to validate our findings and incorporating additional imaging 
sequences could bolster the model's utility across diverse clinical settings. AutoRadAI 
represents a significant step forward in the use of AI for ECE detection. By integrating 
sophisticated DL models with a streamlined image processing framework, we aim to 
revolutionize the diagnostic workflow, offering a web application that enables quick, 
reliable ECE identification. This initiative has the potential to improve diagnostic 
accuracy and consistency, promoting early intervention and precise treatment planning, 
thereby enhancing patient care. 
 
In examining over a thousand patient journeys, AutoRadAI not only navigates the 
complexities of prostate cancer diagnosis but also highlights the importance of 
personalized care, reinforcing the notion that each patient's story is a critical element of 
the broader narrative in medical diagnostics. In conclusion, our study introduces an 
advanced DL model for preoperative ECE detection in MRI scans of prostate cancer 
patients, showcasing notable accuracy and efficiency. This model, validated with the 
largest patient cohort for ECE prediction, represents a significant advancement in 
medical diagnostics, enhancing surgical planning and patient outcomes. While our 
results are promising, ongoing refinement and external validation are essential to 
integrate this technology fully into clinical practice. Our findings lay the groundwork for 
future research, advocating for the incorporation of AI to meet clinical diagnostic needs 
effectively. 
 
Methods 
 
Study Population 
 
After obtaining approval from the relevant institutional review boards, consecutive 
patients who underwent Robotic-Assisted Radical Prostatectomy (RARP) between 
January 2018 and November 2023, and had a preoperative multiparametric MRI 
(mpMRI) of the prostate available for review, were retrospectively identified from our 
independent, prospectively maintained databases. Patients were classified into two 
groups based on the extent of their disease: pT2 and pT3, as defined by the American 
Joint Committee on Cancer (AJCC) staging system. Eligibility criteria for inclusion in this 
study were delineated as follows: individuals who received surgical treatment at Advent 
Health/Global Robotics Institute; those who underwent a 3T mpMRI of the prostate, 
without the use of an endorectal coil, within one year preceding their surgical 
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intervention; and patients with a pathological diagnosis of PCa. The exclusion criteria 
included patients without preoperative MRI images; those with MRI images older than 
one year; and patients who received neoadjuvant hormonal treatment, though 
interventions for benign prostatic hyperplasia or bladder outflow obstruction were 
deemed acceptable. 
  
MRIs were conducted at multiple centers, including our own, and subsequently 
uploaded to our picture archiving and communication system (PACS) for storage and 
data extraction. The imaging equipment at these centers was sourced from a variety of 
vendors. All surgeries were performed by a robotic surgery expert, and the surgical 
pathology was evaluated by a genitourinary pathologist with over a decade of 
specialized experience.   
 
Data Preparation 
 
To meet our research goals, we carefully curated a comprehensive dataset of 
preoperative MRI scans from patients with PCa. This dataset was created through a 
detailed curation and annotation process by fellowship-trained urologists. It includes a 
vast array of T2-weighted (T2W) MR images, each precisely labeled with corresponding 
pathology results to denote the presence or absence of ECE, categorized as ECE 
positive for presence (= 510 patients) and ECE negative for absence (= 491 patients), 
respectively. The images were saved in PNG format and only the T2W axial image 
series of the prostate were used. 
 
The dataset consists of 21,706 images from 1,001 patients, sourced from various 
vendors across several years (2018-2023). These images required standardization to 
achieve uniform dimensions, ensuring consistency throughout the dataset. Moreover, 
the images originated from multiple centers, which were later uploaded onto our hospital 
PACS system before retrieval. This diversity introduces additional complexity to the 
necessary preprocessing steps. To overcome these challenges, we created two 
specialized scripts: the first for converting images into a consistent format, and the 
second for padding the images. This padding ensures the original images are preserved 
while standardizing their dimensions for subsequent processes. Through this method, 
we achieve a uniform resolution of 512x512 pixels across all images, maintaining the 
original resolution and quality of each. Additionally, we implemented a normalization 
process to further ensure consistency across the dataset (steps 1 and 2 in Figure 1). 
 
Building on the findings of 15, which demonstrated the effectiveness of the multislice 
method over single-slice techniques for training CNNs in image analysis, our research 
adopts a similar strategy. We utilize the ProSliceFinder DL model to process multiple 
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MRI slices per patient automatically. This multislice approach not only increases the 
volume of data (breadth) but also enhances the granularity of information captured from 
each patient (detail). By analyzing several contiguous slices, we gain a more 
comprehensive representation of the anatomical structures, which is crucial for accurate 
diagnosis and analysis. This method significantly enriches our dataset, enhancing both 
its breadth and detail, thereby providing a more robust basis for our predictive models. 
We have carefully curated our primary dataset to include two types of images as 
classified by expert radiologists: 'Distinct slices', which clearly show the prostate gland, 
and 'Non-Distinct slices', which depict the pelvic anatomy, including muscles and other 
organs, but do not provide a clear view of the prostate gland itself.  
 
The dataset is balanced, consisting of 3,660 images, with 1,828 being Distinct slices 
and 1,832 Non-Distinct, encompassing a broad range of anatomical details for robust 
model training. This deliberate selection process significantly enriches our dataset, 
enabling our CNN model to more effectively discern the complex subtleties and 
variations present within MRI images. Such an approach markedly increases the 
robustness and accuracy of our analysis. Consequently, the model automatically 
selected all the Distinct images from the original dataset which led to building a dataset 
encompassing a total of 6,162 MRI images for 1001 patients, including 3,181 images 
indicating the absence of extracapsular extension (ECE-) and 2,981 images confirming 
its presence (ECE+), with an average of 6.5 slices for ECE- patients and 5.8 slices for 
ECE+ patients, respectively (step 3 in Figure 1).  
 
Prior to classification by ExCapNet into two categories, ECE positive (ECE+) and ECE 
negative (ECE-), images undergo a critical preprocessing step to ensure optimal focus 
on the relevant anatomical region. Specifically, it is imperative to crop the images 
around the prostate gland to ensure the algorithm's analysis is focused on the presence 
of the tumor either within or immediately adjacent to the prostate gland or seminal 
vesicle rather than invading the bladder, rectum, levator ani and obturator internus 
muscles, and the pelvic bone. To accomplish this targeted image cropping, we 
developed a specialized script, delineated as step 4 in Figure 1. 
 
Upon completion of this preprocessing, the images are aptly prepared for the final 
analytical phase—classification by ExCapNet (depicted as step 5 in Figure 1), which 
discerns between ECE+ and ECE- cases.  
 
Multi-CNN Model Characteristics 
 
The essence of our DL approach in this study is rooted in the adoption of a multi-
convolutional neural network (multi-CNN) model, which is a critical element of our 
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methodology for detecting ECE in PCa. The multi-CNN model stands out due to several 
key features that collectively bolster its capability in the complex task of identifying ECE 
from MRI scans of PCa patients. The underlying structure of the multi-CNN model 
comprises two sequential CNN algorithms, each designed with specific, interconnected 
functions in the ECE detection workflow. Notably, both CNNs are trained from scratch, 
eschewing the use of any pre-trained models in this research. Initially, the 
ProSliceFinder algorithm is responsible for identifying and selecting the most 
informative and diagnostically significant MRI slices for each patient. Following this, the 
ExCapNet algorithm utilizes these chosen slices to categorize patients into positive or 
negative ECE groups. This classification is based on MRI images that have been 
labeled in accordance with ground truth post-surgery pathology results. 
 
In our pursuit of a tailored solution for detecting ECE within MRI scans, we opted to train 
each algorithm from scratch, a strategy that bypasses the limitations tied to the pre-
existing knowledge found in transfer learning. This approach grants our models a 
deeper and more nuanced comprehension of our specific dataset, enabling them to 
adjust their parameters with enhanced precision for the distinct features of MRI images 
pertinent to ECE detection. By designing our models specifically for this task, we 
inherently avoid the common issue of overfitting, which frequently affects complex, pre-
trained models when they are repurposed for specialized applications.  
 
Our CNN architectures are designed to be efficient and effective compared to more 
deeply layered counterparts (Figure 5a). This design choice not only minimizes the risk 
of overfitting but also improves the models' ability to predict using new, unseen MRI 
data effectively. Furthermore, the streamlined nature of our models aligns with the 
practical requirements of clinical environments. They strike a careful balance between 
computational efficiency and diagnostic precision, making them highly suitable for quick 
adoption into clinical workflows. The models' reduced processing demands enable 
swifter, more efficient analyses without compromising on accuracy, addressing the 
critical needs of healthcare settings where both time and precision are of utmost 
importance. 
 
The model architecture is a CNN tailored for efficient image classification, utilizing 
depthwise separable convolutions to reduce computational complexity while maintaining 
performance. The network comprises three primary depthwise separable convolution 
blocks, each followed by batch normalization and ReLU activation, with subsequent 
downsampling via max pooling. The first block begins with a convolutional layer 
configured to retain the number of channels (3 in, 3 out), followed by a pointwise 
convolution that expands the channels to 12. This pattern of channel management and 
spatial reduction is mirrored in subsequent blocks with channels doubling from the 
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output of the previous block (12 to 24, then 24 to 36). Post convolution operations, the
spatial resolution is systematically reduced by half through max pooling, culminating in a
substantial reduction of the input's dimensionality. After the final pooling layer, the
network transitions to a dense segment consisting of two fully connected layers
separated by a dropout layer set at 60% to mitigate overfitting. The flattened output from
the pooling layers is passed through these layers, with the final layer outputting a
probability distribution across the predefined number of classes (2 in this case). The
entire model is designed for compatibility with CUDA-enabled devices to leverage GPU
acceleration, enhancing computational efficiency (Figure 5a). 
 

 
 
Figure 5: The architectural diagrams of the ProSliceFinder and ExCapNet CNN models (a).
Accompanying the diagrams are tables that detail patient demographics, specifically Age and ISUP grade
group, alongside the distribution of image data organized by ECE status based on post-surgery pathology
results (b). 
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The training of the ExCapNet model is facilitated by a robust preprocessing pipeline 
using the torchvision library's transforms module. Image inputs are resized to 512x512 
pixels to enhance detail recognition, randomly flipped horizontally to augment the 
dataset and improve generalization, and normalized to scale pixel values between -1 
and 1. The training, validation, and test datasets are loaded using PyTorch's 
DataLoader, with shuffled batches of 64 and 32 images for training and validation, 
respectively, to promote model robustness. The optimization process employs an 
RMSprop optimizer configured with a slightly elevated initial learning rate of 0.00001, an 
alpha of 0.9 for smoothing, and momentum set at 0.5 to accelerate convergence in the 
appropriate direction of the gradients. Weight decay is also used to reduce overfitting by 
penalizing large weights. The loss function employed is the CrossEntropyLoss, which is 
particularly effective for classification tasks involving multiple classes by combining 
LogSoftmax and NLLLoss in a single criterion. 
 
Data Distribution 
 
As depicted in Figure 5b, the distribution of data across training, validation, and testing 
sets is meticulously balanced concerning patient age, preoperative biopsy pathological 
grade, and ECE outcomes. This figure provides a detailed overview of the dataset, 
which comprises a total of 4200 images from 701 patients allocated for training 
purposes, 1340 images from 200 patients designated for validation, and 622 images 
from 100 patients intended for testing. 
 
Importantly, it highlights the mean age of patients within each subset—64.0 years for 
the training group, 65.41 years for the validation group, and 63.03 years for the testing 
group—thereby showcasing a consistent age distribution across all datasets. 
Additionally, a visual depiction of age distribution curves for each dataset set is 
presented, emphasizing the homogeneity of this demographic factor within our study. 
The figure’s lower panel elucidates the distribution of ECE status according to biopsy 
grade groups via a mosaic plot, thus confirming the balanced representation of various 
pathological grades and ECE outcomes across the study cohorts. The inclusion of 
preoperative biopsy grade and patient age as clinical parameters aims to enhance the 
predictive accuracy of a decision tree model, enabling a multimodal approach to 
estimating the likelihood of ECE. 
 
Statistical Tests and ML Predictive Modeling 
 
To explore the relationship between patient age and preoperative International Society 
of Urological Pathology (ISUP) grade group, we utilized a blend of ML and DL 
approaches. Our ML toolkit comprised Decision Tree Classifier (DTC), Random Forest, 
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and XGBoost algorithms, implemented via the Scikit-learn library in Python (version 
3.10.12). Complementing these, we developed DL models using the PyTorch 
framework (version 1.9.0), to harness advanced computational techniques. 
 
Before proceeding with the analysis, we prepared the dataset by converting categorical 
variables into dummy variables. This transformation, alongside the conversion of the 
ECE results into a binary outcome, allowed for seamless integration and analysis of 
both categorical and continuous variables. Our DL models underwent training and 
evaluation on a T4 GPU, chosen for its efficiency and capability to handle complex 
computations inherent in DL tasks. 
 
The data was partitioned into a training set and a testing set following a 70/30 ratio to 
ensure a balanced representation of outcomes. The models were configured with a 
maximum depth of four to maintain generalizability and prevent overfitting. The decision 
structure export displays nodes rounded for clarity, with the tree proportionally colored 
to reflect class distribution at each decision juncture. 
 
Comprehensive statistical analyses were conducted, including Specificity, Sensitivity, 
and Accuracy (ACC) evaluations, along with Receiver Operating Characteristic (ROC) 
curve analysis to calculate the Areas Under the Curve (AUCs). Comparisons against 
radiologists with varying expertise levels in prostate mpMRI readings were made using 
the Jaccard index and Cohen's Kappa.  
 
Data availability 
 
This study was approved by the AdventHealth Institutional Review Board (IRB), 
Orlando, FL, under protocol number 3009855250. The MR images analyzed in this 
study are not publicly available due to privacy and security concerns and the sensitivity 
of medical data. These datasets are proprietary to the contributing institutions and are 
only available to researchers involved in institutional review board (IRB)-approved 
research collaborations with these centers. However, clinical information such as 
pathology and age can be accessed through our GitHub repository. The methodologies 
developed for AutoRadAI are not specific to the datasets used in this study, allowing 
researchers to apply our deep-learning models to other relevant MR imaging and 
clinical data to assess their effectiveness in different contexts. 
 
Code availability 
 
In our commitment to transparency and collaborative advancement, The official source 
code repository for AutoRadAI is publicly accessible on GitHub at 
https://github.com/PKhosravi-CityTech/AutoRadAI. In addition, AutoRadAI is available 
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through a web-based user interface at https://autoradai.anvil.app designed to allow 
clinicians and researchers to explore its functionality. 
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