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Abstract (150/150 words):  

Introduction: The geroscience hypothesis proposes systemic biological aging is a root 

cause of cognitive decline.  

 

Methods: We analyzed Framingham Heart Study Offspring Cohort data (n=2,296; 46% 

male; baseline age M=62, SD=9, range=25-101y). We measured cognitive decline 

across two decades of neuropsychological-testing follow-up. We measured pace of 

aging using the DunedinPACE epigenetic clock. Analysis tested if participants with 

faster DunedinPACE values experienced more rapid preclinical cognitive decline as 

compared to those with slower DunedinPACE values.  

 

Results: Participants with faster DunedinPACE had poorer cognitive functioning at 

baseline and experienced more rapid cognitive decline over follow-up. Results were 

robust to confounders and consistent across population strata. Findings were similar for 

the PhenoAge and GrimAge epigenetic clocks.  

 

Discussion: Faster pace of aging is a risk factor for preclinical cognitive decline. 

Metrics of biological aging may inform risk stratification in clinical trials and prognosis in 

patient care.  

 

Keywords (5-15 words): cognitive decline, aging, biological aging, epigenetic clocks, 

DunedinPACE, Alzheimer’s Disease and related dementias. 
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1. INTRODUCTION 

As we grow older, we experience a progressive loss of integrity and resilience 

capacity in our cells, tissues, and organs1. Within the emerging field of Geroscience, 

this process is referred to as “biological aging,” and is thought to originate from an 

accumulation of molecular damage2 that manifest as a series of cellular-level changes 

or “hallmarks of aging.”3 These hallmarks of aging in turn are implicated in the etiology 

of many different chronic diseases, including Alzheimer’s disease and related 

dementias (ADRD)4,5.  

One of the strongest phenotypic risk factors for ADRD is preclinical cognitive 

decline, a more rapid decline in cognitive abilities prior to meeting diagnostic criteria for 

mild cognitive impairment6. In observational cohort studies, the rate of preclinical 

cognitive decline varies, with some individuals maintaining healthy cognitive function for 

many years while others decline rapidly to ADRD onset7,8. Better understanding of the 

causes of this variation are needed to inform risk stratification in clinical trials and 

improve prognosis in clinical care9. Here we test the geroscience-informed hypothesis 

that some individuals experience more rapid preclinical cognitive decline than others 

because they have a faster pace of biological aging.  

 We analyzed data from the Framingham Heart Study Offspring Cohort. We 

modeled trajectories of cognitive decline from two decades of neuropsychological 

testing data. We measured pace of biological aging from DNA methylation data using 

the DunedinPACE epigenetic clock. We tested if participants with faster pace of aging 

exhibited accelerated cognitive decline. We evaluated robustness of results across 

specifications considering a range of confounders and effect modifiers, including 

smoking history, cell composition of blood samples used to derive DNA, presence of 

Mild Cognitive Impairment (MCI) at baseline, level of cognitive functioning at baseline, 

sex, and APOE4 carrier status. Finally, we tested if pace of aging associations with 

cognitive decline reflected a process contributing to risk of dementia. We repeated 

analysis for two other proposed metrics of biological aging, the PhenoAge and GrimAge 

epigenetic clocks. 

 

2. METHOD 
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2.1 Participants 

 The Framingham Heart Study (FHS) is an ongoing population-based cohort 

following three generations of families recruited, starting 1948, within the town of 

Framingham, Massachusetts, USA. We analyzed data from the second generation of 

participants, the Offspring Cohort. The Offspring Cohort (N=7306) was initiated in 1971 

and participants have since been followed-up at nine examinations, approximately every 

4-7 years. The study protocol was approved by the institutional Review Board for 

Human Research at Boston University Medical Center, and all participants provided 

written inform consent. Data for the Framingham Offspring Study were obtained from 

dbGaP (phs000007.v33.p14).  

Our analysis focused on measurements of biological aging from DNA methylation 

(DNAm) data collected at the 8th follow-up visit and measurements of cognitive decline 

from neuropsychological test data collected beginning around the time of the 7th study 

visit and ongoing through 10 years after the 9th study visit (Supplementary Figure 1).  

 

2.2 Biological Aging 

While the hallmarks of aging themselves are difficult to measure in human observational 

studies, methods based on machine-learning have spawned a range of new biomarkers 

of biological aging from analysis of -omics data10. The best-validated of these omics 

biomarkers are a family of DNAm algorithms known as epigenetic clocks11. The newest 

generation of epigenetic clocks show strong associations with aging-related 

morbidity/mortality and appear to capture the wear and tear arising from environmental 

and social determinants of health.12,13. Among this new generation of epigenetic clocks, 

the most consistent predictor of cognitive functioning and risk for dementia is 

DunedinPACE. Within the Dunedin Study cohort, those with more rapid decline in the 

longitudinal-change phenotype exhibited more rapid cognitive decline and signs of 

accelerated brain aging in midlife14,14–16. Beyond the Dunedin Study, children and adults 

with faster pace of aging as measured by the DunedinPACE epigenetic clock tend to 

perform more poorly on cognitive tests as compared to age-peers with slower pace of 

aging17–19 and to exhibit signs of accelerated brain aging20,21. Given the basis of this 

prior evidence, we focus analyses on DunedinPACE as our primary independent 
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variable. We include, for comparison, analysis of the two other epigenetic clocks with 

robust evidence for prediction of morbidity and mortality, PhenoAge22 and GrimAge23, 

although prior evidence of their association with ADRD is inconsistent24.  

DNA methylation was measured from whole-blood DNA samples collected at the 

eighth study visit. Assays were performed with the Illumina 450K Array at the University 

of Minnesota and John Hopkins University (dbGaP phs000724.v9.p13). Array data from 

both sites were pooled and processed from raw IDAT files by the Geroscience 

Computational Core of the Robert N. Butler Columbia Aging Center. After quality 

control, data were available for n=2296 participants. Details of the preprocessing and 

quality control steps employed are reported in the Supplemental Methods.  

2.2a DunedinPACE. The DunedinPACE epigenetic clock is a measure of the 

pace of biological aging25. It was developed from analysis of longitudinal change in 19 

biomarkers of the integrity of the cardiovascular, metabolic, renal, hepatic, immune, 

dental, and pulmonary systems over a 20-year follow-up period in the Dunedin Study 

birth cohort. Initiated in 1972-3, the Dunedin Study followed a single-year birth cohort 

across five decades. Biomarker measurement was conducted when participants were 

26, 32, 38, and 45 years of age. The DunedinPACE algorithm was developed by first 

modeling change over the 20 years of follow-up to create a composite Pace of Aging 

phenotype14,15,16. Next, Pace of Aging was modeled from whole-blood DNA methylation 

measured at the age-45 follow-up to derive the DunedinPACE algorithm25. 

DunedinPACE has an expected value of 1 in midlife adults, corresponding to a rate of 1 

year of biological aging per 12-months of calendar time. Values >1 indicate a faster 

pace of aging (e.g. a value of 1.25 would indicate a pace of aging 25% faster than the 

norm for midlife adults); values <1 indicate a slower pace of aging (e.g. a value of 0.75 

would indicate a pace of aging 25% slower than the norm for midlife adults). We 

computed DunedinPACE in Framingham Heart Study participants using the R package 

available from GitHub (https://github.com/danbelsky/DunedinPACE). For analysis, 

DunedinPACE values were scaled to have M=0 and SD=1. 

2.2b Other Epigenetic Clocks. Other candidate measures of aging can be 

computed from DNA methylation data. For comparison, we repeated analysis with the 

PhenoAge and GrimAge epigenetic clocks. In contrast to DunedinPACE, which 
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measures pace of aging, GrimAge and PhenoAge are static measures of biological 

age22,23; whereas DunedinPACE was designed as a speedometer, PhenoAge and 

GrimAge were designed as odometers, estimates of how much aging has occurred by 

the time of measurement26. We analyzed versions of the PhenoAge and GrimAge 

clocks calculated from DNA methylation principal components (“PC Clocks”), which 

have better technical reliability than to the original versions of these clocks27. PC Clocks 

were calculated using the R package available from GitHub 

(https://github.com/MorganLevineLab/PC-Clocks). We regressed clock-age values on 

participants’ chronological ages and computed residual values interpretable as how 

many more (or fewer) years of biological aging a person has experienced as compared 

the expectation based on their chronological age. For analysis, PhenoAge and GrimAge 

residuals were scaled to have M=0 and SD=1. 

2.2c Immune Cell Composition. Blood DNAm derives from white blood cells, with 

the precise mixture of different types varying between individuals. To account for the 

possibility that this heterogeneity could confound associations between epigenetic 

clocks and cognitive decline, we computed a set of control variables from the DNAm 

data to estimate the relative abundances of different cell types28. We computed values 

using the estimateCellCounts2 function from the FlowSorted.BloodExtended.EPIC R 

package developed by Salas et al. using the preprocessNoob setting on both this data 

and the cell reference dataset29. The package estimates relative abundances of 12 

different types of immune cells (basophils, B naïve, B memory, CD4T naïve, CD4T 

memory, CD8T naïve, CD8T memory, eosinophils, monocytes, neutrophils, T regulatory 

cells and natural killer cells). 

 

2.3 Neuropsychological Examination 

 All participants underwent annual standardized neuropsychological examinations 

beginning 19 to 47 years from study baseline and extending over 24 years of follow-up.  

We analyzed data from the Framingham Heart Study’s original neuropsychological 

battery30. The tests in this battery were organized into 8 cognitive domains according to 

factor analysis conducted by the Framingham Investigators: Verbal Memory (Logical 

Memory), Visual Memory (Visual Representation ), Learning (Verbal Paired Associates) 
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Attention and Concentration (Trail Making Test), Abstract Reasoning (Similarities), 

Language (Boston Naming Test), Visuoperception (Hooper Visual Organization Test), 

and Psychomotor (Grooved Pegboard)30 (Supplemental Table 1). To integrate scores 

on these tests into a measure of global cognitive functioning, we followed the approach 

described by Downer et al31: First, we converted scores on each cognitive test to T-

scores (M=50, SD=10) based on their distributions at baseline among individuals who 

remained free of dementia, Alzheimer's Disease, and cerebrovascular disease through 

the end of follow-up (N=5010, 44% male, age: M=60 SD=1632). Next, we averaged the 

test-specific scores to compute our dependent variable for the main analysis- a 

measure of global cognitive functioning as defined by the Framingham Investigators30,30. 

Following established practices, global cognitive functioning scores were computed for 

participants with non-missing data on >70% of neuropsychological tests33.  

 2.3a Cognitive Status Criteria. MCI was defined following the FHS Investigators’ 

practice as impaired performance by >1 SD on two or more cognitive tests in any 

domain34,35. Dementia status, subtype, and date of onset was defined by the FHS 

dementia review panel, which included serial assessments up to the time of death by 

staff neurologists and neuropsychologists, telephone interviews with caregivers, medical 

records, neuroimaging studies, and when available autopsies32,36. The diagnostic 

criteria are consistent with the Diagnostic and Statistical Manual of Mental Disorders, 

National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association, and The National Institute of 

Neurological Disorders and Stroke Association International pour la Recherche et 

l’Enseignement en Neurosciences. 

 2.3b Cognitive Reserve. A prominent hypothesis in neuropsychology is that 

individuals vary in their cognitive resilience to neuropathology37. This phenomenon, 

referred to as cognitive reserve, could play a role as an effect-modifier in our analysis of 

pace of aging and cognitive decline. To explore this possibility, we tested baseline 

cognitive functioning as a modifier of associations between DunedinPACE and cognitive 

decline. For analysis, we computed average values across global cognition T-scores 

from neuropsychological assessments prior to DNAm baseline and dichotomized these 

average values at the healthy-population mean value of 50.  
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2.4 Smoking History 

Smoking is known to affect blood DNA methylation and is also linked with 

cognitive decline38,39. To address potential confounding by smoking history, we created 

a composite index to summarize participants’ smoking history across the eight waves of 

follow-up prior to DNA methylation measurement. At each measurement wave, 

participants reported their smoking status as never, former, or current. We coded these 

responses as 0, 1, and 2, respectively, and averaged values across waves to form the 

final index. 

 

2.6 APOE4 

 APOE4 status is a well-known risk factor for cognitive decline40. We assessed 

APOE4 as an effect modifier. APOE4 allele carrier status was coded dichotomously 

(one or more APOE4 allele versus no APOE4 allele). 

 

2.6 Statistical Analysis 

Analysis included n=2296 participants with DNA methylation data passing quality 

controls and measured global cognition at one or more assessments. We analyzed 

changes in global cognitive functioning using mixed-effects growth models implemented 

using the lme4 package in the R software41,42. Our base model tested for change in 

cognition over time from DNAm and included covariates for age at baseline (linear and 

quadratic terms scaled in 10y units and centered at 65y), sex, a set of time-varying 

terms for follow-up time from DNAm (linear and quadratic terms scaled in 5y units) and 

the interaction of age at baseline with follow-up time (linear and quadratic).  

2.6a Testing pace of aging as a risk factor for cognitive decline. To test our 

hypothesis that faster pace of aging would predict more rapid cognitive decline, we 

added a term to the model for DunedinPACE and a product term modeling interaction 

between DunedinPACE and linear and quadratic follow-up time. The product terms 

tested association of DunedinPACE with rate of cognitive decline.  

2.6b Confounder adjustment. To address confounding by factors known to 

influence both cognitive decline and DNA methylation via pathways other than pace of 
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aging, we repeated analysis adding covariates to the model for smoking history and 

leukocyte composition of blood samples used to derive DNA.  

2.6c Restriction of the analysis sample to participants who were cognitively intact 

at baseline. To evaluate sensitivity of results to patterns of decline among individuals 

already showing signs of impairment, we repeated analysis excluding individuals who 

manifested MCI prior to DNAm measurement . 

2.6d Effect modification. We conducted effect-modification analysis to evaluate 

contributions of cognitive-reserve processes, sex, and APOE4 carrier status to 

associations of pace of aging with cognitive decline. We tested effect modification by 

including main-effect terms for effect-modifiers along with product terms testing their 

interaction with follow-up time, DunedinPACE, and the Time*DunedinPACE term.  

2.6c Mediation. To test if more rapid cognitive decline mediated excess risk of 

dementia in individuals with faster pace of aging, we conducted formal mediation 

analysis using the survival analysis function within the CMAverse software 

(https://bs1125.github.io/CMAverse/).   

2.6d Other Clocks. We repeated analyses replacing DunedinPACE terms in our 

models with terms for the age-residuals of the PhenoAge and GrimAge epigenetic 

clocks. 

 

3. RESULTS 

We analyzed data for 2,296 non-Hispanic White adults in the Framingham Heart Study 

(FHS) Offspring Cohort followed for up to 23 years (M age=62, SD=9; 55% women; M 

global cognition T-score=51, SD=5, Mdn visits=4, IQR =2-12). At DNAm baseline, 23% 

of this sample met criteria for mild cognitive impairment; over follow-up, 12% were 

diagnosed with dementia, including Alzheimer’s disease. A comparison of the FHS 

Offspring sample analyzed here with the larger cohort is reported in Table 1.  

Participants’ global cognition scores declined over follow-up (per 5 years of 

follow-up, B=-1.54, 95%CI=[-1.66, -1.42]). Participants who were older at baseline 

experienced more rapid decline as compared to those who were younger; e.g., for those 

aged 65 at baseline, average 5y decline was -0.94 ([-1.06, -0.82], p<0.001); for those 
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who were aged 75, it was much more rapid (age-by-time interaction B=-4.45 [-4.38, -

4.53], p<0.001).  

 

3.1 Adults with faster pace of aging experienced more rapid cognitive decline. 

To test the hypothesis that participants who were experiencing a faster pace of 

biological aging would also exhibit more rapid cognitive decline, we tested associations 

of participants’ pace of aging with change over time in their global cognition scores. 

Participants with a faster pace of aging tended to have worse average cognitive 

performance (DunedinPACE B=-0.92 [-1.16, -0.68], p<0.001) and more rapid cognitive 

decline over follow-up (DunedinPACE B=-0.21 [-0.32, -0.09], p<0.001).   

Results were similar for the PhenoAge and GrimAge epigenetic clocks. Complete 

results for all clocks are shown in Table 2. Trajectories of cognitive aging for 

participants with slower and faster pace of aging/ older and younger biological age are 

illustrated in Figure 1. 

We evaluated potential confounding of associations by smoking history and 

leukocyte composition of blood samples by adding covariates for these variables to our 

regression model. Results were similar to the primary model (Table 2).  

Finally, we repeated analysis excluding individuals who manifested MCI at 

DNAm baseline. Results were similar to our primary model (Tables 2). 

 

3.2 Exploration of effect modification by ADRD risk factors.  

  We conducted exploratory analyses to evaluate sensitivity of associations 

between pace of aging and cognitive decline to modification by ADRD risk factors: 

cognitive reserve, sex, and APOE4 carrier status37,40,43,44,45,46. Cognitive reserve was 

not directly observed in our study. To conduct the sensitivity analysis, we grouped 

participants according to level of cognitive functioning at baseline (above/below a T-

score of 50) to serve as a proxy of premorbid level of functioning. Participants with 

better baseline cognitive functioning were somewhat protected from risk associated with 

a faster pace of aging; being in the high-function group was associated with a reduction 

in the association of DunedinPACE with rate of cognitive decline by 36% (interaction b= 

0.42, [0.19, 0.65], p<0.001). However, this effect modification was not observed for the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307683doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307683
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

PhenoAge and GrimAge clocks (interaction Bs<0.12, p-values>0.3). Trajectories of 

estimated marginal effects by year of follow-up for participants with slower and faster 

pace of aging and low and high cognitive reserve are graphed in Figure 2. Complete 

results for all clocks are reported in Supplementary Table 2 and graphed in Figure 2. 

Associations of pace of aging with rate of cognitive decline were similar for men and 

women (interaction Bs<-0.12, p-values>0.3; Supplemental Table 2) and for carriers 

and non-carriers of APOE4 (interaction Bs<0.18, p-values>0.132; Supplemental Table 

2). 

 

3.3 Evaluation of dementia risk mediation. 

 We previously reported that Framingham participants with faster pace of aging 

were at increased risk of developing  dementia47. To integrate our current findings with 

this observation, we conducted mediation analysis. For mediation analysis, we 

restricted neuropsychological testing follow-up to the first three assessments following 

DNAm collection to avoid overlap with dementia diagnosis. Follow-up for mediation 

analysis included up to 14 years following DNAm collection. Over this period, 518 

participants were diagnosed with dementia (mean follow-up to diagnosis= 9.34 years 

(SD=3.54). 

Participants with faster DunedinPACE values had increased risk of dementia 

over follow-up (Total Effect HR=HR=1.62 [1.29, 2.03], p<0.001). Roughly 24% of this 

risk was mediated through accelerated cognitive decline over the first three 

assessments following DNAm collection (Indirect Effect HR=1.10 [1.05, 1.14], p<0.001). 

Full results are reported in Supplemental Table 3. Including covariate adjustment for 

level of cognitive functioning at baseline attenuated effect-sizes, but associations 

remained statistically different from zero (Total Effect HR=1.42 [1.21, 1.81], p=0.003; 

Indirect effect HR=1.05 [1.01, 1.09], p=0.011). Results were similar for PhenoAge and 

GrimAge, although associations of these clocks with dementia risk were smaller in 

magnitude (Total Effect HRs<1.21) and not statistically different from zero (p>0.06). 

Complete results are reported in Supplemental Table 3.  

A full comparison of clock effect-sizes across models is reported in 

Supplemental Figure 2. 
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4. DISCUSSION 

We analyzed longitudinal neuropsychological testing data collected over two 

decades of follow-up in the Framingham Heart Study (FHS) Offspring Cohort to test if 

older adults with faster pace of biological aging experienced accelerated cognitive 

aging. We previously found that a faster pace of aging was associated with declines in 

IQ from childhood to midlife, signs of early brain aging, and earlier onset of dementia 

among older adults14,15,25,47. However, no data yet address whether faster pace of aging 

is associated with preclinical cognitive decline among older adults. In this study, we 

found that older adults with faster pace of aging as measured by the DunedinPACE 

epigenetic clock showed poorer cognitive functioning at baseline and experienced more 

rapid decline over follow-up. Our findings supported the robustness of this result across 

specifications considering a range of confounders and effect modifiers (e.g., analyses 

excluding participants with MCI). In mediation analysis, DunedinPACE associations with 

cognitive decline accounted for nearly a quarter of the overall relationship between 

DunedinPACE and dementia.  

Our findings have implications for theory and research. With respect to theory, 

there are three implications. First, the extent to which cognitive decline reflects brain-

specific or systemic processes is not fully understood. In previous studies, midlife and 

older adults with faster pace of aging exhibited brain characteristics linked with 

neuropathologies of aging, including cortical thinning and hippocampal atrophy20,21, 

suggesting connections between systemic aging and aging of the brain. This study 

complements those findings with evidence of corresponding decline in cognitive 

functioning. Together, our findings build the case that systemic biological aging 

contributes to the aging of the brain. The critical next steps are studies that can 

establish the temporal ordering of accelerated pace of aging, brain changes, and 

cognitive decline.  

Second, whether biological aging contributes to dementia risk through an 

acceleration of preclinical cognitive decline versus increased risk of major 

neuropathologic events is unknown. We found that older adults with faster 

DunedinPACE experienced more rapid preclinical cognitive decline. Moreover, 
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accelerated cognitive decline mediated roughly a quarter of the DunedinPACE 

association with dementia. Collectively, these results suggest a faster pace of biological 

aging contributes to accelerated preclinical cognitive decline and associated dementia 

risk. However, they also suggest that trajectories of preclinical decline are only one of 

multiple paths linking accelerated biological aging with dementia. Future studies should 

investigate the role of strokes and other neuropathological insults in linking faster pace 

of aging with increased dementia risk.     

Third, sources of resilience to a faster pace of biological aging are unknown. In 

neuropsychology, the cognitive reserve hypothesis proposes that features of the brain 

that support cognitive functions buffer against cognitive decline in the face of 

accumulating neuropathology 37,48. A common approach to testing this hypothesis is to 

test effect-modification of cognitive decline by baseline levels of cognition. In FHS, we 

found that a faster pace of aging was less deleterious among older adults who had 

higher cognitive functioning at baseline as compared with adults who had poorer 

cognitive functioning at baseline. This result suggests pace of aging may relate to 

features of the brain promoting cognitive resilience to neuropathology. Studies are 

needed to identify the ways in which specific brain features may interact with pace of 

aging to affect trajectories of cognitive decline.  

With respect to research, our findings contribute new evidence that an 

accelerated pace of aging is a harbinger of future dementia risk. The ADRD biomarker 

landscape is changing rapidly 50,51. If our findings can be replicated, DunedinPACE and 

other pace of aging measures may contribute to understanding the role systemic aging 

plays in ADRD pathogenesis. In clinical research, pace of aging measures could help 

identify individuals at risk for preclinical cognitive decline. Ultimately, tools like 

DunedinPACE could prove useful to clinicians treating cognitively intact older adults 

with subjective complaints, uncertain ADRD biomarker classifications, and ambiguous 

trajectories of cognitive decline. In the near term, DunedinPACE and related tools could 

enhance risk stratification for intervention studies 49. Finally, the connections between 

pace of aging and cognitive decline identified in our results suggests that interventions 

that slow pace of aging may also contribute to neuroprotection. As further evidence 

accumulates, DunedinPACE and related tools could provide near-term outcome 
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measures for intervention studies seeking to modify life course accumulation of risk for 

ADRD.  

We acknowledge limitations. There is no gold standard measure of biological 

aging.1 We focused on DunedinPACE based on three lines of evidence. First, 

DunedinPACE is predictive of diverse aging related outcomes, including disease, 

disability, and mortality25. Second, DunedinPACE is associated with social determinants 

of healthy aging in young, midlife, and older adults25,52,53. Third, DunedinPACE is 

modified by calorie restriction, an intervention that affects core biological processes of 

aging in animal experiments54. Generally, we saw similar effect sizes across DNAm 

epigenetic clocks, supporting the robustness of the findings. Our study relied on an 

observational design. Results do not establish causality of associations between 

DunedinPACE and cognitive decline. However, our longitudinal design does help 

establish temporal ordering of faster pace of aging and subsequent cognitive decline. 

Our data do not establish which domains of cognitive functioning are most affected by 

pace of aging. The FHS neuropsychological battery includes only a single test in some 

domains and multiple tests in others; comparative analyses would be confounded by 

measurement artifacts33. The FHS Offspring Cohort we analyzed does not represent the 

US population. FHS recruited its participants in a single city in New England. The 

Offspring Cohort is overwhelmingly Non-Hispanic White. Moreover, it consists of 

participants whose families have been involved in biomedical research for multiple 

generations. Replication in more diverse cohorts, especially those representing 

populations at higher risk for ADRD, are essential to generalizing results from this study.  

Trajectories of preclinical cognitive decline are well-established, but significant 

heterogeneity across individuals remains unexplained. Our study contributes evidence 

that an accelerated pace of biological aging is among the factors leading some 

individuals to experience more rapid trajectories of decline than others.  
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Tables and Figures 
 
Tables 
 

Table 1. Characteristics of FHS Offspring Cohort and Analytic sample. 
The table reports characteristics of the Framingham Heart Study (FHS) Offspring 
Cohort and of the participants in that cohort included in our analysis. The analytic 
sample includes participants with DNA methylation data and complete data from at 
least one neuropsychological exam. Complete neuropsychological exam data were 
defined as >70 non-missing data across tests. Panel A reports demographic 
characteristics at study baseline (available for all participants). Panel B reports data 
on educational attainment (available for 77% of the Offspring Cohort and 99% of the 
Analytic Sample). Panel C reports data on incidence of dementia, Alzheimer’s 
disease, cerebrovascular disease, and mortality through the end of follow-up 
(available for 79% of the Offspring Cohort and 99% of the Analytic Sample).   

 
 
 

Offspring Cohort 
N = 7306 

 

Analytic Sample 
n = 2296 

 M(SD) / % 
Chronological Age (years) 61 (14) 62 (9) 
% Male 44% 45% 
Education (years) 15 (3) 15 (2) 
Global cognition (T-score) 52 (5) 51 (5) 
% Dementia 12% 8% 
% Alzheimer’s disease  9% 5% 
% Cerebrovascular 
disease  2%  2% 
% Dead 33% 25% 
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Table 2. Epigenetic clock associations with cognitive functioning at baseline and 

cognitive decline over follow-up.  

The table shows results from mixed-effects regression analysis of changes in global 
cognition over up to 23 years of follow-up in the Framingham Heart Study Offspring 
Cohort (n=2296). Results are reported for three different epigenetic clocks (left column 
shows results for DunedinPACE; center column shows results for PhenoAge; right 
column shows results for GrimAge). Each set of results shows coefficient estimates, 
95% CIs, and p-values for associations of epigenetic clocks with level of cognitive 
functioning at baseline (Intercept), linear slope of decline (Linear Slope), and quadratic 
slope of decline (Quadratic Slope). Results are reported for three sets of models. The 
base model included covariate adjustment for sex, age at baseline (quadratic), and 
associations of age at baseline with linear and quadratic slopes of cognitive decline. 
The second model added covariate adjustment for smoking history and DNA-estimated 
leukocyte composition. The third model excluded participants with mild cognitive 
impairment at DNA methylation baseline (n=528). Follow-up time was denominated in 5-
year units. Coefficient estimates are denominated in global cognition T-score units per 1 
SD of the epigenetic clocks.  
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Figures 
 
Figure 1. Predicted cognitive change over follow-up in Framingham Heart Study 
Offspring Cohort members with faster and slower pace of aging/ older and 
younger biological age. Data are plotted for analysis of three epigenetic clocks 
(n=2296). The top row shows analysis of the DunedinPACE epigenetic clock. The 
middle row shows analysis of the PhenoAge epigenetic clock. The bottom row shows 
analysis of the GrimAge epigenetic clock. Within each row, there are two graphs. The 
left-side graphs plot predicted trajectories of cognitive change over time for participants 
aged 65 at the time of DNAm collection. The Y axis shows cognitive functioning. The X 
axis shows follow-up time, centered at the time of DNAm collection. The dashed slope 
plots change for those with slow pace of aging/young biological age (one standard 
deviation below the mean). The solid slope plots change for those with fast pace of 
aging/old biological age (one standard deviation above the mean). The graphs show 
that participants with faster pace of aging/older biological age had poorer average 
cognitive functioning at baseline and experienced more rapid cognitive decline over 
follow-up as compared to those with slower pace of aging/younger biological age. The 
right-side graphs plot differences in cognitive functioning per epigenetic-clock SD over 
follow-up time. The graphs show that differences in cognitive functioning between those 
with faster/slower pace of aging and older/younger biological age increase with follow-
up time.  
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Figure 2. Associations of epigenetic clocks with cognitive change over follow-up 
in Framingham Heart Study Offspring Cohort members with high and low 
baseline cognitive functioning. The figure plots differences in cognitive functioning 
per epigenetic-clock SD over follow-up time for participants grouped by baseline 
cognitive functioning (n=2296). Data are plotted for analysis of three epigenetic clocks. 
The left graph shows analysis of the DunedinPACE epigenetic clock. The middle graph 
shows analysis of the PhenoAge epigenetic clock. The right graph shows analysis of the 
GrimAge epigenetic clock. Within each graph, the dashed slope shows the trend for 
participants with high baseline cognitive functioning (T>50). The solid slope shows the 
trend for participants with low baseline cognitive functioning (T<50). DunedinPACE 
analysis shows that a faster pace of aging is associated with more rapid cognitive 
decline for those with low cognitive functioning at baseline, but this association is 
attenuated for participants with higher cognitive functioning at baseline. In contrast, in 
PhenoAge and GrimAge analysis, older biological age was associated with the same 
degree of decline regardless of baseline cognitive functioning. 
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Supplemental Materials 

SUPPLEMENTAL METHODS. 
 
DNA Methylation Data. Prior to normalization, the following sample quality control was 
carried out. We removed n=38 samples with bisulfite conversion <80%,  with methylated 
or unmethylated signal intensities <10.5 and mean detection p-values <0.005 or with <5 
beads for >5% of probes, for which mean X- and Y-chromosome methylation levels of 
non-SNP CpGs were inconsistent with reported sex, with outlying values (<-4.0) for 
SNP-associated probes and thus a high probability of contamination or failure, that were 
clear outliers based on visual inspection of the first 2 principal components of autosome 
associated probes, and that failed any of the manufacturer’s thresholds for restoration, 
staining, extension, hybridization, target removal, bisulfite conversation of type I and II 
probes, specificity of type I and II probes, and intensity ratios among non-polymorphic 
probes (Fortin et al. 2017; Heiss and Just 2018). The remaining samples were 
normalized using the noob method (Fortin et al. 2017). 
 
Fortin J-P, Triche TJ, Hansen KD. Preprocessing, normalization and integration of the 
Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017; 33: 558–60. 
 
Heiss JA, Just AC. Identifying mislabeled and contaminated DNA methylation 
microarray data: an extended quality control toolset with examples from GEO. Clin 
Epigenet. BioMed Central; 2018; 10: 1–9. 
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SUPPLEMENTAL TABLES 
 
Tables 
 
Supplemental Table 1. Description of Neuropsychological Test Battery. This 
table describes the tests used to calculate global cognition across 8 cognitive 
domains, including Verbal Memory, Visual Memory, Learning, Attention and 
Concentration, Abstract Reasoning, Language, Visuoperception, and Psychomotor. 

Cognitive 
Domain 

Test Measure Description of Task 

Verbal Memory Logical 
Memory – 
Immediate 
Recall 

This task involves listening to and immediately 
recalling information from stories. The participants 
responses are scored for how accurately they 
recall details and themes of each story. 

Logical 
Memory – 
Delayed Recall 

20-25 minutes following the immediate recall 
trials, the participant is asked to recall the stories 
again. 

Logical 
Memory - % 
Retained 

The percent of correct responses maintained 
across both the immediate and delayed recall 
trials. 

Visual Memory Visual 
Reproductions 
– Immediate 
Recall 

This task involves observing and immediately 
drawing a replication of visual stimuli that includes 
various geometric shapes in a matrix. The 
participants responses are scored for how 
accurately they reproduce their shapes and their 
location on the page. 

Visual 
Reproductions 
– Delayed 
Recall 

25 minutes following the immediate recall trial, the 
participant is asked to reproduce the visual stimuli 
again. 

Visual 
Reproductions 
- % Retained 

The percent of correct responses maintained 
across both the immediate and delayed recall 
trials. 

Learning Paired 
Associated - 
Total 

A list of unrelated paired words are said aloud for 
the participant to learn. The participant is then 
prompted with one word and asked to recall its 
pair. The participant is scored on how accurately 
they can recall the paired word. 

Attention and 
Concentration 

Trail Making 
Test Part A – 
Time 

Part A requires participants to connect a random 
arrangement of encircled numbers as quickly as 
possible. The participant is scored on how quickly 
and accurately they can complete the task. 

Trail Making 
Test Part B - 
Time 

Part B requires participants to repeat the task 
while alternating between numbers and letters (1 
to A to 2 to B). The participant is scored on how 
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quickly and accurately they can complete the 
task. 

Abstract 
Reasoning 

Similarities – 
Total  

This task involves giving the participant two words 
and asking how they are alike/similar. The 
participant is scored on how well they can reason 
the items likeness.  

Language Boston Naming 
Test – Total 
Correct 
Without cues 

This task involves showing the participant a 
picture of an object and asking, “what is this?” 
The participant is scored on how accurately they 
can name the object without cueing.  

Visuoperceptual 
Organization 

Hooper Visual 
Organization 
Test – Total 
Score 

This task involves showing the participant visual 
stimuli that has been broken up into puzzle-like 
pieces and asking them to identify what it is. The 
participant is scored on how accurately they can 
name the stimuli. 

Psychomotor 
Speed 

Finger Tapping 
– Dominant 
and Non-
Dominant  

The task involves asking the participant to tap 
their finger as quickly as possible on a dial for 10 
seconds. The participant is scored on how many 
taps they can complete. 
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Supplemental Table 2. Effect modification of epigenetic clock associations with 

cognitive functioning at baseline and cognitive decline over follow-up by sex, 

APOE4, and baseline cognition.  

The table shows results from mixed-effects regression analysis of changes in global 

cognition over up to 23 years of follow-up in the Framingham Heart Study Offspring 

Cohort (n=2296). Results are reported for three different epigenetic clocks (left column 

shows results for DunedinPACE; center column shows results for PhenoAge; right 

column shows results for GrimAge). For each epigenetic clock, results are reported for 

three sets of models. The first model tested effect modification by sex (male versus 

female). The second model tested effect modification by APOE4 (carrier versus non-

carrier). The third model tested effect modification by baseline cognition (above or 

below T-score=50). For each model, coefficient estimates 95% CIs and p-values are 

reported for associations of epigenetic clocks, effect modifiers, and interaction terms 

with level of cognitive functioning at baseline (Intercept), linear slope of decline (Linear 

Slope), and quadratic slope of decline (Quadratic Slope, clocks only). All models 

included covariate adjustment for sex, age at baseline (quadratic), and associations of 

age at baseline with linear and quadratic slopes of cognitive decline. Follow-up time was 

denominated in 5-year units. Coefficient estimates are denominated in global cognition 

T-score units per 1 SD of the epigenetic clocks/level of the effect modifier.  

 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307683doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307683
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplemental Table 3. Mediation analysis of epigenetic-clock associations with 

dementia risk.  

The table reports effect-size estimates from mediation models (n=2296). Models 
evaluated mediation of epigenetic-clock associations with dementia risk by accelerated 
cognitive decline. Dementia risk was modeled using Cox time-to-event regression. 
Slope of cognitive decline was estimated over the first three neuropsychological 
assessments following DNA methylation baseline. Mediation analysis was conducted 
using CMAVerse R package. Results are reported for three different epigenetic clocks 
(left column shows results for DunedinPACE; center column shows results for 
PhenoAge; right column shows results for GrimAge). For each epigenetic clock, results 
are reported for two models. The first model included covariate adjustment for age at 
baseline, sex, and a product term modeling the interaction between age at baseline and 
follow-up time (linear and quadratic). The second model added a covariate for baseline 
cognitive functioning. Effect sizes are reported for total, direct, and indirect effects. Total 
effects reflect epigenetic clock associations with dementia. Direct effects reflect the 
portion of total effect that is independent of the mediator (slope of cognitive decline). 
Indirect effects reflect the portion of the total effect that is mediated by slope of cognitive 
decline. % mediated is calculated as the ratio of the indirect effect to the total effect. 
 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307683doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307683
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplemental Figures 

 

Supplemental Figure 1. Cognitive decline with aging in the Framingham Heart 
Study Offspring Cohort. Panel A illustrates the timing of data collection. Each 
participant is represented as a blue line connecting their age at the time of their first 
neuropsychological exam to their age at their last neuropsychological exam. 
Participants are ordered according to the timing during follow-up of their first 
neuropsychological exam (from earliest at the bottom to latest at the top). Age at the 
time of the 8th cohort follow-up visit, when blood DNA methylation (DNAm) data were 
collected, is marked with a gold circle. For most participants, neuropsychological 
examinations commenced around five years prior to the 8th cohort follow-up visit. Panel 
B plots global cognitive functioning scores against chronological age at the time of 
testing. Each testing occasion is represented as an individual dot. The gold, orange, 
and red lines show locally-weighted regression slopes fitted to data for groups of 
participants defined by their age at the time of the 8th study visit, when blood was 
collected for DNA methylation analysis.  
 
 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307683doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307683
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplemental Figure 2. Effect sizes of predicted cognitive change over follow-up 
in Framingham Heart Study Offspring Cohort members across statistical models 
for each DNA methylation epigenetic clocks. This figure plots the effect sizes for 
predicted trajectories of cognitive change over time across various model specifications 
for each DNA methylation epigenetic clock (i.e., DunedinPACE, PhenoAge, GrimAge). 
The Y axis shows the various model specifications. The X axis shows follow-up time, 
centered at the time of DNAm collection. The blue dot graphs estimated change in 
cognition over five years for those with a faster DunedinPACE (one standard deviation 
above the mean). The green dot graphs change in cognition over five years for those 
with an older PhenoAge (one standard deviation above the mean). The black dot 
graphs change in cognition over five years for those with an older GrimAge (one 
standard deviation above the mean). This figure reports that we see similar effect sizes, 
or changes in cognition over time, across the various model specifications for each DNA 
methylation epigenetic clock. 
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