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Abstract

Background: Evidence based findings on long-term health-related consequences of a SARS-
CoV-2 infection remain scarce. Data from wearable devices, well suited for continuous measure-
ment of heart rate and physical activity, offers a unique opportunity to assess the impact of such
infections on an individual’s health. Here we aim to characterize comprehensively how persistent
self-reported symptoms during both acute and post-acute infection correlate to changes in resting
heart rate (RHR) and physical activity, as measured by consumer-grade wearable sensors.
Methods: Using a wearable-derived dataset of behavior and physiology (n = 20,815), we identified
137 individuals who are characterized by persistent fatigue and shortness of breath after a reported
positive SARS-CoV-2 test. We compared this cohort with COVID-19 positive without persistent
symptoms and negative controls. The comparison is based on measurements of RHR and physical
activity as well as self-reported health-related Quality of Life (QoL) through WHO-5 and EQ-5D
before, during, and after the infection.
Findings: We identified a unique phenotype of persistent COVID-19 symptoms and associated
wearable data characteristics and compared this phenotype to COVID-19 positive and negative
controls. Individuals who reported persistent symptoms (coexisting shortness of breath and fa-
tigue) showed higher RHRs (mean difference of 2 · 37/1 · 49 bpm), and lower daily step count (on
average 3,030/2,909 steps less) compared to positive/negative controls, even at least three weeks
prior to a SARS-CoV-2 infection. During the acute phase (0-4 weeks after a positive COVID-19
test), individuals with persistent shortness of breath and fatigue exhibited a decrease in mean RHR,
1 · 86 times that of individuals in the positive control cohort. Similarly, the persistent symptom
phenotype took an average of seven days longer to return to normal compared to positive controls.
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Additionally we found that self-reported persistent COVID-19 symptoms are linked to a substantial
reduction in mean QoL, even before infection.
Interpretation: The analysis of individual wearable time-series suggests that the persistent symp-
tom phenotype, characterized by shortness of breath and fatigue, may have been more exposed to
pre-existing health conditions and/or exhibited lower levels of fitness prior to a SARS-CoV-2 infec-
tion. Our approach demonstrates the enormous potential in tracking the dynamics of physiological
and physical activity under natural conditions in the context of infectious and chronic diseases.
Funding: This study was funded in part by funds from the overall funding program of the City of
Vienna MA7. Funding was also received from the Federal Ministry of Health of Germany (Grants
“Corona-Datenspende”, CD21, DS22 and DS23).

Research in Context

Evidence before this study: Previous research on persistent symptoms of the post-COVID-19
condition on heart rate and physical activity (measured in step count) often lacks a valid control
group and/or information on the health status of individuals prior to the SARS-CoV-2 infection. The
majority of studies have been conducted in clinical settings with a potential selection bias and do
not account for post-COVID-19 conditions in the general population or its imprint on everyday life.
Furthermore, knowledge on how lingering symptoms affect objectively measurable vital signals (such
as heart rate and step count) in different phases of acute and post-acute infection regulation, is useful
for enabling timely and targeted treatment interventions in clinical monitoring.
Added value of this study: By incorporating detailed data obtained from wearables prior to, during,
and after infection, including symptoms, overall wellbeing, and pre-existing health conditions, we
could effectively identify and thoroughly characterize individuals with persistent COVID-19 symptoms.
This unique advantage of our approach enhances the interpretation of phases in post-acute infection
regulation. It further facilitates a comprehensive analysis of both, perceived and physiological health
status, providing a multifaceted view of post-COVID-19 condition. Additionally, the characterization
of patient demographics, comorbidities, and Quality of Life (QoL) enriches our understanding of the
population at risk for developing persistent symptoms.
Implications of the entire available evidence: We found that individuals experiencing persistent
shortness of breath and fatigue, previously identified as core symptoms of post-COVID-19 condition,
exhibit on average elevated resting heart rate (RHR), lower daily activity levels, lower QoL, and a
higher count of pre-existing conditions already prior to an infection with SARS-CoV-2 compared to
two control cohorts. In addition, the average decrease in RHR (bradycardia) during the acute phase
of the infection was more pronounced and prolonged in those with persistent symptoms compared
to the controls. These findings have helped to identify individuals at risk of developing persistent
symptoms following SARS-CoV-2 infection and potentially assist tailoring diagnosis and treatment at
an individual level.

1 Introduction

SARS-CoV-2 infections exhibit a diverse range of long-term impacts on individual health. The WHO
defines post-COVID-19 condition as the continuation or development of new symptoms 3 months after
the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with no other
explanation[1]. Post-acute sequelae of a SARS-CoV-2 infection (PASC) or Long COVID [2, 3] is a
multi-systemic condition [4] that has led to increased demand for health care due to increased disease
burden [5]. Multiple retrospective cohort studies report increased risk of PASC such as gastrointestinal
diseases, cardiovascular diseases, diabetes, neurological disorders, and diseases affecting the respiratory
system [6, 7, 8, 9, 10, 11, 12]. Studies on persistent symptoms post-SARS-CoV-2 infection vary widely
in design, including differences in symptoms studied, follow-up duration, and study populations [13, 14,
15]. Challenges in data availability result in a lack of control adequate cohorts, insufficient information
on pre-infection health status, focus on severe cases only, and typically rely exclusively on subjective
self-reported data, or infrequent measurements [16, 17, 18, 19, 13, 20]. Consequently, diagnostic
and treatment guidelines for long-term impacts of SARS-CoV-2 infection still remain poorly defined.
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Data from wearable devices such as smartwatches or fitness trackers, offer insights into individual
infection regulation and the long-term impact of SARS-CoV-2 on personal health, including heart rate,
activity, step count, and sleep duration [21, 22, 23]. Combining this data with individual symptom
reports not only enables us to detect critical events (e.g infection onset) [24] but also also provides a
deeper understanding of how consequences of a SARS-CoV-2 infection affect individual physiology and
behavior [24, 25, 26]. During the course of the COVID-19 pandemic, several initiatives were launched
to collect such type of data [27, 26, 28]. One such initiative is the Corona Data Donation project [21, 29,
30] by the Robert Koch Institute, Germany’s federal agency for public health research. Between April
2020 and December 2022, over 500,000 voluntary participants registered for the project, obtained and
activated the Corona Data Donation Application (CDA), and over 120,000 submitted more than 600
days of their basic wearable data (such as resting heart rate (RHR) and step count) using a custom-
made smartphone application. Next to daily averages, wearable data is available with exceptional
resolution, down to the order of seconds. This permits a deep analysis of vital time-series, e.g. short
high-intensity activities, regularities, and potential disruptions under natural conditions. Moreover,
the high temporal resolution of the data and its coverage of long periods of time permit a detailed
analysis of vital signals in all phases of a SARS-CoV-2 infection (Fig. 1a-d), i.e. the acute phase (from
the week of the positive SARS-CoV-2 test to four weeks after the test), the sub-acute phase (four weeks
to 12 weeks after the test), and the post-acute phase (12 weeks after the test date) [2]. One can clearly
distinguish between individuals exhibiting strong regulation responses following infection (Fig. 1a,b)
from those with weak ones (Fig. 1c,d). Participants also completed monthly and weekly surveys about
COVID-19 tests, symptoms as well as their subjective wellbeing and health-related Quality of Life
(QoL). Based on this, we discriminated our study cohort into individuals that reported long-lasting
symptoms (such as shortness of breath and fatigue) after a SARS-CoV-2 infection and those who did
not (see Fig. 1 and Material and Methods). We first compared weekly symptom reports of the full
cohort consisting of a positive cohort (P ) to a matched negative control cohort (NC) with respect to
calendar week and weeks before and after a COVID-19 test (Fig. 1f). We then employed high temporal
resolution data on RHR and activity and three age- and gender matched match cohorts (1:3)(Fig. 1h),
i.e., individuals from P who report persistent symptoms (persistent symptoms match cohort PSM) to
the remaining positive (PM) and negative match cohorts (NM). Finally, we compared survey results
on well-being and quality of life across individuals within the differentiated cohort (Fig. 1g) consisting
of those users in P who report persistent symptoms (PS) and those who don’t (positive control cohort
PC) and NC.

To assess these effects systematically and comprehensively, we leveraged the unique combination
of wearable-derived vital and survey data at hand to discern individuals with persistent symptoms
following a SARS-CoV-2 infection and analyzed their physical health across acute and post-acute
COVID-19, shedding light on their characteristics, their course of infection and potential long-term
consequences. We thereby focused on cohort averages of physiology (specifically RHR) and behavior
(measured by step count). In order to make sense of the observed vital changes we then compared
these objective measurements with self-reported QoL (WHO-5 and EQ-5D), showing how signals in
passively sensed health data directly translate into subjectively experienced alterations or limitations
in daily life.

2 Results

2.1 Increased frequency of reports on prolonged symptoms after infection

We evaluated the relative frequency of the reported symptoms of shortness of breath and fatigue in the
full cohort (Fig.2) in pre- (< 0 weeks to the reported COVID-19 test), acute- (0-4 weeks), sub-acute
(5-12 weeks), and post-phase (>12 weeks) [2]. During the acute phase of infection, fatigue was reported
as a symptom by up to 69 · 76% (SE = 0 · 54%) of individuals in P and by 19 · 53% (SE = 0 · 46%) of
individuals in NC. Fatigue was reported significantly more often in P than in NC for at least 6 weeks
starting from the week of the reported SARS-CoV-2 test, Fig. 2a. Shortness of breath was reported
by up to 13 · 55% (SE = 0 · 51%) and 2 · 46% (SE = 0 · 23%) by individuals in P and NC, respectively.
It was increasingly reported for 15 weeks in P (Fig. 2b). The combination of both symptoms was
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& per 
calendar 
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n = 12987
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n = 7828
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Persistent 
Symptoms

n = 137

Cohort 
refinement

Persistent Symptoms 
Match
n = 50

Positive Match (1:3)
n = 150

Negative Match (1:3)
n = 150

Fig 1. Time series of two representative individuals from the CDA population (a-d) and cohort
diagram (e-h). (a,c) Average daily heart rate [bpm] and step counts (b,d) per 15 minutes relative to
the day of the reported positive SARS-CoV-2 test (shaded grey area). Elevated heart rate and
reduced step count persisted for more than 10 days after the test for an individual reporting
persistent shortness of breath and fatigue (a-b). These patterns were less pronounced for an
individual without persistent symptoms (c-d). Both participants exhibited reduced step count a day
prior to the test and in the following days, with the participant reporting persistent symptoms
showing prolonged reduction. (f) Based on all participants of the Corona Data Donation Application
(CDA Population) we constructed a full cohort of individuals who reported a positive SARS-CoV-2
test (positive cohort P ) and those who only reported negative SARS-CoV-2 tests (negative control
cohort NC). (g) We then constructed a differentiated cohort by extracting all individuals from P
who report shortness of breath and fatigue five times or more after a positive SARS-CoV-2 test,
yielding the persistent symptoms cohort (PS) and a positive control cohort (PC) with the remaining
participants. (h) We then constructed three age and gender matched matched cohorts (1:3), i.e. the
persistent symptoms match cohort (PSM), the positive match cohort (PM) and the negative match
cohort (NM). See Materials & Methods for more details.

reported by up to 12 · 2% (SE = 0 · 09%) and 1 · 84% (SE = 0 · 05%) by individuals in P and NC and
at increased frequency in P for a minimum of 11 weeks, see Fig. 2c.

Both, shortness of breath and fatigue, are potentially long lasting symptoms that could help identify
individuals suffering from Post-COVID-condition (PCC) [31, 4, 32]. Other assessed symptoms (cough,
chills, loss of smell/taste, fever, diarrhea, limb ache and runny nose) did not significantly persist beyond
the sub-acute phase when comparing P with NC (Fig. S1).

Based on the above findings, we defined a subset of P as those individuals who reported shortness
of breath and fatigue on at least 5 occasions from the week of the reported positive SARS-CoV-2 test
(PS). Individuals in PS reported on average 6 · 2 (Std = 2 · 33, SE = 0 · 2) unique symptoms during
the acute phase compared to 2 · 41 (Std = 2 · 39, SE = 0 · 01) symptoms reported by individuals with
a positive SARS-CoV-2 test but no persistent symptoms (PC) and 0 · 59 (Std = 1 · 14, SE = 0 · 00)
symptoms reported by individuals in NC (Fig. S2).

Fig. S3 illustrates relative frequencies of all symptoms in all phases, relative to the test date window
for all cohorts, comprehensively.
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Corona Data Negative Positive Persistent Positive Negative Persistent
Donation Positive Control Control Symptoms Match Match Symptoms

Application (P) (NC) (PC) (PS) (PM) (NM) Match (PSM)
(CDA) Cohort Cohort Cohort Cohort Cohort Cohort Cohort

Population
n 535,556 7,691 12,987 7,669 137 150 150 50

Vaccinated [%] 7 · 8 90 · 0 88 · 3 90 · 0 88 · 3 90 · 0 91 · 3 88 · 0
Not vaccinated [%] 0 · 1 0 · 4 0 · 5 0 · 4 0 · 7 0 · 0 0 · 0 2 · 0

Mean Age 52 · 8 52 · 4 55 · 0 52 · 4 52 · 7 53 · 6 53 · 6 53 · 6
(Std) (13 · 5) (11 · 9) (12 · 0) (11 · 9) (11 · 7) (10 · 5) (10 · 5) (10 · 5)

Reported Gender [%] 7 · 4 90 · 7 88 · 9 90 · 8 88 · 3 90 · 0 90 · 0 90 · 0
Female Ratio [%] 36 · 0 39 · 8 38 · 3 39 · 6 53 · 7 50 · 0 50 · 0 50 · 0

Mean BMI 26 · 5 26 · 2 26 · 5 26 · 2 27 · 7 25 · 5 26 · 9 27 · 4
(Std) (24 · 4) (4 · 7) (5 · 1) (4 · 7) (5 · 7) (4 · 0) (6 · 2) (4 · 6)

Table 1. Characterization of the study cohorts as defined in Fig. 1. For additional information on
the reported health states per cohort, see Tab. S1.

Fig 2. Relative frequency of self-reported fatigue (a), shortness of breath (b), and their
combination(c), all relative to the week of the reported SARS-CoV-2 test for positive (P) individuals
and a matched negative control (NC) cohort. Shading indicates the 99% confidence interval, i.e,
2 · 576 times the standard error of a binomial distribution. Asterisks indicate significant differences
between the cohorts using a two-sided two proportion z-test with a significance level of 0 · 01.

2.2 Persistent symptoms correspond to more pronounced and prolonged RHR-

changes

We investigated the corresponding wearable-derived vital data around the SARS-CoV-2 test (Fig.3)
for the three age- and gender-matched (1:3) cohorts PSM , PM and NM (Fig.1h).

We evaluated the average RHR relative to the reporting day of a SARS-CoV-2 test within the three
cohorts, see Fig.3a. For each individual, we first computed the average of all RHR intervals in the
last seven days to obtain one data point per day, and adjusted for seasonal differences by subtracting
the seasonal mean (daily mean RHR of the CDA population, (Fig. S4a)). To account for individual
baselines and degrees of variations in RHR we ensured comparability across individuals by computing
per-user Z-scores. For this, we subtracted from each RHR data point the respective user average and
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divided by the standard deviation in the seven days prior to a reported SARS-CoV-2 test. That way all
time series are centered around zero and are measured in units of standard deviations. Subsequently,
we averaged over all individuals in the respective cohort, see Material and Methods.

We observed changes in RHR regulation for the PSM cohort compared to the PM and NM
cohorts (Fig. 3 a). For the PSM cohort, we found a mean z-score of �0 · 88 compared to �0 · 25 for
the PM cohort. This indicates that, on average, the deviation was 0 ·88 standard deviations below the
pre-phase mean for the PSM cohort and 0 ·25 standard deviations below the mean for the PM cohort.
The difference between maximum and minimum deviation in the period 14 to 20 days after the test
was more pronounced for the PSM cohort (a factor of 1 ·86 in the corresponding z-scores). Individuals
in PSM also showed evidence of transient tachycardia followed by a prolonged relative bradycardia,
that did not return to baseline (z-score � 0) until 18 days after infection. Individuals in PM and NM
exhibited comparable levels of mean RHR except during the acute phase. The relative bradycardia
of PM individuals persisted until 11 days after infection, one week less than in PSM individuals.
Interestingly, we found that, on average, PSM individuals have an elevated RHR compared to the two
control cohorts already prior to the reported SARS-CoV-2 test (inset in Fig.3a). Specifically, PSM
individuals exhibited an average increase of 2 · 37 bpm and 1 · 49 (between 21 to 7 days to the test)
compared to PM and NM individuals, respectively.

2.3 Physical activity profiles in acute and sub-acute infection regulation

To assess differences in physical activity patterns between individuals in the PSM , PM , and NM
cohorts, we analyzed the average step count per user per day in the pre-, acute-, sub-acute and post-
phase of the match cohort (Fig.3b). We accounted for seasonal differences in activity (i.e., higher and
lower step count during summer and winter, respectively, see (Fig. S4b)), bysubtracting the average
of all participants in the CDA population from the average steps per day, see Material and Methods
Section 4.3 for details. We report all results relative to the mean steps per day during pre-phase of
the NM cohort. The respective median step count for PSM -individuals was consistently below the
median of both control cohorts in all four phases. As the three cohorts are age and sex matched, PSM
individuals should have comparable step counts to the two control cohorts, suggesting reduced activity
levels. The mean step count per day was also below the mean step count of the two control cohorts in
all four phases. During the pre-phase, the mean step count of the PSM cohort was 3,030 steps less
than that of the PM cohort and 2,909 steps less than the NM cohort. This indicates a generally lower
level of activity compared to individuals from the PM and NM cohort. In addition, PSM individuals
engaged at least three weeks prior to the infection in 1 · 12 and 0 · 99 days of high physical activity less
than individuals from the PM and NM cohorts, respectively (Fig. S5).

2.4 Persistent symptoms relate to lower well-being and quality of life

In order to clarify the relationship between characteristics observed in wearable data and perceived
(self-reported) wellbeing and QoL, we analyzed responses to an adapted version of the WHO-5 well-
being index [33, 34] and a modified EQ-5D health-related QoL survey (see SI for details) across the
differentiated cohort (Fig. 1g) , see Fig. 4. We did not distinguish whether a response occurred before
or after a reported SARS-CoV-2 test because EQ-5D was not administered until after 2022. By then,
most participants had already reported a test (see Fig. S8).

Our version of the WHO-5 wellbeing index is constructed from five questions rated on a five-point
scale (ranging from never (1) to always (5), with (3) is neutral; see SI for details). We examined
the response for each individual question as well as the average response (Fig. 4 a, c-g). The overall
distribution of wellbeing in PS was skewed towards low values, (Fig. 4 a) with a mean value of
2 · 62 (Std = 0 · 55, SE = 0 · 05) for the PS cohort and a mean of 3 · 22 (Std = 0 · 63, SE = 0 · 01)
and 3 · 2 (Std = 0 · 69, SE = 0 · 01) for the PC and NC cohort, respectively. We also observed
lower wellbeing scores for all individual outcomes (Fig. 4 c-g). Users in PS reported particularly low
scores for feeling energetic and rested upon waking up (Fig. 4d), possibly indicating activity and sleep
issues. Statistically significant differences (↵ = 0 · 001) between the PS and the control cohorts were
found in regards to all WHO-5 questions, as determined by the Mann-Whitney U test. Likewise, we
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Fig 3. Wearable data analysis of the match cohort. (a) Z-transformed mean RHR (average of all
15-minute RHR measurements within the last seven days) relative to the seasonal mean RHR with
respect to the mean and standard deviation up to seven days prior to the date of the reported test of
all individuals in the PSM (pink), PM (purple) and NM (green) cohorts. The difference between
the maximum and minimum z-transformed RHR within 14 to and 20 days after the date of the
reported SARS-CoV-2 test was more pronounced (1 · 3 vs 0 · 7) and more prolonged for PSM than
for PM . Shading indicates standard errors. The inset shows the average RHR relative to the
SARS-CoV-2 test date. Already prior to the SARS-CoV-2 test, PSM -individuals showed an
increased RHR compared to PM and NM . (b) Average steps per day relative to the mean of NM
during pre-phase (adjusted for seasonal variation) in all four phases for all individuals in all three
cohorts. Boxes indicate quartiles, whiskers the range of the distribution of mean steps per day,
scatter points outside the boxes mark the outliers (we do not show outliers > 20k steps per day), and
scatter points within the box mark the mean. The dashed grey line indicates the median of the mean
steps per day during the pre-phase. Median values for PSM were consistently below the seasonal
mean of the CDA population and below the median of the two control cohorts across all phases,
indicating lower activity levels compared to the control cohorts. Mean steps per day values for PSM
were below the mean steps per day values of the two control cohorts in all four phases. Likewise we
found a reduction in the variance of the PSM compared to the two control cohorts.
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found statistically significant differences between the reports of the two control cohorts except for the
questions “In the past four weeks I felt fresh and rested when waking up” (d), “In the past four weeks I
was calm and relaxed” (g), and the mean of wellbeing. We observed statistically significant differences
between all three cohorts, nevertheless the significance level (p-value) was lower when comparing the
PS cohort to the control cohorts than for the intra-control cohort comparison.

In addition, we examined EQ-5D health-related QoL assessed by five questions answered on an
ordinal scale ranging from the best (“I have no problems/No”; coded as 5) to the worst outcome (“I am
not able to do that/extreme”; coded as 1) (Fig. 4b, h-l). The average response to the five questions, a
measure of overall QoL, was systematically lower for individuals in PS compared to the control cohorts
(Fig. 4b) with a mean of 2 · 79 (Std = 0 · 62, SE = 0 · 06). Again, PC and NC show similar values
across modified EQ-5D questions and overall with a mean of 3 · 55 (Std = 0 · 46, SE = 0 · 01) and
3 · 52 (Std = 0 · 52, SE = 0 · 01) for PC and NC, respectively. Likewise, PS-individuals reported
lower QoL across all five questions (Fig. 4h-l) compared to the control cohorts, particularly concerning
problems moving around and pain and physical symptoms (Fig. 4 b and k), again possibly indicating
the presence of comorbidities or pre-existing conditions.

The answers of the PS cohort were significantly different from the control cohorts for all QoL
questions (↵ = 0 · 001). Notably, also the answers of the PC compared to the NC cohort were
significantly different except for the the mean of QoL (b) and the question “Do you have problems
moving around?” (h), and “Do you have problems when it comes to general activities (work, studying,
housework, family- or leisure activities)?” (j). However, the significance level was again lower when
comparing the PS cohort to the two control cohorts than for the intra-control cohort comparison.

We also analyzed the responses to the wellbeing and QoL questions before (Fig. S6) and after (Fig.
S7) the reported SARS-CoV-2 tests and found systematically lower values of wellbeing and QoL for
the PS cohort before as well as after the reported test compared to the PC and NC cohorts. This
suggests that individuals with lower levels in wellbeing and QoL may be at higher risk of developing
long-term symptoms, possibly due to pre-existing general physical or mental health problems that may
be related to another underlying condition.

We additionally tested the predictive power of our results by means of a simple logistic regression
model. It revealed that the variable representing pre-infection wellbeing performed best in predicting
whether an individual belonged to the PM or PSM cohort. Other models that included median RHR
and step count during pre- and acute phases did not improve prediction accuracy. Including wellbeing
as a predictor resulted in a mean accuracy of 75 · 51% (std = 6 · 2) and a moderate mean F1-score of
40 · 0% (std = 5 · 6⇥ 10�15) over 1,000 runs.

3 Discussion

Our study comprehensively characterizes how persistent self-reported symptoms in acute and post-
acute COVID-19 infection relate to changes in resting heart rate and physical activity measured by
consumer grade wearable sensors. Based on RHR, step count, survey-based QoL and predisposing
health characterization we identified a phenotype of persistent COVID-19 symptoms in comparison
with COVID-19 positive and negative controls. Individuals with this phenotype are characterized by
persistent (sub-acute and post-phase) shortness of breath and fatigue, elevated RHR levels and reduced
physical activity prior to the infection and on average lower wellbeing and health-related QoL scores
compared to positive and negative controls.

We used weekly symptom reports to uncover notable differences in the prevalence of fatigue, short-
ness of breath and their co-occurrence in SARS-CoV-2 positive and negative individuals, respectively.
Both symptoms have been reported as typical, persistent symptoms of COVID-19 which are common
in individuals with post-COVID condition [14, 4, 35, 13]. Indeed, according to a WHO case definition,
fatigue and dyspnoea (shortness of breath) are the main symptoms of post-COVID-19 condition [3].

A comparison of the wearable data (RHR and step count) revealed that during the acute phase
(0-4 weeks after positive SARS-CoV-2 test) of COVID-19, individuals who reported persistent symp-
toms exhibited (1) higher RHR before infection, (2) on average more pronounced bradycardia up to
18 days after the positive SARS-CoV-2 test, and (3) lower physical activity before during and after in-
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Fig 4. WHO-5 wellbeing (a,c-g) and modified EQ-5D/QoL (b,h-l) for the PS (pink), PC (purple),
and NC (green) cohorts. The individual WHO-5 and modified EQ-5D scores were both averaged to
obtain the overall wellbeing (a) and QoL (b) scores, respectively. Overall, PS individuals reported
more issues with wellbeing (c-g) and QoL (h-l) than the control cohorts. Error bars indicate standard
errors. The responses from all PS cohort were significantly different (↵ < 0 · 001) from the responses
of the two control cohorts, as determined by the Mann-Whitney U test. All responses of the two
control cohorts were significantly different as well except for the mean value of wellbeing (a), the
mean value of QoL (b), and the questions “In the last four weeks I was calm and relaxed” (g) and “Do
you have problems going around” (h).
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fection compared to positive controls. Similar differences have been observed in previous studies when
comparing SARS-CoV-2 positive and negative individuals [21, 22]. Individuals that later reported
persistent symptoms already exhibited an elevated average RHR (mean increase of 2 · 37 bpm/1 · 49
bpm) compared to positive/negative control cohorts prior to their SARS-CoV-2 testing. In addition,
these individuals were less likely to engage in high-intensity activities (i.e. regular physical activity
and/or training) and were generally less active than the two control cohorts. Specifically, their daily
step count was on average 3,030/2,909 steps less and they engaged in high activity 1 ·12/0 ·99 days less
during the pre-phase than the positive/negative controls. Given that RHR and activity are generally
anti-correlated [36, 37], these results indicate that PSM -users generally display lower physical fitness
levels which could be caused by pre-existing health conditions while simultaneously increasing their
susceptibility for developing long-term symptoms. We found that individuals with persistent symptoms
reported more medical conditions with allergies being 1 · 68 times more common and mental illness
being 1 ·79 to 2 ·07 times more common than in controls, Table S1. This is in line with findings on the
association of these conditions and the risk of developing post-COVID condition [38, 39]. However, it
is important to note that our findings should not be interpreted in a way that increased RHR, lower
step count, and pre-existing health conditions solely determine the manifestation of persistent symp-
toms. Instead they emphasize that individuals displaying these characteristics should be given extra
attention and protection measures.
Finally, we found that individuals with persistent symptoms reported significantly lower levels (↵ =
0 · 001) of wellbeing and QoL compared to the control cohorts. This finding holds for periods be-
fore and after the reported SARS-CoV-2 test, possibly indicating physical or mental health problems
(e.g. chronic conditions, allergies, etc., see Table S1.) among individuals who later report persistent
symptoms. Specifically we find a mean difference of 0 · 6/0 · 58 in mean well-being score and a mean
difference of 0 · 76/0 · 73 between PS and PC/NC individuals. This is in line with recent findings,
where individuals reporting persistent symptoms also reported poorer mental health in comparison
to a control group [40], as well as a study reporting disturbed sleep as an important risk factor for
PCC [41].

Our data allow a detailed examination of activity and heart rate patterns, providing valuable in-
sights not only into the many ways in which SARS-CoV-2 infection can affect behaviour and physiology
in the long term, but also into the health status of individuals prior to contracting the disease. The
data provides distinct advantages for evaluating the general health state of individuals holistically, un-
der natural conditions, and outside of healthcare facilities [42, 43]. Wearables thus have the potential
to improve patient-centered care by empowering individuals to monitor their health and manage their
symptoms more effectively [44, 45]. In addition, data donation projects allow us to investigate individ-
uals across a broad spectrum of SARS-CoV-2 infection severity, since participants enter the study prior
to an infection. This approach enables us to establish a healthy state baseline, based on measurements
prior to an infection, for individuals without biasing the study towards specific infection severities. In
other words, participants are not selectively enrolled into the study based on their expected severity
of subsequent SARS-CoV-2 infection symptoms or outcomes. This is of particular significance in the
context of post-COVID-19 condition research, since this condition is not exclusively linked to severe
COVID-19 cases [46].

Several factors should be considered when interpreting our results. Across all participants in the
Corona Data Donation project we observed an over-representation of males and an under-representation
of adolescents and elderly (65+) individuals [21], the latter probably being the individuals at greatest
risk of suffering from long-term consequences of a SARS-CoV-2 infection [47]. It is also reasonable to
assume that the study population is more health-conscious than the general population, as the adoption
of (wrist-worn) wearables is partly associated with a predominance of health-related habits [48]. We
further did not explicitly account for any potential vaccination status, as the majority of participants in
the CDA are at least partially vaccinated or do not report their vaccination status, see table 1. We did
not distinguish infections by variants of concern (VoC), which could potentially elicit different immune
responses and potentially different heart rate regulation. However, most individuals included in this
study report their SARS-CoV-2 test date in 2022 (Fig. S8) when the variant B.1.1.529 (Omicron) was
predominant in Germany. Keeping all these considerations in mind, it is reasonable to assume that our
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results under-represent the true disease burden of PCC and rather provide a lower bound for expected
long-term imprints of an infection [49, 50, 51, 52, 40].

The sample sizes of our study cohorts are limited as we demand sufficient wearable data to be
present in all four phases (pre, acute, sub-acute and post) around a SARS-CoV-2 test. Additionally,
we imposed strict criteria on our definition of persistent symptoms (more than five times shortness of
breath and fatigue after the reported SARS-CoV-2 test) as for now those are the ones most commonly
observed in individuals suffering from PCC [3, 15, 13, 35, 14]. These strict criteria lead to a sole focus
on a specific subset of potential symptoms, effectively excluding other potential imprints of COVID-19
on long-term health [15, 4, 14].

We emphasize that the first two cohorts studied for symptom reporting are not matched in terms of
age and gender, but only in terms of calendar week and temporal distance to a reported SARS-CoV-2
test. The resulting differences in the age (2 · 6 years) and gender (1 · 5 %) distribution of these cohorts
are small and unlikely to influence the results (Table 1). Previous studies that stratified symptom
reports by gender only found differences after the reported SARS-CoV-2 test for symptoms other than
those studied here [13].

Further studies are needed on the use of wearables to monitor physiological parameters and activity
levels over time in individuals with PCC. Particularly, focusing on other persistent symptoms apart
from shortness of breath and fatigue can aid in recognizing different patterns of symptom progression
and immune response triggers. Moreover, high-frequency heart rate and activity can potentially be
relevant for studying postural orthostatic tachycardia syndrome (POTS), a potential consequence of
an infection with SARS-CoV-2 and a likely criterion for identifying post-COVID-19 condition [53,
54]. Further combination of survey and wearable data would provide a deeper understanding of the
relationship between subjective symptom reports and objective vital signs, allowing physiological and
behavioural measures to be properly translated into experienced alterations to patients’ everyday lives.
Further integration of wearable technology with telemedicine platforms facilitating the monitoring of
symptoms in real-time and enabling remote consultation with healthcare professionals for individuals
suffering from PCC can benefit patients and ease the burden on healthcare providers. The unique
advantage of wearable technologies is that continuous real-time data can be collected cheaply and on
a large scale to provide fine-grained information on individual health, which is an ideal complement to
traditional point-wise measurements in clinical research.

4 Materials and Methods

4.1 Data Characteristics

From April 12, 2020, to December 31, 2022, a total of 535,556 individuals downloaded and used the
Corona-Datenspende App (CDA) [30], actively contributing a minimum of one essential data point
each. The vital data, i.e. RHR and step count, was submitted by linking the the app with consumer-
grade smartwatches and fitness trackers. Participants could additionally consent to engage in periodic
surveys on matters related to COVID-19, e.g., test results, weekly symptoms and monthly questions
on QoL.

Symptom reports were surveyed on a weekly basis since October 21, 2021. Until November 09, 2022,
35,355 individuals participated in the respective survey at least once. Participants could either choose
to report no symptoms or one/multiple symptoms from the following list: Shortness of Breath, Fatigue,
Headache, Sore Throat, Loss of Smell and Taste, Diarrhea, Runny Nose, Cough, Chills, Limb Ache,
Fever. We compared reports on symptoms between individuals who reported a positive SARS-CoV-2
test (P = 7,691 individuals) and a negative control cohort (NC = 12,987 individuals) (see Section
4.2 and Fig.1e). Participants in the P cohort reported symptoms an average of 18 · 4 times (standard
deviation (Std) = 11 · 2). Participants in the NC cohort submitted reports 11 · 1 times on average (Std
= 11 · 4). The P cohort was further split in sub-cohorts, one with individuals that reported persistent
symptoms (PS = 137 individuals) and the rest (PC = 7669 individuals), which together with the NC
cohort yielding in three cohorts, see Section 4.2 and Fig.1e) for details on cohort creation. For these
cohorts we analysed survey responses on wellbeing and QoL. The questions on WHO-5 well-being were
distributed since October 2021 and rolled out together with the symptom surveys. 35,492 individuals
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submitted corresponding answers. Particularly, all 137 individuals reporting persistent symptoms,
7,609 individuals from the PC cohort and 12,866 users from the NC cohort answered the survey on
well-being at least once. The WHO-5 wellbeing index [33, 34] is answered on a six-point scale ranging
from never(0) to always (5). For technical reasons the CDA uses a slightly altered version that utilizes
a five-point scale ranging from 1 to 5 with 3 being neutral. The exact wording of the five questions is
in the SI. The modified EQ-5D survey on QoL was distributed since April 2022 to 12,179 participants.
92 individuals with persistent symptoms, 2,647 from the PC cohort and 12,866 individuals from the
NC cohort answered the five questions on QoL a least once (see SI for exact wording). The answers
are on an ordinal scale ranging from the best possible outcome (“I have no problems/No”; coded as 5)
to the worst possible outcome (“I am not able to do that/extreme”; coded as 1). For three age- and
gender matched cohorts (1:3) denoted persistent symptoms match (PSM = 50), positive match (PM
= 150) and negative match (NM = 150), we analyzed high frequency longitudinal data on RHR and
step count (see Section 4.2 and Fig. 1e). Data on RHR and step count were collected in intervals as
low as 60 seconds. We show four exemplary timeseries spanning three weeks each in Fig.1a-d.

4.2 Cohort creation

To study reported symptoms relative to a reported positive SARS-CoV-2 test (P ) and compared them
with a negative control (NC) cohort we looked at 35,355 individuals who filled out the corresponding
surveys. We excluded 3,660 individuals who reported a positive SARS-CoV-2 test in a previously
distributed one-time questionnaire to avoid previous infections with SARS-CoV-2 in the population.
We divided the population into two groups: those with at least one positive SARS-CoV-2 test and those
with all negative tests. Both cohorts are limited to the period between October 21, 2021, and November
9, 2022. For individuals with positive tests, we used the date of their first positive test if multiple tests
were positive. To avoid including individuals with re-infections, we excluded those reporting a test more
than 28 days after the chosen test date, resulting in 7839 individuals. Among the 18,282 individuals
reporting only negative tests, we randomly selected a test date. We also excluded users who reported
shortness of breath more than four times before their test result, as a proxy for pre-existing respiratory
conditions. To account for seasonal effects in symptom reporting, we adjusted the negative cohort to
match the relative frequency of negative reports per calendar week and the temporal distance to the
test week observed in the positive cohort. This yields a positive cohort (PC) of 7,691 individuals and
a negative control (NC) of 12,987 individuals (full cohort, Fig. 1f). For the analysis of WHO-5 and
modified EQ-5D, we selected individuals from P who reported both shortness of breath and fatigue
at least five times after their positive SARS-CoV-2 test. This subset, comprising 137 individuals,
forms the persistent symptoms cohort (PS). We compared their survey responses with those of the
remaining 7,669 individuals in the Positive Cohort (referred to as the positive control cohort (PC))
and the 12,987 individuals from the negative control (NC) cohort (differentiated cohort Fig. 1g). To
study differences and changes in physiological parameters (RHR) and behavior (step count) between
the PC, NC, and PS cohorts, we analyzed fine-grained vital data collected by wearable devices. We
standardized the data by aggregating high-frequency measurements into 15-minute intervals. Four
phases relative to the reported SARS-CoV-2 test are defined: pre-phase (start of data collection until
the week of the positive test), acute phase (zero to four weeks after the test), sub-acute phase (five
to twelve weeks), and post-phase (twelve weeks or more after the positive test), aligning with recent
definitions of COVID-19 disease stages [2]. After excluding individuals with less than 100 vital data
points across all phases, the Persistent Symptoms Match (PSM) cohort comprises 50 individuals. We
then created age- and gender-matched Positive Match (PM) and Negative Match (NM) cohorts, each
with 150 individuals selected from the PC and NC cohorts, respectively (match cohort, Fig. 1h). For
characteristics of the cohorts see Tabs. 1 and S1.

4.3 Data processing and statistical analysis

4.3.1 Weekly reports on symptoms.

For the P and the NC cohorts, we compared the relative frequency of symptom reports relative to the
calendar week in which a SARS-CoV-2 test was reported. We detected differences between the two
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groups at 99% confidence using a two-sided two proportion z-test and a significance level of 0 · 01. To
investigate whether pairs of symptoms are significantly concordant, we compared the relative frequency
of reports where individuals report both symptoms.

4.3.2 Resting heart rate and step count.

To ensure data consistency, we only analyzed one source/device per participant (e.g., Apple Health,
Fitbit, or Garmin). If a user has multiple devices, we prioritized the one with the most data points,
potentially leading to missing information if different devices are used for different activities. Observa-
tions are based on measurement intervals ranging from less than one minute to several hours, resulting
in overlapping intervals in a few instances and a slight overestimation of daily activity. This is rare
compared to the total data volume. In our data pre-processing approach, intervals longer than one
minute were split into one-minute segments and duplicate intervals are removed. These one-minute
intervals were then resampled to 15-minute intervals by calculating the mean of the RHRs and the
sum of the steps. In cases where a user contributes data from multiple sources, only the source with
the highest number of entries is considered. To compare RHRs between the PSM cohort, the PM
cohort and the NM cohort, for each user and each day we first computed (relative to the reported
SARS-CoV-2 test) an average of all 15 minute intervals within the past seven days. We only computed
the average if there were more than 20 entries within that seven-day window. We then computed the
average RHR over all users in a cohort, again relative to the reported SARS-CoV-2 test. To evaluate
tachycardia during the acute phase of the infection, we z-transformed the average of all 15 minute
intervals within the last seven days per user relative to the mean RHR prior to the test (window of 62
days to 7 days before the date of the reported test). We additionally controlled for seasonal fluctuations
by z-transforming the average RHR relative to the seasonal mean of the CDA population (Fig. S4a).

To examine differences in behavioral changes around a SARS-CoV-2 infection between cohorts, we
investigated the average step count for the cohort members. As the daily step count shows seasonal
variations [21], we always assessed this metric by subtracting the respective mean value per day and
device within the entire set of participants of the whole Corona Data Donation project, see also Fig.
S4b. We show the difference to the mean daily step count (adjusted for seasonal variation) of the
NM cohort during pre-phase. A positive/negative value then indicates that an individual is more/less
active than the NM cohort during pre-phase average. To assess variations or shifts in high-intensity
physical activity, such as sports, we established a criterion where a day is considered to be high-intensity
physical activity if the step count is more than one standard deviation above the seasonal average step
count.

4.3.3 Monthly surveys on well-being and quality of life.

For the analysis of the surveys on well-being/QoL we calculated the mean response to each question
per user over all answers (not discriminating between before and after day of reported SARS-CoV-2
test) and showed the relative frequency of each possible answer value per cohort. Error bars indicate
the standard error. The answers to each one of the five WHO-5 Well-Being questions are designed so
that they can be averaged to obtain a mean value of well-being. Note, that the WHO-5 well-being
is usually measured on a six-point scale. Due to technical reasons however, our survey provides an
ordinal five-point scale. This also applies to the five modified EQ-5D QoL questions. The modification
is attributed to different translations of questions and answers, along with one missing question. For
both the WHO-5 and the modified EQ-5D, we show a histogram of the distribution of the respective
mean scores for all three cohorts studied.

4.3.4 Logistic Regression.

Logistic regression analysis was performed with the target variable indicating individuals with persis-
tent symptoms (PSM) versus a randomly selected sample of the same size from the cohort without
persistent symptoms (PM). This process was iterated 1,000 times, with each iteration utilizing a
different random sample. The explanatory variable was the mean WHO-5 wellbeing score up until one
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week prior to the test. Individuals with missing data for any explanatory variable were excluded from
the analysis.

4.3.5 Role of the funding source.

This study was funded in part with funds from the funding program of the City of Vienna MA7 with
no role of the study sponsor in study design, collection, analysis, interpretation of the data, writing of
the report and decision to submit.

Ethical consideration

Participation in the study was voluntary and self-recruited. All individuals participating in the Corona
Data Donation Project provided informed consent electronically via the app. Consent was provided
separately for submitting vital data and participating in the in-app surveys. Participation is only
possible for German residents age 16 and older and data is only stored pseudonymously, using a
randomly generated unique user ID. Participant age is rounded to 5 years. The study is subject to strict
compliance with the data protection provisions set out in the EU General Data Protection Regulation
(GDPR) and the Federal Data Protection Act (BDSG). A comprehensive privacy impact assessment
was conducted through an external law-firm specialized in e-Health and research projects. The study
was reviewed and approved by the Data Privacy Officer at the Robert Koch Institute (internal operation
number 2021-009) in agreement with the Federal Commissioner for Data Protection and Freedom of
Information (BfDI), Germany’s highest independent supreme federal authority for data protection and
freedom of information. Ethical approval for this study was obtained from the ethics board at the
University of Erfurt (approval number 20220414).

Data availability

The data analyzed in this study concerns the health condition of individual persons. As per the General
Data Protection Regulation (GDPR) such data constitutes sensitive information and is protected as a
"special category of personal data". For this reason, the data must not be directly shared in a public
repository, but interested parties can request access to the data following registration with the Data
Privacy Officer at the Robert Koch-Institute. All initial data inquiries should be addressed to Dirk
Brockmann (dirk.brockmann@tu-dresden.de) or the general contact address of the Corona Data
Donation project (synosys@tu-dresden.de).
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CDA Positive Negative Positive Persistent Positive Negative Persistent
Population Control Control Symptoms Match Match Symptoms Match

n 535,556 7,828 12,987 7,691 137 150 150 50

% answered 7 · 3 89 · 9 87 · 7 89 · 9 88 · 3 90 · 0 89 · 3 90 · 0
No disease in the past 12 months [%] 46 · 6 48 · 5 44 · 3 49 · 0 24 · 8 54 · 1 41 · 0 31 · 1

Allergies [%] 29 · 5 30 · 4 30 · 0 30 · 0 50 · 4 25 · 2 32 · 1 46 · 7
Hypertension [%] 20 · 5 18 · 2 22 · 6 18 · 1 23 · 1 16 · 3 25 · 4 20 · 0

Asthma [%] 9 · 6 9 · 3 9 · 3 9 · 0 24 · 0 11 · 1 11 · 9 22 · 2
Increased blood lipid/cholesterol levels [%] 11 · 7 10 · 4 12 · 8 10 · 3 15 · 7 8 · 1 12 · 7 17 · 8

Chronic Bronchitis [%] 2 · 8 2 · 1 3 · 1 2 · 0 6 · 6 1 · 5 1 · 5 8 · 9
Other [%] 12 · 2 10 · 5 13 · 9 10 · 3 19 · 8 10 · 4 9 · 7 22 · 2

Mental Illness Diagnose [%] 20 · 7 19 · 5 22 · 2 19 · 2 39 · 7 15 · 6 20 · 1 44 · 4
Table I. Characterization of individuals in the persistent symptoms, positive control and negative control cohort.
See Materials and Methods (Section IV) for further details on the specifics of the assignments.

WHO-5 Questions on Well-Being. The five questions ask: ’In the past four weeks ...’

• ... I was happy and in a good mood.

• ... I felt calm and relaxed.

• ... I felt energetic and active.

• ... I felt fresh and rested when waking up.

• ... my everyday life was full of things that interest me.

Modified EQ-5D Sruvey on Quality-of-Life. The survey asks to indicate what best describes the state of health
today:

• Do you have any problems moving around?

• Do you have any problems taking care of yourself, washing or dressing yourself?

• Do you have problems when it comes to general activities (work, studying, housework, family- or leisure activi-
ties)?

• Do you have pain/physical symptoms?

• Are you anxious or depressed?
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Figure 1. Relative frequency of symptoms relative to week of reported SARS-CoV-2 test for positive and negative
control cohort.
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Figure 2. Distribution of number of unique reported symptoms during acute phase of infection (0-4 weeks to the
reported SARS-CoV-2 test) studied cohorts.

Figure 3. Relative frequency per symptom. For pre-, acute-, sub-acute and post phase we show the relative
frequency per reported symptom for all three groups in the vital cohort: negative match, positive match and
persistent symptoms match.
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Figure 4. Seasonal trends in vital data. Exemplary timeseries of mean RHR per day (a) and mean steps per day
(b) over the CDA Population for one example year (2022) and one example donation-source (Apple).

Figure 5. High activity profiles of the fine cohort. Relative frequency of the number of high activity days per week
relative to the SARS-CoV-2 test date for PSM (a), PM (b) and NM (b). A day is defined as a high activity day
when the corresponding number of steps per day exceed one standard deviation over the seasonal mean taken over
the whole set of users in the Corona Data Donation Project (CDA Population).
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Figure 6. WHO-5 wellbeing (a,c-g) and modified EQ-5D/QoL (b,h-l) for the PS (pink), PC (purple), and NC
(green) cohorts before the reported SARS-CoV-2 test. The individual WHO-5 and modified EQ-5D scores were both
averaged to obtain the overall wellbeing (a) and QoL (b) scores, respectively. Overall, PS individuals reported more
issues with wellbeing (c-g) and QoL (h-l) than the control cohorts. Error bars indicate standard errors.

Figure 7. WHO-5 wellbeing (a,c-g) and modified EQ-5D/QoL (b,h-l) for the PS (pink), PC (purple), and NC
(green) cohorts after the reported SARS-CoV-2 test. The individual WHO-5 and modified EQ-5D scores were both
averaged to obtain the overall wellbeing (a) and QoL (b) scores, respectively. Overall, PS individuals reported more
issues with wellbeing (c-g) and QoL (h-l) than the control cohorts. Error bars indicate standard errors.
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Figure 8. Distribution of reported SARS-CoV-2 testdates of studied cohorts.
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