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Abstract (limited to 250 words) 32 
 33 
Background: This study aims to develop a model for simultaneously assessing genetic and epigenetic 34 
contributions to plasma lipid levels. 35 
Methods: The predictive model was developed using two cardiovascular risk groups, i.e., individuals 36 
with high low-density lipoprotein cholesterol (LDL-C) levels (≥160 mg/dl, N = 296) and coronary artery 37 
disease (CAD) (N = 315), in contrast to reference (max N = 3,801) and non-CAD individuals (N = 164). 38 
For genetic predisposition, rare pathological variants in five target genes related to familial 39 
hypercholesterolemia (FH) were screened, while common variants were characterized to calculate a 40 
polygenic risk score (PRS). The methylation risk score (MRS) was also calculated for epigenetic profiles 41 
based on DNA methylation levels at 13 CpG sites. A relationship between these variables and lipid 42 
levels was analyzed in regression and quantile models. 43 
Results: A total of 17 rare FH-related gene variants were identified in patients with high LDL-C or CAD, 44 
significantly more prevalent than in the general Japanese population (2.8% vs. 0.2%, P <1×10-15). For 45 
the rare variants plus PRS, the predictability of individual LDL-C increased (correlation coefficient 46 
between predicted and measured values, r = 0.261, P = 1.7×10-11) compared to PRS alone (r = 0.151, 47 
P = 1.2×10-4). PRS and MRS had the most significant impact on high-density lipoprotein cholesterol 48 
and triglycerides, respectively. The two risk scores had additive effects on these traits. 49 
Conclusions: Our results provide proof-of-concept that assessing the relative contribution of genetic 50 
predisposition and DNA methylation levels (reflecting past environmental exposures) may help 51 
individuals refine their dyslipidemia treatment. 52 
 53 
Key Words: Genetic risk score; Plasma lipids; Coronary artery disease; DNA methylation  54 
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Dyslipidemia is a significant risk factor for atherosclerotic cardiovascular diseases, including 55 

coronary artery disease (CAD), to which genetic, environmental, and demographic factors contribute 56 

interactively. Epidemiological studies have shown that appropriate management of dyslipidemia can 57 

significantly decrease cardiovascular morbidity and mortality. Atherosclerosis treatment has often 58 

focused on reducing low-density lipoprotein cholesterol (LDL-C) among dyslipidemias, with lifestyle 59 

modifications emphasized in all patients with high LDL-C.1,2 Above all, dietary intervention is essential 60 

because high saturated fat intake causes increased concentrations of LDL-C.3 However, sustaining 61 

lifestyle modifications over time is generally challenging, so drug therapy is sometimes necessary to 62 

reduce the risk of atherosclerosis.1 63 

People with a vital genetic component, e.g., familial hypercholesterolemia (FH) patients, also 64 

require lipid-lowering medications such as statins at an earlier stage.2 For CAD, while the introduction 65 

of statins has considerably changed its management and prevention, the disease burden remains 66 

high. Clinical practice guidelines emphasize the importance of estimating the absolute risk of CAD 67 

and tailoring the intensity of preventive actions accordingly.1,4 The optimal LDL-C goal for persons at 68 

low risk is set at <116 mg/dl by the 2019 ESC Guidelines, which used to be set at <160 mg/dl (for 69 

persons with 0-1 risk factor) by the NCEP-ATPIII Guidelines. Still, there is a significant gap between 70 

guideline-recommended treatment and daily clinical practice of dyslipidemia.5 71 

An individual's lipid levels are influenced by the degree of environmental exposure and genetic 72 

predisposition, although no method has been established to provide quantitative indicators of these 73 

combinations. On the one hand, it is difficult to quantitatively assess the impact of unhealthy lifestyle 74 

habits on lipid levels. Even so, exposure to some external factors, such as smoking and high plasma 75 

lipids, can cause long-lasting DNA methylation changes in blood cells.6-8 These changes can reflect an 76 

individual's environmental history, and consequently, lifestyle habits may be evaluated through 77 

epigenetic biomarkers.9 On the other hand, genetic information as an auxiliary diagnostic tool for 78 

dyslipidemia is still in the realm of research, with a few exceptions, such as the genetic diagnosis of 79 

FH.2 In this line, polygenic risk score (PRS) has recently become popular to summarize the cumulative 80 

effects of genetic loci, successfully identified by genome-wide association studies (GWAS) of lipid 81 

traits.8,10 Nonetheless, there remains considerable uncertainty in individual PRS estimation for PRS-82 
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based risk stratification11 and substantial difficulty in unbiased assessment of the contribution of rare 83 

variants to complex traits.12 84 

In light of this situation, we performed genetic (i.e., GWAS array genotyping and rare variant 85 

search in FH-related target genes) and epigenetic (specifically, DNA methylation) analyses focusing on 86 

lipid traits, specifically LDL-C. We aim to develop a model for evaluating genetic and epigenetic 87 

contributions to plasma lipid levels with a risk prediction index simultaneously incorporating multiple 88 

data modalities for individuals with high LDL-C or CAD. We studied Japanese populations to overcome 89 

challenges in applying PRS and methylation profiles to non-European ancestry groups.13,14 We 90 

collected individual-level data to test our risk prediction index's accuracy. The study demonstrates 91 

that a combination of genetic predisposition and DNA methylation has an additive effect on an 92 

individual's lipid levels among people at high risk of atherosclerosis and supports the potential utility 93 

of multi-omics data in refining an individual’s dyslipidemia treatment. 94 

 95 

Materials and Methods 96 

Please see the Data Supplement for details about the Materials and Methods. 97 

Study population: The institutional ethics review board approved this study, and participants gave 98 

their written informed consent. The procedures followed the ethical standards of the institutional 99 

committee on human experimentation at the National Center for Global Health and Medicine 100 

(NCGM). 101 

In NCGM, adult patients of Japanese descent were recruited via two separate projects: BIO-CVD 102 

and NCGM Biobank, whose enrollment started in 2014 and 2012, respectively. They were categorized 103 

into three subgroups based on their plasma LDL-C levels and CAD status (see Supplementary 104 

Methods): high LDL-C without CAD, CAD, and non-CAD subgroups (as shown in Table 1). A hospital-105 

based study called BIO-CVD assessed CAD in 475 participants (306 CAD and 169 non-CAD). Samples 106 

from the NCGM Biobank were also examined, specifically those with elevated plasma LDL-C (≥160 107 

mg/dl) (N = 300). These samples were used for genetic and DNA methylation analyses (Fig. 1). Also, 108 

a significant number of Japanese individuals from non-targeted populations were included. We used 109 

publicly available whole genome sequencing data (N = 8.3K) for low-frequency (or rare) genetic 110 
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variants. For common single nucleotide variants (SNVs), we used GWAS array genotyping data in 111 

three population-based cohorts (including the Kita-Nagoya Genomic Epidemiology [KING] study 112 

cohort15) and another hospital-based sample at NCGM (named NCGM hospital cohort; N = 351) 113 

(Table S1), which we referred to hereafter as reference individuals in total (N = 3,801). Furthermore, 114 

for DNA methylation, we utilized epigenome-wide association study (EWAS)-array assayed data for 115 

part (N = 314) of the KING study cohort samples previously reported.15  116 

When analyzing prediction models for dyslipidemia, the high LDL-C and CAD subgroups were set 117 

as atherosclerotic risk groups, while the KING study cohort samples and the non-CAD subgroup were 118 

set as comparison groups (Fig. 1). With these subgroup analyses, we attempted to test whether high 119 

LDL-C or CAD status affects the association between DNA methylation and lipid traits. 120 

Medical records were reviewed to extract the participants’ plasma lipid levels and medication 121 

information at enrollment and clinical conditions of CAD patients (Table 1). To ensure the reliability of 122 

the data, we excluded individuals who had missing information on key variables: plasma lipid levels, 123 

genotype, and DNA methylation data. 124 

Imputation of baseline LDL-C level: For the imputation of baseline (or pretreatment) LDL-C, we 125 

performed a retrospective analysis on data from 36 individuals with high LDL-C in whom plasma LDL-126 

C measurements were available both before and within 18 months after initiating statins and 127 

ezetimibe (Fig. S1). Similar to the study by Ruel et al.,16 we performed imputation of baseline LDL-C 128 

by dividing the on-treatment value by the proportion obtained by subtracting the expected 129 

treatment-induced reduction (expressed as a ratio) from 1. 130 

Gene sequencing: Next-generation sequencing screened mutations in five FH-related genes (LDLR, 131 

APOB, PCSK9, LDLRAP1, and APOE). The sequences were aligned to a human genome reference 132 

sequence (GRCh37/hg19). SNVs and insertion/deletion (Indel) were called using the software GATK 133 

(https://gatk.broadinstitute.org/) and McCortex (https://github.com/mcveanlab/mccortex) and 134 

annotated using VarSeq (https://www.goldenhelix.com/products/VarSeq/). We then retrieved rare, 135 

putatively pathogenic variants, including SNVs that cause non-synonymous, nonsense, or splice-site 136 

substitutions and are predicted to be deleterious by ClinVar, LOVD, or in silico prediction algorithms 137 

in dbNSFP.17 138 
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Genotyping: 767 samples were newly genotyped with the Infinium OmniExpress-24 BeadChip 139 

(Illumina, San Diego, CA, USA). Besides, GWAS array genotyping data for reference individuals18 were 140 

utilized. 141 

Polygenic risk score (PRS): For each lipid trait, a PRS was built using LDpred 142 

(https://github.com/bvilhjal/ldpred)19 and external GWAS summary statistics,20 for which potential 143 

population stratification was adjusted using genetic principal components.21 Briefly, for each linkage 144 

disequilibrium (LD)-based clump across the genome, index SNPs passing specific statistical 145 

significance (P <0.005) and LD coefficient (r2 ≥0.5) thresholds were extracted from large GWAS 146 

reported in Japanese.20 Individuals were scored based on the number of risk alleles (0, 1, or 2) 147 

weighted by beta of the SNP-trait association, thereby used for developing the best polygenic 148 

predictive indicator of LDL-C (PRSLDL-C) and other lipid traits. 149 

Conversion of PRS to LDL-C value: We developed a formula that converts PRSs to LDL-C values using 150 

two different external reference panels to estimate the standardized effects of a PRSLDL-C on plasma 151 

LDL-C level. First, we set standardized PRSLDL-C decile classes in the general Japanese population and 152 

used them as the Japanese standard PRS for LDL-C (Fig. S2A-C). Then, we calculated the mean LDL-C 153 

values for Japanese standard PRS decile classes in the NCGM hospital cohort, which was not 154 

previously screened for cardiovascular disease (Table S1 and Fig. S3). The mean values of LDL-C for 155 

each PRS decile class (shown in Fig. S2D) were used to convert PRSLDL-C in individuals from BIO-CVD 156 

and NCGM Biobank (Fig. 3D and Fig. S2E) belonging to the same population as the NCGM hospital 157 

cohort. 158 

Genetic composite risk: For rare [minor allele frequency (MAF) <0.01] variants of putative functional 159 

significance, we arbitrarily classified them into three distinct categories—(1) disruptive (frameshift or 160 

splice-donor), (2) damaging, and (3) all other non-synonymous variants—similar to the previous 161 

study22 with some modifications (see the Supplementary Methods). We estimated the net increase 162 

in LDL-C levels for rare variant carriers by subtracting a predicted value (based on PRSLDL-C) from the 163 

actual measured value. Using linear regression models, we calculated LDL-C changes from individuals 164 

without rare FH-related gene variants and the standard error (SE) by category, including disruptive, 165 

damaging, and other non-synonymous variants. 166 
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To combine the genetic risk of rare variants and SNVs, we used the following algorithm: [an 167 

individual’s LDL-C value] = [predicted LDL-C value based on PRSLDL-C] + [estimated changes from non-168 

carriers (by rare variant category)]. 169 

Methylation risk score (MRS): Genomic DNA was extracted from the peripheral blood buffy coat and 170 

stored at −80°C for DNA methylation analysis. As previously reported,23 genome-wide methylation 171 

profiling was performed with the Illumina EPIC array (Illumina Inc. San Diego, CA, U.S.A.). Also, droplet 172 

digital PCR (ddPCR) assay in the QX200 Droplet Digital PCR system (Bio-Rad, Carlsbad, CA, U.S.A.) was 173 

employed to measure methylation extent at 13 selected CpG sites, which had been reported to show 174 

robust evidence for association with lipid traits in previous EWASs (Supplementary Methods, Table 175 

S3).10 176 

Because methylation profiles reflect environmental effects, MRSs were created for lipid traits 177 

using weighted sums of beta values from 13 CpG sites.24 Here, the effect sizes from the previous 178 

multi-ancestry EWAS for lipid traits10 were utilized as external weights for each CpG probe. 179 

Statistical analysis: Pearson's correlation coefficient, r, was calculated to measure the strength and 180 

direction of the linear relationship between actual lipid levels and those predicted by the individual 181 

risk score models. To develop a prediction model, the relationship between predictor variables (i.e., 182 

PRS, MRS, and/or PRS+MRS) and outcome variables (i.e., plasma lipid levels) was examined in this 183 

study by two analytical methods: quantile binning and multivariable regression analysis. Quantile 184 

binning was used to convert an individual’s PRS to the absolute scale (i.e., plasma lipid value) as 185 

previously reported.25 In situations where the correctness of the linearity assumption is 186 

undetermined, quantile binning is essential to correct LDL-C changes due to rare functional variants 187 

and to combine them with the MRS at the individual level in a representative sample. Multivariable 188 

regression analyses, on the other hand, were performed to quantify the predictive utility of predictors 189 

(i.e., risk scores) at the group level separately by (sub)group, and the coefficient of determination 190 

(denoted R2) was used to provide a measure of how well the observed outcomes are approximated 191 

by the regression predictors in the tested population. The imputed value for lipid-lowering therapy 192 

was used in analyses including PRS when analyzing LDL-C. 193 

No formal sample size calculations were performed since both BIO-CVD and NCGM Biobank are 194 
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ongoing studies and there is no generally accepted approach to estimating the sample size needed 195 

to develop a prediction model like this study. 196 

Significant results are shown as mean ± SE with P <0.05 unless otherwise stated. 197 

 198 

Results 199 

Imputation of baseline LDL-C level 200 

This study recruited adult patients with high LDL-C and CAD at NCGM; of 315 CAD patients, 157 had 201 

a clear history of myocardial infarction, but 158 did not (Table 1). A considerable part of the 202 

participants had been prescribed statins, with 19% in the high LDL-C subgroup and 70% in the CAD 203 

subgroup (Table 1). For statin, irrespective of its type and dose, the average percent reduction in LDL-204 

C from baseline (or pre-treatment) was approximately 40%. Also, for ezetimibe, the percent reduction 205 

in LDL-C was 22% (observation in a single patient) (Fig. S1). Hence, we used these values (40% for 206 

statins and 20% for ezetimibe) to impute pre-treatment LDL-C measurements for patients on lipid-207 

lowering therapy. 208 

Rare variants in five FH-related genes 209 

We identified 1,762 variants in five FH-related genes, of which 58 were rare (MAF <0.01) variants with 210 

functional significance. The variants (30 in APOB, 13 in LDLR, 7 in PCSK9, 1 in LDLRAP1, and 7 in APOE) 211 

could be classified into three categories—2 disruptive (frameshift and splice-donor each), 13 212 

damaging, and 43 other non-synonymous variants (Table 2 and Table S2)—according to criteria 213 

described in the Methods. In a CAD patient, we also identified a gain-of-function type variant for 214 

PCSK9 (indel, TGCCAGCGCCT/-), which appeared to be protective against CAD by exerting LDL-C 215 

lowering effects (Table 2). None of the identified rare variants overlapped with variants reported to 216 

affect response to statin therapy.26 217 

We evaluated the effect sizes of rare FH-related gene variants compared to a reference group of 218 

non-carriers by category to calculate the net increase in LDL-C caused by individual rare variants (see 219 

Methods). LDL-C levels increased significantly (P<0.05) in all three categories compared to the 220 

reference group: plus 106, 42, and 13 mg/dl for disruptive, damaging, and non-synonymous rare 221 

variants, respectively (Fig. 2A). The order of increase was consistent with the predicted pathogenicity 222 
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of identified rare variants (Fig. 2B) and also with results from another study in Japanese.22 223 

The ratio of carriers for ‘disruptive + damaging’ variants was significantly (P <1×10-15) higher 224 

among CAD and high LDL-C subjects (ratio=0.025 and 0.03, respectively) than in the general 225 

population, TMM (ratio=0.002). (Fig. 2C). 226 

PRS and composite genetic risk prediction for LDL-C 227 

By use of the standardized PRSLDL-C decile classes, we found that PRSLDL-C was shifted towards higher 228 

(from 7th to 10th) decile classes among high LDL-C subjects, whereas PRSLDL-C distribution was 229 

protruded in the 9th decile class among CAD subjects (Fig. 3C). 230 

We examined the correlation between predicted and actual LDL-C levels in newly recruited 231 

individuals at NCGM, based on standardized PRSLDL-C decile and estimates of LDL-C increase by rare 232 

variant category in Japanese. (Fig. 3D,E). The correlation was stronger for composite genetic risk 233 

prediction with both PRSLDL-C and rare variant effects (middle plot; r=0.261, P = 1.7×10-11) than 234 

conventional genetic risk prediction with PRSLDL-C alone (left plot; r=0.151, P = 1.2×10-4). 235 

Impacts of PRSs and MRSs on lipid traits 236 

Each subgroup (Table 1) had unimodal distributions of HDL-C, triglycerides, and BMI, distinct from 237 

LDL-C (Fig. S4). Between high LDL-C and CAD subgroups, there were significant differences in BMI 238 

(P=0.004) and HDL-C (P=9.2×10-18) in addition to LDL-C (P=5.8×10-158).  239 

We confirmed the consistency (R2=0.34—0.86) of two DNA methylation analytical methods 240 

(EPIC array and ddPCR; see Fig. S5). Then, we used ddPCR to measure the methylation levels of 13 241 

CpGs (see Table S3) and found that the effect sizes of the CpG-trait association were well correlated 242 

with previous multi-ethnic EWAS (Fig. 4A). Furthermore, there were significant differences (P=0.0045 243 

for LDL, P=3.5×10-7 for HDL) in the MRS distribution between the high LDL-C and CAD subgroups (Fig. 244 

S6), consistent with phenotypic differences between the subgroups. 245 

When the CpGs were analyzed individually, the CpG-trait association was more robust in the 246 

CAD subgroup compared to the high LDL-C subgroup for lipid traits (Fig. 4A). This was supported by 247 

the results of the MRS-trait association, which involves the cumulative effects of top-hit CpGs 248 

previously reported for each lipid trait (Fig. 4B and Table S4). Contrarily, the impact of PRSs on lipid 249 

traits tended to be smaller in the CAD subgroup than in the high LDL-C subgroup. The two risk scores 250 
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were also explanatory factors for the variance of lipid traits in the general population (as represented 251 

by the KING study cohort). At the same time, there were some differences in their relative influence 252 

compared to the high LDL-C and CAD subgroups. Overall, within each subgroup or population, the 253 

effects of PRSs and MRSs on lipid traits were additive (Fig. 4B). Although it remains a preliminary 254 

finding given the modest sample size in the current non-CAD subgroup, the strength of association 255 

between the risk scores and lipid traits appeared to be influenced by CAD status or its related factors 256 

(Table S4). 257 

Predictability of lipid traits by risk score models 258 

We compared correlation strengths between predicted and measured lipid trait values using various 259 

risk score models to assess individual predictability (Fig.3D-F and Fig. S7). The model incorporating 260 

PRS and MRS (plus rare variants for LDL-C) showed a higher correlation than the one using only one 261 

risk score, supporting its efficacy in enhancing predictability. 262 

 263 

Discussion 264 

This study, focusing on cardiovascular risk, evaluates the relative contribution of genetic 265 

predisposition and DNA methylation to plasma lipid levels, by developing a prediction model for 266 

dyslipidemia. Our analysis newly demonstrates two key points. First, concerning genetic 267 

predisposition, the effect sizes of rare FH-related gene variants are generally more prominent than 268 

the integrated effect of common variants (i.e., PRS). Combining the two can increase the accuracy of 269 

predicting an individual's genetic predisposition for LDL-C. Second, DNA methylation, which is 270 

assumed to reflect an individual's history of environmental exposure, interacts with genetic 271 

predisposition to affect an individual's blood lipid levels. Therefore, combining DNA methylation and 272 

genetic predisposition can enhance the accuracy of predicting optimal treatment. 273 

As a first step in this study, we have successfully developed an algorithm to predict composite 274 

genetic risk for high LDL-C levels. Prioritizing the detection of rare pathogenic variants in population 275 

screening, as well as the concurrent use of PRS is a topic of active discussion for genomic conditions 276 

that are actionable and adult-onset.27 Thus, a study has shown a risk prediction model that combines 277 

rare pathogenic variants, PRS, and individual risk factor variables for breast cancer (i.e., dichotomous 278 
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trait).28 However, this has not been previously known for lipids, a quantitative trait. The heritability of 279 

blood lipid levels, based on SNPs, is estimated to be relatively high (23.3% for LDL-C, 30.5% for 280 

triglycerides, and 32.8% for HDL-C); however, the susceptibility loci identified so far can only partially 281 

explain it.29 Among the lipid traits, causative gene variants with a strong genetic influence, or 282 

monogenic mutations are known principally for LDL-C and are applied in current clinical practice for 283 

the genetic diagnosis of FH. In a population-based sample of European descent, only 2% of those 284 

with severe hypercholesterolemia (LDL-C > 183 mg/dl) were reported to carry a monogenic mutation, 285 

and 23% had a high PRS (top 5th percentile) for LDL-C, indicating the importance of assessing both 286 

monogenic and polygenic models simultaneously.30 On the other hand, in a hospital-based setting, 287 

only about 40% of patients clinically diagnosed with FH were estimated to have an FH-causing rare 288 

variant, with the remainder likely to be polygenic in origin.31 Genetic effects on LDL-C levels have also 289 

been studied in relation to myocardial infarction susceptibility, with similar results to the present 290 

study for the FH-related genes LDLR and PCSK9.22 Accordingly, the newly developed algorithm for 291 

predicting LDL-C levels is expected to optimize preventive therapy for CAD patients. 292 

In addition to genetic predisposition, epigenetics, specifically DNA methylation, has attracted 293 

attention in mediating gene-environment interactions in cardiometabolic phenotypes. This is 294 

because nutritional and lifestyle factors considerably influence epigenetics.6-8 Also, EWAS has shown 295 

through longitudinal analyses that smoking and alcohol consumption are associated with individual 296 

differences in DNA methylation at many CpG sites in the genome,6,7 and that such an association 297 

between traits and CpG methylation is likely to reflect to a significant degree the reverse causation of 298 

cardiometabolic phenotypes, including obesity.32 Furthermore, it has recently been noted that GWAS 299 

and EWAS capture different aspects of the biology of complex traits.33 Thus, interest has been 300 

growing in applying the PRS approaches to DNA methylation data, the so-called MRS. Still, 301 

methodological challenges must be resolved in its construction and use as a biomarker for 302 

environmental exposures.34 303 

Given these circumstances, we have evaluated lipid MRSs containing a list of 13-CpGs in 304 

combination with PRS or without PRS through the development of prediction models for individual 305 

trait values. We initially selected the 13 CpGs because they showed a strong association with any of 306 
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the lipid traits in the multi-ethnic EWAS,10 but these CpG-trait associations were reported to extend 307 

beyond lipids, considerably overlapping with other cardiometabolic phenotypes such as blood 308 

pressure, alcohol intake, and liver fat (Table S5). This leads to a hypothesis that some upstream 309 

environmental determinant (e.g., diet or exercise) is responsible for the overlap. For lipids, the effect 310 

sizes for single CpG-trait association between the present study in Japanese and previous multi-311 

ethnic EWAS10 correlated well (Fig. 4A), which corroborates the reported high correlation between 312 

Europeans and non-Europeans (e.g., African Americans).10 Although there are some differences 313 

between subgroups in the interindividual variance explained by the MRS, the MRS predicts lipid traits 314 

in an additive manner independent of the PRS, particularly prominent among CAD subjects (Figure 315 

4B and Table S4). This is in accord with previous findings on BMI, suggesting that the MRS represents 316 

environmental effects.24 317 

While the clinical benefits of LDL-C lowering are widely acknowledged for the prevention of 318 

atherosclerotic cardiovascular diseases, a residual risk beyond LDL-C, including higher plasma levels 319 

of triglycerides and triglyceride-related apolipoproteins, has become recognized. In general, 320 

management of hypertriglyceridemia starts with lifestyle modification, and the use of drugs may be 321 

considered in high-risk individuals with limited benefits from lifestyle modification. This necessitates 322 

the encouragement of patient adherence to lifestyle changes or drug regimens.1 323 

We envision that the combination of PRS (or, more preferably, composite genetic risk prediction) 324 

and MRS will contribute to a tailored approach to the management of dyslipidemia and even CAD, as 325 

emphasized by the clinical practice guidelines.1,4 In view of the considerable individual variability in 326 

not only dietary habits but also the LDL-C response to dietary and drug treatment,35 the use of our 327 

risk prediction index (exemplified in Fig. S8) in clinical practice may aid patient-doctor communication, 328 

facilitating adherence to and optimization of lipid treatment. 329 

There are strengths and limitations in this study. First, we investigated the impact of genetic and 330 

DNA methylation variations on dyslipidemia in two risk groups (high LDL-C and CAD subjects), in 331 

contrast to the general population and non-CAD subjects. It is a strength that this information can be 332 

used to optimize treatment for primary (high LDL-C) and secondary (CAD) prevention of 333 

atherosclerotic cardiovascular disease by considering the relative contributions of genetics and 334 
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environmental exposure. However, given age differences, individual differences in various lifestyle 335 

habits, and the impact of drug therapy on blood lipid measurements, data collected over time 336 

(including pretreatment measurements) in larger populations should be used to improve the 337 

accuracy of dyslipidemia risk prediction. Second, although we used 13 CpGs selected from top-hit 338 

CpGs in the multi-ethnic EWAS of lipids,10 the method for determining a set of CpGs for the MRS is 339 

still largely undefined. To improve the precision and practicality of the prediction model, an increased 340 

number of methylation sites for MRS and standard procedures for optimal weighting and clamping 341 

of target CpG sites are needed.14 Third, although the interaction term was included in multivariate 342 

regression analysis, potential interactions between MRS and PRS remain to be deeply explored. 343 

Fourth, combining rare FH-related gene variants with PRS can improve the predictability of LDL-C. Still, 344 

it must be more feasible and cost-effective to achieve similar predictability for HDL-C and triglycerides 345 

in clinical practice. Nevertheless, as the cost of sequencing decreases and genetic variation 346 

annotation becomes more manageable, a similar approach for the latter two lipid traits will be 347 

justifiable. Fifth, we utilized Japanese original reference panels with individual-level data for SNPs and 348 

the phenotypic trait of interest to standardize the PRS, which requires an ancestry-matched 349 

reference.13 For MRS, external weights from the multi-ethnic EWAS10 were used to calculate it, after 350 

confirming a high correlation between ethnic groups. However, further investigation is necessary to 351 

improve the generalizability of our risk prediction index. Sixth, given the limited number of CAD 352 

patients in the general Japanese population, the current findings need to be further validated and 353 

replicated with a larger, more representative population independently. 354 

In summary, we conducted an integrative assessment towards precision medicine for 355 

dyslipidemia. Our data provided proof-of-concept that an individual's dyslipidemia treatment 356 

regimen could be determined more precisely by the relative contribution of genetic predisposition 357 

and DNA methylation levels, which reflect past environmental exposures to a significant degree.  358 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307654doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307654


 

 
 

14 

Acknowledgments: 359 

We thank the Research Institute, NCGM staff for their technical assistance with DNA preparation and 360 

epigenetic analysis.  361 

 362 

Sources of funding: 363 

This study was supported by a grant (19A2004) from NCGM and AMED under Grant Number 364 

JP22ek0210165 and JSPS KAKENHI Grants (JP20K10514, JP21H03206, JP22H03350). 365 

 366 

Disclosures: None 367 

 368 

Data availability: 369 

All data produced in the present study are available upon reasonable request to the authors.  370 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307654doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307654


 

 
 

15 

References 368 
1. Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National 369 

Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid 370 
modification to reduce cardiovascular risk. Atherosclerosis. 2019;290:140-205. 371 

2. Migliara G, Baccolini V, Rosso A, D'Andrea E, Massimi A, Villari P, De Vito C.  Familial 372 
Hypercholesterolemia: A Systematic Review of Guidelines on Genetic Testing and Patient 373 
Management. Front Public Health. 2017;5:252 374 

3. Chiu S, Williams PT, Krauss RM. Effects of a very high saturated fat diet on LDL particles in adults 375 
with atherogenic dyslipidemia: A randomized controlled trial. PLoS One. 2017;12:e0170664. 376 

4. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon 377 
D, Levy D, Lloyd-Jones DM, et al. American College of Cardiology/American Heart Association 378 
Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood 379 
cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American 380 
College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 381 
2014;129:S1-45. 382 

5. Dixon DL, Sharma G, Sandesara PB, Yang E, Braun LT, Mensah GA, Sperling LS, Deedwania PC, 383 
Virani SS. Therapeutic Inertia in Cardiovascular Disease Prevention: Time to Move the Bar. J Am 384 
Coll Cardiol. 2019;74:1728-1731. 385 

6. Dugué PA, Jung CH, Joo JE, Wang X, Wong EM, Makalic E, Schmidt DF, Baglietto L, Severi G, 386 
Southey MC, et al. Smoking and blood DNA methylation: an epigenome-wide association study 387 
and assessment of reversibility. Epigenetics. 2020;15:358-368.  388 

7. Dugué PA, Wilson R, Lehne B, Jayasekara H, Wang X, Jung CH, Joo JE, Makalic E, Schmidt DF, 389 
Baglietto L, et al. Alcohol consumption is associated with widespread changes in blood DNA 390 
methylation: Analysis of cross-sectional and longitudinal data. Addict Biol. 2021;26:e12855 391 

8. Jones AC, Irvin MR, Claas SA, Arnett DK. Lipid Phenotypes and DNA Methylation: a Review of the 392 
Literature. Curr Atheroscler Rep. 2021;23:71. 393 

9. Santaló J, Berdasco M. Ethical implications of epigenetics in the era of personalized medicine. 394 
Clin Epigenetics. 2022;14:44. 395 

10. Jhun MA, Mendelson M, Wilson R, Gondalia R, Joehanes R, Salfati E, Zhao X, Braun KVE, Do AN, 396 
Hedman ÅK, et al. A multi-ethnic epigenome-wide association study of leukocyte DNA 397 
methylation and blood lipids. Nat Commun. 2021;12:3987. 398 

11. Ding Y, Hou K, Burch KS, Lapinska S, Privé F, Vilhjálmsson B, Sankararaman S, Pasaniuc B. 399 
Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk 400 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307654doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307654


 

 
 

16 

stratification. Nat Genet. 2022;54:30-39. 401 
12. Evans LM, Romero Villela PN. How rare mutations contribute to complex traits. Nature. 402 

2023;614:418-419. 403 
13. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat 404 

Rev Genet. 2018;19:581-590. 405 
14. Hüls A, Czamara D. Methodological challenges in constructing DNA methylation risk scores. 406 

Epigenetics. 2020;15:1-11. 407 
15. Nakatochi M, Ichihara S, Yamamoto K, Ohnaka K, Kato Y, Yokota S, Hirashiki A, Naruse K, Asano 408 

H, Izawa H, et al. Epigenome-wide association study suggests that SNPs in the promoter region 409 
of RETN influence plasma resistin level via effects on DNA methylation at neighbouring sites. 410 
Diabetologia. 2015;58:2781-2790. 411 

16. Ruel I, Aljenedil S, Sadri I, de Varennes É, Hegele RA, Couture P, Bergeron J, Wanneh E, Baass A, 412 
Dufour R, et al. Imputation of Baseline LDL Cholesterol Concentration in Patients with Familial 413 
Hypercholesterolemia on Statins or Ezetimibe. Clin Chem. 2018;64:355-362. 414 

17. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific 415 
functional predictions and annotations for human nonsynonymous and splice-site SNVs. 416 
Genome Med. 2020;12:103. 417 

18. Takeuchi F, Akiyama M, Matoba N, Katsuya T, Nakatochi M, Tabara Y, Narita A, Saw WY, Moon 418 
S, Spracklen CN, et al.  Interethnic analyses of blood pressure loci in populations of East Asian 419 
and European descent. Nat Commun. 2018;9:5052. 420 

19. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, Genovese G, Loh PR, Bhatia 421 
G, Do R, et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am 422 
J Hum Genet. 2015;97:576-592. 423 

20. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, Iwata N, Ikegawa S, Hirata 424 
M, Matsuda K, et al. Genetic analysis of quantitative traits in the Japanese population links cell 425 
types to complex human diseases. Nat Genet. 2018;50:390-400. 426 

21. Sakaue S, Hirata J, Kanai M, Suzuki K, Akiyama M, Lai Too C, Arayssi T, Hammoudeh M, Al Emadi 427 
S, Masri BK, et al. Dimensionality reduction reveals fine-scale structure in the Japanese 428 
population with consequences for polygenic risk prediction. Nat Commun. 2020;11:1569. 429 

22. Tajima T, Morita H, Ito K, Yamazaki T, Kubo M, Komuro I, Momozawa Y. Blood lipid-related low-430 
frequency variants in LDLR and PCSK9 are associated with onset age and risk of myocardial 431 
infarction in Japanese. Sci Rep. 2018;8:8107. 432 

23. Takeuchi F, Takano K, Yamamoto M, Isono M, Miyake W, Mori K, Hara H, Hiroi Y, Kato N. Clinical 433 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307654doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307654


 

 
 

17 

Implication of Smoking-Related Aryl-Hydrocarbon Receptor Repressor (AHRR) Hypomethylation 434 
in Japanese Adults. Circ J. 2022;86:986-992. 435 

24. Shah S, Bonder MJ, Marioni RE, Zhu Z, McRae AF, Zhernakova A, Harris SE, Liewald D, Henders 436 
AK, Mendelson MM, et al. Improving Phenotypic Prediction by Combining Genetic and 437 
Epigenetic Associations. Am J Hum Genet. 2015;97:75-85. 438 

25. Pain O, Gillett AC, Austin JC, Folkersen L, Lewis CM. A tool for translating polygenic scores onto 439 
the absolute scale using summary statistics. Eur J Hum Genet. 2022;30:339-348. 440 

26. Yow HY, Hamzah S, Abdul Rahim N, Suppiah V. Pharmacogenomics of response to statin 441 
treatment and susceptibility to statin-induced adverse drug reactions in Asians: a scoping review. 442 
Asian Biomed (Res Rev News). 2023;17:95-114. 443 

27. Lacaze P, Manchanda R, Green RC. Prioritizing the detection of rare pathogenic variants in 444 
population screening. Nat Rev Genet. 2023;24:205-206. 445 

28. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, Babb de Villiers C, Izquierdo 446 
A, Simard J, Schmidt MK, et al. BOADICEA: a comprehensive breast cancer risk prediction model 447 
incorporating genetic and nongenetic risk factors. Genet Med. 2019;21:1708-1718. 448 

29. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, 449 
Emdin CA, Bick AG, et al. Diagnostic Yield and Clinical Utility of Sequencing Familial 450 
Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J Am Coll Cardiol. 451 
2016;67:2578-2589. 452 

30. Natarajan P, Peloso GM, Zekavat SM, Montasser M, Ganna A, Chaffin M, Khera AV, Zhou W, 453 
Bloom JM, Engreitz JM, et al. Deep-coverage whole genome sequences and blood lipids among 454 
16,324 individuals. Nat Commun. 2018;9:3391. 455 

31. Sharifi M, Futema M, Nair D, Humphries SE. Genetic Architecture of Familial 456 
Hypercholesterolaemia. Curr Cardiol Rep. 2017;19:44. 457 

32. van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role 458 
of epigenetics in obesity and metabolic disease. Clin Epigenetics. 2015;7:66. 459 

33. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, et al. 460 
Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. 461 
Nature. 2017;541:81-86. 462 

34. Battram T, Gaunt TR, Relton CL, Timpson NJ, Hemani G. A comparison of the genes and genesets 463 
identified by GWAS and EWAS of fifteen complex traits. Nat Commun. 2022;13:7816. 464 

35. Boekholdt SM, Hovingh GK, Mora S, Arsenault BJ, Amarenco P, Pedersen TR, LaRosa JC, Waters 465 
DD, DeMicco DA, Simes RJ, et al. Very low levels of atherogenic lipoproteins and the risk for 466 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307654doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307654


 

 
 

18 

cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014;64:485-494.  467 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.24307654doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.21.24307654


 

Fig. 1. Overview of study design. 

The integra+ve genomic analysis involves GWAS array genotyping, target gene resequencing, and 

measuring DNA methyla+on at selected CpG sites. In contrast to two cardiovascular risk groups—

high LDL-C and CAD subgroups, individuals in the non-targeted popula+ons (N = 3,801) were 

used as reference datasets for GWAS array genotyping. The non-CAD subgroup (N = ~164) was 

compared to the CAD subgroup by GWAS array genotyping and target gene resequencing. 

Par+cipants in Tohoku Medical Megabank (TMM) (N = 8.3K) were also used as large in silico 

gene+c datasets for the evalua+on of rare variant frequencies. Moreover, part (N = 314) of the 

KING study cohort was used as a reference dataset for DNA methyla+on analysis. 

Individuals in the non-targeted 
populations

[n=3,801, combining 4 cohorts]

CAD 
subjects
(n=314)

High LDL-C 
subjects 
(n=289)

Participants in the 
TMM, in silico analysis

[n=8.3K]

Reference 
individuals
(n=3,801)

vs

Genetic risk score (with common variants)

Reference 
individuals
(n=8.3K)

High LDL-C 
subjects
(n=296)

Subjects w/o notable variants 
(n=305)

Genetic risk of rare variants in 
5 familial hypercholesterolemia-related genes

Integrating two types of variant information for LDL-C

Allele freq. In silico prediction Variant annotation
calculated based on JPN study (n=72,866) previously reported

NCGM-Biobank
[n=300 (incl. 9 CAD)]

BIO-CVD
[n=478 (306 CAD / 172 non-CAD)] 

GWAS array genotyping Target gene resequencing

CAD subjects
(n=315)

Fig.1

Test of DNA methylation as an additional biomarker for lipid traits

13 CpG sites, previously reported to associate with lipid traits

Non-CAD 
subjects
(n=42)

Subjects w/ rare 
variants (n=116)vs

Non-CAD 
subjects
(n=164)

Development and validation of a diagnostic model for dyslipidemia



 

Fig. 2. Impacts of rare FH-related gene variants on LDL-C level and their prevalence. 

An LDL-C increase against the reference group (BIO-CVD subjects without notable rare variants, 

N = 305) is es+mated for three categories, i.e., disrup+ve, damaging, and non-synonymous (see 

Methods about the classifica+on), of 5 FH-related gene variants (A), based on LDL-C level 

according to rare variants that were iden+fied by target gene resequencing (B). C: The 

percentage of ‘disrup+ve + damaging’ variant carriers is shown for popula+ons with different 

morbidity statuses: high LDL-C (leb) and CAD (middle) subgroups and a general popula+on (right; 

TMM cohort) of Japanese descent. 
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Fig. 3. Development of a conversion formula from PRS to LDL-C value for PRS-based risk 

predicJon. 

First, to define the standardized PRSLDL-C decile classes, data for three popula+on-based cohorts 

(Kita-Nagoya, Amagasaki, and Ehime) were combined; distribu+on of PRSLDL-C (A) and actual LDL-

C for each PRSLDL-C decile class thus standardized (B). Then, data for another hospital-based study 

cohort (NCGM hospital cohort) were used to convert PRS to LDL-C value for the individuals newly 

recruited at NCGM for rare variant search besides PRS and MRS calcula+ons (see also Fig. S2). C: 

PRSLDL-C distribu+on is stra+fied based on standardized PRSLDL-C decile classes for high LDL-C (top) 

and CAD (boiom) subgroups at NCGM. Correla+ons are shown between actual LDL-C levels and 

those predicted by the standardized PRSLDL-C decile class alone (D), composite gene+c risk (E), 

and composite gene+c risk + MRS (F) in newly recruited individuals at NCGM (BIO-CVD + NCGM 

Biobank) with a complete dataset. 
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Fig. 4. CpG-trait associaJon and predicJon of lipid traits by risk scores. 

A: Effect sizes for CpG-trait associa+on are shown for triglycerides (leb; at 11 CpGs), HDL-C 

(middle; at 6 CpGs), and LDL-C (right; at 2 CpGs), where comparisons are made between this 

study and previous mul+-ethnic EWAS10 (top panels), and between high LDL-C and CAD 

subgroups (boiom panels). B: Impacts of two risk scores, PRS and MRS, on lipid traits are 

es+mated by R2 in high LDL-C (leb) and CAD (middle) subgroups and a general popula+on 

(right; KING study cohort) of Japanese descent separately. *P<0.05, **P<0.001, ***P<10-4. 
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Table 1. Participant characteristics     

  
High LDL-C (≥160) 
subjects w/o CAD 

CAD subjects non-CAD subjects 

No. of individuals (F/M) 296 (151/145) 315 (51/264) 164 (54/110) 

Age, yr 64.0 ± 0.7 68.7 ± 0.6 69.7 ± 0.7 

BMI. kg/m2 23.6 ± 0.2 24.5 ± 0.2 23.6 ± 0.3 

LDL-C, mg/dl 179.4 ± 1.3 98.6 ± 1.7 109.5 ± 2.1 

HDL-C, mg/dl 60.4 ± 1.1 48.7 ± 0.7 56.7 ± 1.1 

Triglycerides, mg/dl 144.3 ± 4.1 143.8 ± 4.4 129.4 ± 5.5 

Smoking habit*    

  Never, n (%) 142 (48%) 90 (29%) 61 (37%) 

  Former, n (%) 113 (38%) 153 (49%) 76 (46%) 

  Current, n (%) 41 (14%) 70 (22%) 27 (16%) 

Complication**    

  Hypertension, n (%) 153 (52%) 245 (78%) 114 (70%) 

  Diabetes, n (%) 52 (18%) 130 (41%) 46 (28%) 

  Hyper-LDL-cholesterolemia, n (%) 296 (100%) 152 (48%) 48 (29%) 

Statin, n (%) 57 (19%) 221 (70%) 47 (29%) 

Ezetimibe, n (%) 13 (4%) 32 (10%) 2 (1%) 

  CAD, n (%)***  ̶ 315 (100%) 0 (0%) 

Samples in the table were derived from either the BIO-CVD project or the NCGM Biobank and all 

but 122 non-CAD individuals were used for resequencing of 5 target genes related to familial 

hypercholesterolemia (see Methods). CAD, coronary artery disease. LDL-C, low density 

lipoprotein cholesterol. Of 315 CAD patients, 157 had a clear history of myocardial infarction 

(MI) but 158 did not: an average number of diseased vessels, 2.0 (0.1) vs 1.8 (0.1); the age of 

CAD onset, 63.0 yr (1.0) vs 66.9 yr (1.0); left ventricular ejection fraction in echocardiography, 

50.7% (1.0) vs 63.9% (0.4) [MI vs non-MI, SE in parentheses]. 

*The smoking status of 2 individuals in a CAD group is unknown. 

** Hypertension and diabetes are defined when individuals are prescribed anti-hypertensive 

and anti-diabetic drugs, respectively. Hyper-LDL-cholesterolemia is defined when basal LDL-C 
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≥140 mg/dl (irrespective of treatment with lipid-lowering drugs, statin, and/or ezetimibe) has 

been indicated by medical records. 

***Subjects in a high LDL-C group do not have apparent CAD, although detailed examinations 

(e.g., coronary angiography) have not been performed in the majority of cases. 



Table 2. A list of functional variants identified by target resequencing of FH-related genes           

 
Chr:Pos 

(GRCh37, 
hg19) 

SNP Ref/Alt allele 
Gene 
Name 

Sequence 
ontology a 

Clinical 
Signifi-
cance b 

N of 6, 
Predicted 

as 
Deleterious 

c 

FATHM
M MKL 
Coding 

Pred (C) d 

LOVD 
classifi-
cation e 

Alt allele_freq. 

𝝌2 test,  
P-value 

gnomAD 
PopMax f 

LDL-C 
(mg/dl) 

Notes 
  

Control 
(ToMMo;  
N = 8380) 

HL+CAD  
(N = 610) 

Disruptive variants              

 19:11215971 rs879254510 -/C LDLR frameshift P/LP — — P (ACGS) N/A 0.0008 2E-04 N/A 290 D131fs 

 19:11227676 rs778408161 T/C LDLR 
splice_ 

donor 
P/LP 2 of 6 Damaging 

LP 
(ACGS) 

6E-05 0.0008 0.015 7E-06 271 Disruptive (FH_Niigata) 

Damaging variants              

 19:11217342 rs875989907 G/A LDLR missense P/LP 6 of 6 Damaging LP N/A 0.0008 2E-04 6E-05 233 
GnomAD_exome (Asian); 
3/49010 

 19:11221399 rs879254753 T/A LDLR missense P/LP 6 of 6 Damaging LP 6E-05 0.0008 0.015 N/A 248 Damaging (FH_Wakayama) 

 19:11224019 N/A G/A LDLR missense LP 6 of 6 Damaging LP 6E-05 0.0008 0.015 N/A 225  

 19:11226885 rs746959386 C/G LDLR missense P/LP 5 of 6 Damaging LP 0.0003 0.0016 0.022  1E-04 189  
± 57 

 

 19:11213368 N/A C/A LDLR missense N/A 6 of 6 Damaging N/A N/A 0.0008 2E-04 N/A 210 newly identified 

 19:11213417 rs749038326 G/A LDLR missense 

Conflict-
ing 

(LP/VUS
/LB*) 

6 of 6 Damaging P, LP N/A 0.0008 2E-04 3E-04 196 
GnomAD_exome (Asian); 
14/49010 

 19:11216066 N/A C/T LDLR missense N/A 6 of 6 Damaging P (ACGS) N/A 0.0008 2E-04 N/A 212 c.466_484dup 

 19:11227613 rs201102492 G/A LDLR missense 

Conflict-
ing 

(P/LP/V
US) 

6 of 6 Damaging 
LP 

(ACGS) 
6E-05 0.0008 0.015 2E-04 165  

 2:21228367 N/A G/T APOB missense N/A 4 of 6 Damaging N/A N/A 0.0008 2E-04 N/A 202 newly identified 
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 2:21233912 rs759277505 G/A APOB missense N/A 5 of 6 Damaging N/A 0.00018 0.0016 0.0004 1E-05 187  
± 17 

A subject possessing 
rs752849346 (LDLRAP1) and 
rs564427867 (PCSK9) 
concomitantly. 

 2:21236137 rs780170292 C/T APOB missense VUS 5 of 6 Damaging N/A 6E-05 0.0008 0.015 3E-04 170  

 2:21225680 rs375471570 G/A APOB missense VUS 4 of 6 Damaging N/A 6E-05 0.0008 0.015 1E-04 210  

 2:21229473 rs199689957 C/T APOB missense VUS 2 of 6 Damaging N/A N/A 0.0008 2E-04 2E-04 293 

GnomAD_exome (Asian); 
0/49006. 
A subject possessing 
rs564427867 (PCSK9) 
concomitantly. 

Gain-of-Function variants              

  1:55521767 N/A TGCCAGCGCCT/- PCSK9 frameshift — — — N/A 0.0008 2E-04 N/A 46 
NP_777596.2:p.Cys301Glyfs
Ter? 
newly identified 

a The highest priority ontology found among the variant–transcript interactions. The terms used are the standard feature descriptions given by the Sequence Ontology Project.  

b Clinical significance is the consensus interpretation of the submissions for all conditions for this variant. Primarily based on ACMG Classifications: P, pathogenic; LP, likely pathogenic; VUS, variant of 

uncertain significance; LB, likely benign; B, benign. 

c Variant effect predictor tools tested are: SIFT, PolyPhen2, Mutation Taster, Mutation Assessor, FATHMM, and FATHMM-MKL.    

d If a FATHMM-MKL coding score (PMID: 25583119) is >0.5 (or rank score >0.28317), the corresponding nsSNV is predicted as "DAMAGING"; otherwise it is predicted as "TOLERATED". 

e Variant classification and interpretation by the Association for Clinical Genomic Science (ACGS) is shown when applicable. For abbreviations, refer to the ACMG Classifications above. 

f PopMax refers to the gnomAD subpopulation with the highest allele frequency  
 

 
     

*Despite one submission (SCV000503122.1) indicating LB, the others claim either P (6 submissions) or LP (3 submissions) for the pathogenicity of this variant. 

 




