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Abstract 

Huntington disease (HD) is one of the most common repeat expansion disorders. Clinically, HD 

patients exhibit considerable visit-to-visit variability in symptoms and signs independent of 

measuring method or rater, yet neither the precise nature nor the determinants of this clinical 

variability are known. Leveraging detailed genetic and longitudinal clinical data from large 

cohorts of HD patients, this work 1) establishes within-individual variability in disease 

expression as an integral part of HD semiology, demonstrating that it increases with disease 

duration, mutation size, younger age-at-onset, and lower body weight, 2) provides a 

mathematical framework linking higher phenotypic variability to increased predictive entropy, 

revealing a fundamental relation between within-individual variability and energy expenditure, 

and 3) identifies novel genetic modifiers of both within-individual variability and age-at-onset in 

HD. Thus, accounting for within-individual variability in HD could facilitate the discovery of 

pathogenic mechanisms and outcomes directly relevant to the development of disease modifying 

therapies. 
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Introduction 

Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder 

caused by a cytosine-adenine-guanine (CAG) repeat expansion in the first exon of the huntingtin 

(HTT) gene. Involuntary movements, cognitive decline, psychiatric and behavioural disturbances 

as well as progressive weight loss characterise the disease.1, 2 We and others have previously 

demonstrated that the CAG repeat size of the mutant allele is the strongest determinant of both 

age-at-onset and rate of disease progression in HD.3 Apart from indicating progressive global 

multi-domain impairment, clinical rating scores in HD also exhibit substantial visit-to-visit 

within-individual variability, which is generally assumed to reflect either limitations of the 

applied rating scales or intra- and interrater variability.4 However, seeing and treating HD 

patients over many years, I have the impression that disease expression itself can exhibit large 

visit-to-visit variability on both subjective and (semi-)quantitative metrics independent of the 

measuring methods employed or the rater, yet neither the precise nature nor the determinants of 

this clinical variability have been investigated so far in HD.  

 

Emerging evidence indicates that not only the mean trajectories of (clinical) biomarkers, but also 

their intraindividual variability in time constitute risk factors for a range of different diseases.5 

For example, visit-to-visit variability in blood pressure has been associated with an increased risk 

of mortality, coronary heart disease, stroke, cognitive decline and dementia,6-9 while glycemic 

variability in diabetic patients has been related to an increased risk of cardiovascular 

complications.10 Similarly, increased body weigh variability has been linked to an increased risk 

of cardiovascular diseases and cognitive decline.11, 12 In patients with common age-associated 

neurodegenerative disorders like Alzheimer disease and Parkinson disease, increased visit-to-

visit variability in body weight and blood pressure have been associated with a faster rate of 

disease progression.13, 14 However, whether intraindividual variability in body weight and other 

clinical metrics is a characteristic of HD and related to mutation size or disease progression is 

unknown.    

 

Visit-to-visit within-individual variability of disease expression could reflect the breakdown of 

central homeostatic mechanisms in HD.3 In this scenario, larger mutation size could not only be 

expected to result in a younger age-at-onset and a faster rate of disease progression, but also in a 
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larger degree of visit-to-visit variability in measures of disease expression, reflecting more 

extensive underlying homeostatic dysregulation. Therefore, leveraging extensive longitudinal 

data from the largest cohort study of HD patients, as well as recent advances in the statistical 

modeling of within-individual variability trajectories across time, this work aims to: 1) quantify 

both the extent and characteristics of within-individual variability in clinical measures of disease 

expression in HD, 2) assess whether mutation size is associated with longitudinal within-

individual clinical variability, 3) provide a Bayesian brain theory-based mathematical framework 

in which within-individual variability could be understood as a direct consequence of increased 

predictive entropy due to progressive neuropathology, 4) elucidate the genetic determinants of 

within-individual variability in HD, and 5) illustrate how treating variability as a core feature of 

HD could provide insights into the pathogenesis of weight loss, as well as facilitate the discovery 

of novel genetic modifiers of age-at-onset. The findings indicate that within-individual 

variability in disease expression is indeed an integral part of HD semiology, with the extent of 

this variability increasing with both disease duration and mutation size. Moreover, genome-wide 

association studies (GWAS) identified several genetic modifiers of within-individual variability, 

indicating that investigating this thus far hidden but integral feature of HD could facilitate the 

identification of new pathogenic mechanisms with direct relevance for the development of 

disease modifying therapies for this devastating disorder.  

 

Methods 

Study Cohort  

Monitored data from the Enroll-HD study were used, which also included longitudinal data on a 

subset of individuals who had previously participated in the Registry study.15 Enroll-HD is a 

global clinical research platform designed to facilitate clinical research in HD. All sites are 

required to obtain and maintain local ethics committee approvals. Further details are available on 

the study’s website: enroll-hd.org. All data from the Enroll-HD website were retrieved on 24 

December 2020, and included all participants with a mutant HTT CAG repeat size between 36 

and 65 (to exclude allele counts < 10), body mass index (BMI) < 50 kg/m2, and at least three 

study visits, resulting in an analytical sample size of 7583 individuals (54% female). 

 

Clinical Measurements 
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For assessing disease expression, apart from BMI, the Unified Huntington’s Diseases Rating 

Scale (UHDRS) total motor score, total functional capacity (TFC), scores on the Symbol Digit 

Modality Test (SDMT) and Stroop Word Reading Test (SWRT), as well as a composite clinical 

outcome measure derived from these individual UHDRS domain scores as described previously,4 

were used. Except for the UHDRS total motor score, higher scores indicate better clinical 

performance. 

 

Genotype data 

Individual-level imputed genotype data from the largest GWAS of residual age-at-onset in HD 

were obtained from the Genetic Modifiers of Huntington Disease (GeM-HD) Consortium.16 This 

GWAS included data on a total of 9064 HD patients. Residual age-at-onset was defined as the 

difference in years between observed and expected age of motor onset based on mutant CAG 

repeat size.3, 16 Individual-level imputed genotype data were available for a subset of 2230 HD 

patients from the Enroll-HD study, 1312 of whom were also included in the Gem-HD GWAS. 

Details of the genotyping and imputation procedures have been reported previously.16  

 

Genome-wide association study of mean and within-individual variability of clinical measures 

In the subset of individuals from Enroll-HD in whom genotype data were available, two separate 

GWAS studies were conducted to identify the genetic modifiers of both mean and within-

individual variability in the UHDRS total motor score, SDMT score, and BMI. Only participants 

with at least three study visits and a mutant HTT CAG repeat size between 38 and 52 (in order to 

exclude allele counts < 10) were included. Additionally, extensive per individual and per variant 

quality control (QC) were performed using plinkQC,17 applying the following (default) filters for 

inclusion: genotyping rate > 0.97, heterozygosity rate < 3 standard deviations from the sample 

mean, proportion of identity-by-descent of < 0.1875 for pairs of individuals, European descent 

(defined as < 3 times the maximum Euclidean distance from the center of the HapMap European 

reference samples), variant missing rate < 0.01, Hardy-Weinberg equilibrium (p ³ 1E-5), minor 

allele frequency ³ 0.05 and imputation score ³ 0.5. After filtering and QC, 1292 individuals and 

6,625,212 variants remained for analysis.  
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For the within-individual variability GWAS analyses two different methods were employed. 

Initially, TrajGWAS, a modified linear mixed effects model-based approach for assessing 

genetic effects on both the mean and within-individual variability of continuous outcomes5 (as 

implemented in the TrajGWAS.jl Julia package, version 0.4.3, Julia version 1.8.5), was used. A 

per single-nucleotide polymorphism (SNP) analysis was conducted, using the default parameters 

and 10 runs with an additive model and a score test with a saddle-point approximation for 

estimating effect sizes and p-values for each genetic variant. The models included age, mutant 

CAG repeat size, an interaction term between age and mutant CAG repeat size (to adjust for the 

effect of CAG repeat size on the rate of disease progression), sex, and the first 10 genetic 

principle components (to account for population stratification) as fixed effects, a random 

intercept and slope for age (to account for repeated intraindividual measurements), and an 

intercept only for estimating the remaining within-subject variance. However, given that the 

TrajGWAS-based estimates of within-individual variability effects were unstable and showed a 

high degree of genomic inflation (λ ≥ 1.3), these results are not reported here. Instead, a more 

conservative method was employed for estimating the genetic determinants of within-individual 

variability in HD, as follows: 1) using the entire analytical Enroll-HD dataset (N=7583), a 

random intercept and slope linear mixed effects model was fitted with sex, age, age squared, 

mutant CAG repeat size, and an interaction term between age and mutant CAG repeat size as 

fixed effects, and age as a random effect, and the clinical measures as the dependent variables, 2) 

the remaining within individual variability was extracted as the mean of the sum of the squared 

errors around the fitted random regression lines for each outcome measure, 3) a logarithmic 

transformation (given the right-skewed distribution) and scaling to a standard normal distribution 

was performed, and 4) these estimates were used as the dependent variable in a mixed-effects 

model GWAS employing Genome-wide Efficient Mixed Model Association (GEMMA, version 

0.98.5).18 Briefly, in GEMMA, within-individual variability estimates were modeled as a 

function of minor allele dosage, sex, mutant CAG repeat size, and the first four genetic principle 

components, while also adjusting for remaining population and sample structure in a univariate 

linear mixed effects model as previously applied by the Gem-HD consortium.16 A similar 

approach was used to perform a GWAS on the means of the clinical measures, except now 

employing a random intercept only linear mixed effects model to estimate the mean levels of 
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each clinical outcome measure (adjusted for sex, age, age squared, CAG repeat size, and its 

interaction with age) for each individual during the follow-up period.   

 

Genome-wide association study of age of onset 

To account for mutant CAG repeat size-dependent increases in phenotypic variability, a GWAS 

of relative residual age-at-onset (defined as residual age-at-onset divided by the expected age of 

onset) was performed using an otherwise identical statistical model and the same dataset (N = 

9064) as previously reported by the Gem-HD consortium.16  

 

Genomic risk loci and gene-based analysis  

Functional Mapping and Analysis of GWAS (FUMA) was used to identify genomic risk loci.19 

Genome-wide significant SNPs in relatively high linkage disequilibrium (LD) (i.e., r2 > 0.6) with 

nearby SNPs were used to define genomic risk loci. Variant annotation for each locus was based 

on lead SNPs and candidate SNPs, defined as those SNPs in LD with the lead SNP within a 

window of 250 kb and nominally significant at p < 0.05. Functionally annotated SNPs were 

subsequently mapped to genes based on physical position (positional mapping) and expression 

quantitative trait loci (eQTL mapping). MAGMA was used to conduct gene and gene-set 

analysis,20 summarizing SNP-trait associations at the level of genes and gene sets and mapping 

these to biological pathways, using a Bonferroni-correction for multiple testing. This was 

followed by tissue enrichment analysis to investigate tissue specificity using the GTEx database 

(version 8). For pathway enrichment analysis, mapped genes were further investigated using the 

GENE2FUNC tool in FUMA,21 applying the Benjamini-Hochberg false discovery rate (FDR) 

method for multiple comparisons correction.  

 

Statistical Analysis 

To assess the association of disease duration and HTT CAG repeat size with visit-to-visit clinical 

variability a recently developed regression method was utilized, i.e., within-subject variance 

estimator by robust regression (WiSER) (as implemented in the WiSER.jl Julia package, version 

0.2.3), which is specifically designed to assess the effects of both time-dependent and time-

independent predictors on longitudinal within-individual variability.22 WiSER is robust against 

misspecifications of the distributions of the conditional outcomes and random effects.22 As 
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outcomes we used the composite score, as well as its constituents (including the UHDRS total 

motor score, TFC, and SDMT and SWRT score tests), and BMI. As predictors, age at the time of 

each visit, a squared term for age to account for non-linear progression, mutant HTT CAG repeat 

size, an interaction term between age and mutant HTT CAG repeat size, and sex were included, 

applying a random intercept and slope model to account for repeated measurements. Age was 

used as the time indicator to allow for simultaneous adjustment for possible age effects on 

disease progression, which would not have been possible with inclusion of disease duration due 

to a high degree of collinearity between age and disease duration.3 To assess the association 

between within-individual variability and age-at-onset, residual age-at-onset was added as an 

independent variable to the previous model. The robustness of the findings was assessed in two 

additional sensitivity analyses. In the first sensitivity analysis, the same approach as detailed in 

the previous section (‘Genome-wide association study of mean and within-individual variability 

of clinical measures’) was used for calculating the individual level variability as the mean of the 

sum of the squared errors around the fitted random intercept and slope regression lines for each 

outcome measure, comparing the values across different mutant CAG repeat size categories 

using the non-parametric Wilcoxon’s rank sum test. In a second sensitivity analysis, the variation 

independent of mean (VIM) metric was calculated as described previously.9 For calculating the 

VIM of composite score, first a constant of 10 was added to offset the composite scores as VIM 

is undefined over negative values.9 After regressing out the effects of sex, age at baseline, and 

domain-specific disease severity at baseline (e.g., for motor score, the motor score at baseline 

was used as a measure of disease severity) from the VIM scores, the residuals were compared 

across different categories of mutant CAG repeat size using the non-parametric Wilcoxon’s rank 

sum test. A similar approach was employed to visualize the association between residual age-at-

onset and VIM of the different outcomes, where an additional adjustment for mutant CAG repeat 

size and its interaction with age at baseline were included. Programming was performed in R 

(base version 4.2.1) and Julia (version 1.8.5). Two-tailed p-values < 0.05 were considered 

statistically significant. 

 

Results 

Part 1: Within individual variability is an integral feature of HD 
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The baseline characteristics of the study sample are included in Supplementary Table 1. As 

expected, age and CAG repeat size, as well as their interaction, were highly significantly 

association with disease progression across all six outcome measures. On average, the TFC score 

and BMI were higher, and the SDMT score was lower, in men compared to women (Table 1). 

 

Within-individual variability increases with disease duration and CAG repeat size 

Visit-to-visit within-individual variability in the composite, motor and functional scores and BMI 

markedly increased with both age and mutant CAG repeat size, whereas cognitive test score 

variability decreased for SDMT with higher age and CAG repeat size (Table 1). Importantly, the 

effects of age and mutant CAG repeat size on visit-to-visit variability were synergistic across all 

outcome measures as indicted by highly significant interaction effects with similar directions to 

the main effects (Table 1). Men exhibited lower BMI variability, but otherwise no sex 

differences in variability of disease expression were observed. Except for cognitive scores, both 

sensitivity analyses confirmed the findings based on the WiSER method, showing a 

progressively higher within-individual variability with increasing mutant CAG repeat size for the 

composite, motor and functional scores, as well as BMI (Figure 1 and Supplementary Figure 

1). However, the sensitivity analyses, which employed groupings based on mutant CAG repeat 

size, indicated that within-individual variability in cognitive scores (SDMT and SWRT scores) 

also increased with larger mutant CAG repeat size. The difference between the WiSER-based 

estimates and the mutant CAG repeat size-stratified analyses for cognitive scores could be due to 

the levelling off of the variability for larger mutation sizes (Figure 1 and Supplementary 

Figure 1), which may reflect floor/ceiling effects of the cognitive testing batteries in HD.23   

 

Within-individual variability increases with younger age-at-onset 

A lower residual age-at-onset was robustly associated with higher visit-to-visit within-individual 

variability in all clinical outcome measures, including the UHDRS composite, motor, functional 

and cognitive scores, as well as BMI, independent of sex, age or mutation size (Table 2 and 

Figure 2).  

 

Part 2: Within-individual variability within the Bayesian brain theory framework  
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Increased variability in phenotype across time in a given individual may reflect the progressive 

breakdown of homeostatic mechanisms, and thus increased entropy, due to accruing pathology at 

molecular, cellular, tissue, organ or system level. To assess the validity of this hypothesis, the 

‘free energy principle’-based Bayesian brain model, which is thought to provide a unified theory 

of brain function,24 was leveraged. Within this framework, phenotype was defined here as the 

“action” of the agent, because this is the only perceptible part of the variational free energy 

minimization process that could be measured by an external observer (e.g., a clinical rater).  

 

Analytical derivation of the relation between entropy and phenotypic variability 

Specifically, it was assessed how action is related to changes in the entropy of the underlying 

distribution, which for Gaussian distributions is directly related to the variance σ (Note: for 

consistency, the same terminology and symbols as used by Buckley et al.25 are employed, and for 

clarity of presentation, the derivation is restricted to the univariate case). Let x be a random 

variable with a Gaussian distribution: 
 𝑥	~𝒩(𝜇, 𝜎) Eq. 1 

Then the differential entropy (H) of x is given by26: 
 

𝐻 =
1
2 ln 2𝜋𝜎 +	

1
2 

Eq. 2 

For a simple agent-based model possessing only a single brain state variable (𝜇) and a single 

sensory channel (𝜑), the organism believes its sensory input is generated by some generative 

function g parametrized by 𝜃: 
 𝜑 = 𝑔(𝜇; 𝜃) + 𝑧 Eq. 3 

With z denoting random noise with zero mean and variance 𝜎!, and 𝜇 denoting the organism’s 

beliefs about how the environmental states are generated, as follows:  
 𝜇 = 𝜇̅ + 𝑤 Eq. 4 

Here 𝜇̅ represents some fixed parameter, while w denotes random noise with zero mean and 

variance 𝜎". Assuming that with accruing neuropathology the estimates of the organism’s beliefs 

regarding its environment become increasingly unstable and unpredictable, which can be taken 

to imply that the variance of the distribution from which w arises increases, in the following I 

will thus specifically seek to derive the explicit function describing the relation between action 

(𝑎) and 𝜎". For a simple agent-based model, 𝑎 is given by25: 
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𝑎 = −𝐾#	

𝑑𝜑
𝑑𝑎 	

𝑑𝐸(𝜇, 𝜑)
𝑑𝜑  

Eq. 5 

From which it follows that: 
 

−𝐾#	𝐸(𝜇, 𝜑) = >𝑎	𝑑𝑎 =
1
2𝑎

% + 𝑐& 
Eq. 6 

Here 𝐾#	denotes the learning rate associated with the action (with the negative sign indicting that 

the direction of action is such to oppose departures from steady-state), and 𝐸(𝜇, 𝜑) represents the 

Laplace-encoded energy given by25: 
 

𝐸(𝜇, 𝜑) = − ln 𝑝(𝜑|𝜇) − ln 𝑝(𝜇) =	
1
2𝜎!

	𝜀!% +
1
2𝜎"

	𝜀"% +
1
2 ln(𝜎!𝜎")	 

Eq. 7 

Where:  
 𝜀! ≝ 𝜑 − 	𝑔(𝜇; 𝜃) = 𝑧  and  𝜀" ≝ 𝜇 − 𝜇̅ = 𝑤  

Therefore, to assess how action changes as a function of entropy, one needs to take the partial 

derivative of Eq. 7 with respect to 𝜎": 

 𝑑𝐸(𝜇, 𝜑)
𝑑𝜎"

=
𝑑

2𝑑𝜎"
(
𝜀"%

𝜎"
+ ln𝜎") 

Eq. 8 

Now, let: 
 𝑍 =

𝜀"
E𝜎"

 Eq. 9 

Substituting Eq. 9 in Eq. 8 yields: 

 𝑑𝐸(𝜇, 𝜑)
𝑑𝜎"

=
𝑑

2𝑑𝜎"
(𝑍% + ln𝜎") 

Eq. 10 

Given that Z, by definition, is scaled to the standard normal distribution, i.e., 𝑍	~𝒩(0, 1), and 

thus independent of the choice of 𝜎", Eq. 10 simplifies to: 

 𝑑𝐸(𝜇, 𝜑)
𝑑𝜎"

=
1
2𝜎"

 
Eq. 11 

From which it follows that: 
 

𝐸(𝜇, 𝜑) = >
1
2𝜎"

𝑑𝜎" =
1
2 ln 𝜎" + 𝑐% 

Eq. 12 

Combining Eq. 6 & Eq. 12 (and setting the integration constants 𝑐& = 𝑐% = 0)	obtains: 

 𝑎% = 𝐾#	ln 𝜎" ⟹ 𝑎 = ±E𝐾#	ln 𝜎" Eq. 13 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.20.24307629doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.20.24307629
http://creativecommons.org/licenses/by-nc-nd/4.0/


Eq. 13 thus indicates that the magnitude of the action towards the steady-state is a monotonously 

increasing function of 𝜎" (with its direction opposite to that of the deviation from the steady-

state), and by implication (given Eq. 2) also a monotonously increasing function of the entropy 

of the underlying distribution from which w (or 𝜀") arises. As 𝔼(𝑎) = 0 during steady-state 

(because, by definition (Eq. 4), during a steady-state any deviation from the set-point (𝜇̅) will be 

due to random noise w, which the action 𝑎 tends to oppose), the variance of the action 𝑎 can 

simply be derived as: 
 𝑉𝑎𝑟(𝑎) = 𝔼(𝑎 − 𝔼(𝑎))% = 𝔼(𝑎)% = 𝑎% Eq. 14 

From Eq. 13 it then follows that: 
 𝑉𝑎𝑟(𝑎) = 𝐾#	ln 𝜎" Eq. 15 

Therefore, Eq. 15 demonstrates that variability of action, a measure of within-individual 

variability, is a monotonously increasing function of 𝜎", and thus of the entropy of the encoded 

brain states. This implies that within-individual variability in phenotype could be regarded as an 

increase in the entropy of the output of the underlying neuronal substrates encoding the 

organism’s beliefs about its environment.   

 

Simulations using a Bayesian agent support link between entropy and phenotypic variability 

To illustrate the analytically derived relations above, the previously published code for 

simulating a simple but complete agent-based model that utilizes the free-energy principle to 

perform perceptual inference25 was leveraged (the R code of the implementation is provided in 

the Supplementary Materials). Briefly, this agent’s environment consists of a unidimensional 

line and a single temperature source. The agent’s position on this line is represented by the 

environmental variable 𝜗 and its temperature 𝑇 depends on its position as follows: 

 
𝑇(𝜗) =

𝑇'
(𝜗% + 1)% 

Eq. 16 

This agent is presumed to sit on a frictionless line and be stationary in the absence of action. The 

agent is allowed to set its own velocity, which is defined as its action 𝑎:  

 
𝑎 =

𝑑𝜗
𝑑𝑡  

Eq. 17 

Further details are provided in the original publication.25 Here the behavior of this agent was 

simulated to assess whether an increase of the entropy of the distribution that underlies the 
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agent’s beliefs about its environment (parametrized through 𝜎"), would lead to an increase in the 

variability of the agent’s movements (represented by 𝑉𝑎𝑟(𝑎)), as predicted by Eq. 15. To this 

end, the agent’s desired and initial temperature were both to set to 20 °C, and its action for a time 

period of 1000 arbitrary units was simulated for different values of 𝜎", ranging from 1 to 3 (the 

exact initialization parameters/values and further details to reproduce all simulation results can 

be found in the R script provided in the Supplementary Materials). The magnitude of action 

was scaled to the variance of the sensory input 𝜎!. Figure 3 illustrates the agent’s action as a 

function of time for three different values of 𝜎", indicating increased variability of action for 

higher values of 𝜎". This latter association was closely in line with the analytical predictions and 

could be directly confirmed by calculating the non-parametric Spearman’s correlation 

coefficients between 𝜎" and estimates of the variability of the simulated actions (Spearman’s 𝜌 = 

0.95, p < 2.2e-16; Supplementary Figure 3 and Figure 4 (top panel), all correlations were 

calculated for the steady-state defined as time ≥ 750). Given that, in this particular case, the 

agent’s actions wholly consisted of ‘measurable’ movements, it was also possible to readily 

calculate the work performed by the agent, defined as the cumulative sum of the product of 

acceleration and distance traveled over time. Importantly, this analysis demonstrated that the 

amount of work required to maintain steady-state is strongly associated with 𝜎" (Spearman’s 𝜌 = 

0.97, p < 2.2e-16; Figure 4, bottom panel). Thus, these simulations confirmed the analytically 

derived relations presented in the previous section, illustrating that increased entropy of brain 

states not only will lead to higher phenotypic variability, but will also increase the energy costs 

required to maintain steady-states. 

 

Part 3: Leveraging variability to gain insights into Huntington disease pathogenesis 

This section seeks to demonstrate the utility of accounting for phenotypic variability as an 

integral part of HD. Specifically, it is illustrated how considering variability as a core feature of 

HD could provide new insights into the pathogenesis of weight loss, as well as facilitate the 

uncovering of novel genetic modifiers of the disease. 

 

Weight loss 

Weight loss is a hallmark of HD, is seen in both patients and most genetic (rodent) models of the 

disease, can precede the onset of motor signs and symptoms by many years, and is a robust 
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predictor of the rate of disease progression.27, 28 However, its precise underlying causes are 

poorly understood.29 As detailed in the previous section, increased within-individual variability 

in phenotype is inevitably related to higher energy expenditure, because more work will be 

required to maintain steady-states in the face of higher entropy of the brain’s predictive 

machinery as a result of pathology. Applied to HD, this theoretical framework predicts that 

increased phenotypic variability would result in increased energy expenditure, and thus a lower 

body weight and a higher rate of weight loss. To directly probe this predicted association, the 

within-individual variability in the UHDRS total motor score was assessed in relation to both 

body weight and the rate of weight loss in the Enroll-HD cohort. Average body weight 

(estimated through a random intercept linear mixed-effects model with adjustment for age, age2, 

sex, mutant CAG repeat size, as well as its interaction with age, and total motor score) decreased 

with higher within-individual variability of total motor score (Figure 5, left panel). Moreover, 

the rate of body weight loss (represented by the random slope coefficients obtained from a 

random intercept and slope linear mixed-effects model with age, age2, sex, mutant CAG repeat 

size, as well as its interaction with age, and total motor score, as fixed effects, and an intercept 

and age as random effects) also increased with higher variability of total motor score (Figure 5, 

right panel). These findings thus indicate that higher energy expenditure in HD may not be 

necessarily due to an inherent defect in systemic energy regulation, but could be an inevitable 

consequence of increased energy requirements to maintain homeostasis in the face of a 

progressively inefficient capacity for predictive inference. 

 

Genetic modifiers of within-individual variability  

The GWAS of within-individual variability of BMI identified a genome-wide significant 

intergenic locus on chromosome 22, tagged by the lead SNP rs62231080 (standardized β = -

0.260 ± 4.57E-2, p = 1.48E-8) (Table 3, Figure 6, and Supplementary Figure 3). Positional 

and eQTL analyses mapped this locus to the protein coding genes NUP50, FAM18A, and RIBC2, 

and the lincRNA genes CTA-217C2.1 and CTA-268H5.14 (Figure 6). The GWAS of mean BMI 

levels revealed two additionally novel loci on chromosomes 16 and 18, tagged by the lead SNPs 

rs200717776 and rs11874212, respectively (Table 3, Figure 7, and Supplementary Figure 4). 

Positional and eQTL analyses mapped the chromosome 16 locus to the protein coding HEATR3 

gene, and the antisense lncRNA RP11-429P3.5, and the chromosome 18 locus to the protein 
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coding TSHZ1 and RP11-17M16.1 genes (Figure 7). Notably, two independently significant 

SNPs (rs11150911 and rs12964145) at the chromosome 18 locus have previously also been 

associated with BMI and body weight in population-based cohorts.30, 31 Moreover, MAGMA 

gene-based analysis identified EIF3F as a gene associated with mean BMI levels in HD patients 

(gene-based p-value = 2.03E-6 (< Bonferroni-corrected threshold of 0.05/19208 = 2.60E-6), 

while another gene on chromosome 14 (KLHL33) showed only suggestive statistical significance 

(p = 3.48E-6) (Supplementary Figure 5). Tissue and pathway enrichment analysis did not yield 

any additional significant associations (data not shown).  

 

The GWAS of within-individual variability of UHDRS total motor score revealed a locus on 

chromosome 16 (rs772972) at suggestive significance (p = 4.10E-7), which was located in an 

intronic region of the GSG1L gene (Supplementary Figure 6). Interestingly, this locus has 

previously been associated with residual age-at-onset in HD.16 The GWAS of mean UHDRS 

total motor score did not identify genome-wide significant loci (Table 3). The GWAS of within-

individual variability of UHDRS SDMT revealed a locus on chromosome 1 (rs4101233) at 

suggestive significance (p = 1.26E-7), which was located in an intergenic region 

(Supplementary Figure 7). Notably, this locus could be mapped to the protein coding genes 

ZNF644 and CDC7, the latter of which encodes a DNA replication enzyme that may be related 

to FAN1 activity.32 Only the well-characterized MSH3 locus on chromosome 5, which has 

previously been associated with residual age-at-onset in HD,16 reached genome-wide 

significance in the GWAS of mean SDMT levels (Table 3).  

 

Genetic modifiers of age of onset  

Given that age of onset in HD is usually recorded as a single measurement, it is not possible to 

directly assess within-individual variability of age of onset. However, in Part I of the results 

section, it was shown that within-individual variability is strongly associated with mutant CAG 

repeat size. Given that within-individual variability is also likely to account for at least part of 

the between-individual variability, here the association between CAG repeat size and between-

individual variability in age of onset is examined in closer detail, using the same dataset 

consisting of 9064 individuals compiled by the GemHD consortium.16 At first glance, the 

between-individual variability of residual age-at-onset appears to decrease for larger CAG repeat 
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sizes (Figure 8, left panels; Spearman’s 𝜌 = -0.91, p < 0.001). However, given the strong inverse 

association between mutant CAG repeat size and age of onset, this association is likely to be 

confounded by the substantially younger age of onset of the participants with larger CAG repeat 

sizes. To account for this confounding by age, residual age-at-onset was divided by the predicted 

age of onset (based on mutant CAG repeat size). Indeed, after accounting for predicted age of 

onset, the variability of the relative residual age-at-onset (i.e., expressed as a fraction of the 

predicted age of onset) strongly increased with larger mutant CAG repeat size (Figure 8, right 

panels; Spearman’s 𝜌 = 0.81, p < 0.001).  

 

Due to the strong association between CAG repeat size and the rate of disease progression (or 

age of onset as a proxy for the rate of disease progression),3 it is obvious that delaying or 

hastening of age of onset by a certain number of years cannot be assumed to indicate the same 

degree of disease modification for individuals with different mutant CAG repeat sizes (see 

Appendix for an explicit analytical explanation). For example, assuming that pathological 

burden increases linearly from birth onwards, to delay the expected age of onset by 10 years in 

two premanifest mutation carriers with expected ages of onset of 30 and 40 years, the rate of 

disease progression would need to be lowered by 25% and 20%, respectively (Appendix). 

Therefore, using the relative difference between the actual and expected age of onset (as opposed 

to the absolute difference between actual and expected age of onset as utilized previously16), is 

likely to result in more accurate estimates of potential genetic modifiers of age of onset in HD.  

 

To directly assess this postulate, a GWAS of the relative residual age-at-onset in HD was 

conducted, using the same dataset and otherwise exact same covariates and approach as 

previously published by the GemHD consortium.16 Indeed, this approach resulted in the 

identification of a substantially larger number of genome-wide significant SNPs than reported 

previously (i.e., 488 vs. 328 (excluding those on chromosome 4 as these may reflect artefacts due 

to rare CAG repeat sequence haplotypes16)) (Figure 9). Interestingly, almost all (~98%) genome-

wide significant SNPs identified previously were also detected using relative residual age-at-

onset as the outcome (Supplementary Figure 8), suggesting a sizable increase in statistical 

power.  
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To allow direct comparisons, for all potential genetic modifiers reported previously,16 the effect 

estimates and associated p-values were compared between the two methods (Table 4). Although 

all effect estimates were directionally consistent and mostly similar between the two methods, 

using relative residual age-at-onset resulted in the identification of an additional novel genome-

wide significant locus tagged by a rare variant (rs138433183) on chromosome 7, located in an 

intronic region of the ESYT2 gene (Figure 10). Moreover, three other loci that failed to reach 

genome-wide significance before using residual age-at-onset as the outcome (including the 

PMS1 and PMS2 loci, as well as another locus on chromosome 19 (19AM3)), reached genome-

wide significance using relative residual age-at-onset as the outcome (Table 4). Conversely, the 

SYT9 locus on chromosome 11 did not reach genome-wide significance using the current 

method, suggesting a potential false positive hit in the previous GWAS. More in-depth 

characterization of these loci is beyond the scope of this paper and can be accomplished by 

interested researchers using the provided FUMA output files and summary statistics 

(Supplementary Materials). 

 

Discussion 

This is the first study to assess visit-to-visit within-individual variability and its clinical and 

genetic correlates in HD. Leveraging detailed genetic and longitudinal clinical data from large 

cohorts of HD patients, this work 1) establishes within-individual variability in disease 

expression as an integral part of HD semiology, demonstrating that it increases across all clinical 

domains with disease duration, mutation size, younger age-at-onset, and lower body weight, 2) 

provides a mathematical framework linking higher phenotypic variability to increased predictive 

entropy, revealing a fundamental relation between within-individual variability and energy 

expenditure, and 3) identifies novel genetic modifiers of both within-individual variability and 

age-at-onset in HD, detailing new concepts and approaches that could also increase the statistical 

power of future genetic association studies in HD.   

 

Despite the clinical impression that HD patients exhibit considerable variability in symptoms and 

signs independent of the measuring method or rater, no previous studies have targeted this 

particular aspect of HD. Here it was found that all clinical domains of HD, including motor, 

functional, cognitive and metabolic features of the disease, exhibit pronounced visit-to-visit 
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variability. Moreover, within-individual variability robustly increased with larger mutant CAG 

repeat size for the composite, motor and functional scores, as well as BMI. For cognitive scores, 

within-individual variability tended to increase for CAG repeat sizes in the lower pathogenic 

range, followed by a leveling off of the effect for larger CAG repeat sizes. Given the strong 

association between mutation size and cognitive deterioration,3 this latter finding may thus be 

due to floor/ceiling effects of the cognitive testing batteries in HD.23 In addition, an age of onset 

lower than expected based on mutation size was also robustly associated with a higher degree of 

within-individual variability across all clinical domains of HD. Collectively, these findings thus 

establish within-individual variability in disease expression as an integral part of HD semiology. 

 

Interestingly, motor impersistence, referring to the inability to sustain voluntary muscle 

contractions, has long been recognized as a cardinal feature of HD, and is thought to underlie 

other well-known clinical signs of the disease, including the ‘milkmaid’s sign’ (rhythmic 

squeezing of the examiner’s fingers), and the ‘fly-catcher’s tongue’ (inability to maintain tongue 

protrusion beyond lips).33 Albeit the precise cause of motor impersistence in HD is not fully 

elucidated, it could also be regarded as a manifestation of increased within-individual variability, 

though on a much smaller time-scale. Indeed, higher quantitative motor measures of variability – 

including grip and tongue force variability, as well as variability in inter-onset intervals during 

speeded tapping – have been reported in HD mutations carriers.34 In line with the findings of the 

current paper, increased variability on these quantitative motor measures was shown to be 

predictive of a faster rate of progression in early HD, while higher variability in inter-onset 

intervals during speeded tapping was also associated with a higher risk of disease onset in 

premanifest HD mutation carriers.34 

 

Leveraging the free energy principle, which conceptualizes action as a means through which the 

brain attempts to minimize sensory prediction errors (i.e., ‘active inference’),24 the current work 

also provides a useful theoretical framework for understanding the potential causes of phenotypic 

variability in HD. Specifically, both analytically and through simulation experiments, it 

demonstrates that an increase in predictive entropy of the brain’s machinery (e.g., due to gradual 

breakdown of homeostatic mechanisms as a consequence of progressive neuronal dysfunction 

and loss) will inevitably lead to increased variability in phenotype. Although an exhaustive 
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discussion of the free energy formulation is beyond the scope of this paper, here it is important to 

stress that within this framework ‘action’ is not necessarily limited to macroscopic, observable 

movements, but could encompass any active motion, including, e.g., secretory activity of internal 

(hormonal) glands, gastrointestinal motility, as well as modulation of the oculomotor and 

cardiorespiratory system. Interestingly, previously we found a higher ‘approximate entropy’ of 

prolactin secretion in early-stage HD patients compared to age, sex and BMI matched healthy 

control subjects,35 further supporting the notion of within-individual variability as a general 

feature of the disease. It should be noted though that the proposed Bayesian framework for 

linking entropy of brain states to (endo)phenotypic variability will only hold under the 

assumption that the agent will have retained the capacity to engage in active inference. For 

example, once patients have become bedridden in advanced stages of the disease, motor 

variability will be low, not because of reduced predictive entropy, but simply due to a dramatic 

loss of motor control. 

 

One common but still little understood feature of HD is progressive weight loss, which is 

strongly associated with mutation size, already starts in the premanifest stages of the disease 

despite adequate dietary intake, and has been associated with higher resting energy 

expenditure.36-38 Although a higher BMI is robustly associated with a slower rate of disease 

progression in HD,27 in a previous Mendelian Randomization study we demonstrated that this 

association is not causal, but likely a consequence of a slower rate of disease progression.29 

Consistent with the proposed framework linking a higher predictive entropy to increased 

phenotypic variability, and consequently to increased energy expenditure, in the present study a 

higher variability of motor features of HD was indeed associated with both lower body weight 

and a faster rate of weight loss, independent of the severity of motor impairment. These findings 

thus indicate that higher energy expenditure in HD may not necessarily be due to inherent 

defects in systemic energy regulation, but rather could be an inevitable consequence of increased 

energy requirements to maintain homeostasis in the face of a progressively inefficient capacity of 

a diseased brain for predictive inference. In fact, this could also account for the ubiquity of 

weight loss in other neurodegenerative diseases, in which emaciation generally accompanies a 

faster rate of disease progression.39 Therefore, in the context of HD and other brain disorders, 

BMI and weight loss could be regarded as proxies for the underlying rate of neuropathology. 
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This work also demonstrates that accounting for phenotypic variability can accelerate the 

discovery of novel genetic modifiers of HD. First, a GWAS of within-individual BMI variability 

identified a novel genome-wide significant locus (rs62231080) near the NUP50 gene, which was 

also associated with the expression levels of this gene. Interestingly, variants in NUP50, 

encoding the nucleopore basket protein NUP50, were recently also associated with amyotrophic 

lateral sclerosis, with loss of NUP50 affecting splicing regulation, neuronal survival and motor 

function in multiple animal models.40 Moreover, disruption of nucleocytoplasmic transport is a 

consistent feature of HD models and was recently also linked to neurodevelopmental defects in 

cellular and Drosophila models of HD.41-43 Notably, the rs62231080 locus was distinct from 

three other novel loci associated with mean BMI levels. Interestingly, EIF3F, which was 

identified through gene-based analysis and encodes a subunit of the eukaryotic translation 

initiation factor eIF3, has also been linked to neurodevelopmental defects.44 Importantly, eIF3F 

favors repeat-associated non-ATG (RAN) translation, a key mechanism through which repeat 

expansions could induce neurodegeneration, with its knockdown reducing the levels of RAN 

proteins.45 Given that both BMI and its variability could reflect the rate of neuropathology as 

argued above, these loci thus do not necessarily need to be involved in systemic energy 

regulation per se, but may also exert their influence by affecting neurodegeneration in HD. 

Similarly, GWASs of within-individual variability in the UHDRS TMS and SDMT scores, 

identified other novel loci, although these latter loci did not reach genome-wide significance 

likely due to the relatively small sample size available for the longitudinal genetic association 

studies. Second, by accounting for the association between mutation size and age of onset 

variability through the derivation of a new metric – i.e., relative residual age-at-onset – it was 

demonstrated that also the statistical power of GWASs of age of onset in HD can be increased 

considerably. Indeed, utilizing relative instead of absolute residual age-at-onset resulted in the 

identification of 49% more genome-wide significant SNPs, as well as the discovery of an 

additional genome-wide significant locus in the ESYT2 gene, encoding the extended 

synaptotagmin 2 protein that is important for calcium-dependent lipid binding and transport. 

Interestingly, gene fusion between HTT and ESYT2 has previously been linked to breast cancer.46 

Additionally, given that extended synaptotagmin 2 mediates endocytosis of activated fibroblast 

growth factor receptors,47 and fibroblast growth factor treatment has been shown to be 
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neuroprotective in HD animal models,48 alterations in the growth factor signaling pathway might 

partly underlie these observed effects. 

 

Although due to the strong association between mutant HTT CAG repeat size and the rate of 

disease progression, as well as availability of large and comprehensive datasets, HD provided an 

excellent model for deriving and testing the theoretical framework presented in this paper, there 

is no pertinent reason to assume that the association between increased predictive entropy and 

phenotypic variability would be specific to HD. Indeed, the proposed theory provides an intuitive 

framework for explaining a range of other little understood phenomena across different 

neurological diseases, including the association of increased visit-to-visit variability in body 

weight and blood pressure and a faster rate of disease progression in patients with Alzheimer and 

Parkinson disease.13, 14 weight loss preceding neurodegeneration by many years in other 

neurodegenerative diseases,39  the association between body weight variability and a higher risk 

of cognitive impairment and dementia,11 as well as the robust associations of many neuron-

specific genes and BMI.49 Similarly, the concept of relative age-at-onset is likely to be useful in 

the study of other disorders in which there is a strong association between genotype and age of 

onset, especially other repeat expansion disorders exhibiting an inverse association between 

mutation size and age of onset. Finally, it should be noted that the concept of a ‘Bayesian agent’ 

is not necessarily limited to multicellular organisms and could be extended to other complex 

model systems capable of active inference, including cells and organoids. Therefore, the 

proposed link between predictive entropy and phenotypic variability could also be probed in 

model systems of HD and other (neurodegenerative) diseases where any dynamically regulated 

‘phenotype’ could serve as a potential read-out. An exhaustive discussion of these other topics is 

beyond the remit of the current paper, but will be elaborated on in future work. 

 
The current work also has several potential limitations. First, the intraindividual rate of disease 

progression was modeled linearly in time by using mixed effects models with random intercepts 

and slopes for age, because inclusion of higher order random terms for age led to model non-

convergence, likely due to the relative sparsity of within-individual longitudinal measurements to 

enable stable estimates of higher order random effects. However, all models included a quadratic 

term for age as a fixed effect, which accounts for non-linear changes of the mean of the outcome 
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measures over time. Moreover, an alternative method based on VIM, which uses a non-linear 

exponential model to estimate variability independent of the mean,9 yielded similar results. 

Therefore, it is highly unlikely that increases of within-individual variability with age or mutant 

CAG repeat size could be accounted for by exponential increases in the rate of disease 

progression. Second, the visit-to-visit within-individual variability estimates were solely based 

on clinical outcome measures, including motor, functional and cognitive measures and BMI, 

obtained at about yearly or longer intervals. More objective, quantitative measures, such as the 

Q-Motor testing battery and other wearable motor and cognitive testing paradigms,34, 50, 51 

applied at shorter intervals and more frequently, are thus likely to be more sensitive and yield 

more accurate estimates of within-individual variability profiles over time. Nevertheless, given 

that even the relatively crude clinical outcome measures utilized here could robustly capture at 

least part of the within-individual variability in phenotype, the current results are likely to 

represent underestimates of the true magnitude of within-individual variability in HD. Third, the 

available sample size for the GWAS of within-individual variability in HD was relatively small. 

Despite this, a genome-wide significant locus associated with within-individual variability of 

BMI was identified, while several other loci exhibited suggestive significance for within-

individual variability of BMI, as well as motor and cognitive scores. Genotyping of a larger 

portion of the Enroll-HD cohort will be highly instrumental in identifying more genetic 

modifiers of within-individual variability in HD.  

 

In conclusion, within-individual variability in disease expression is an integral part of HD 

semiology, accounting for which could facilitate the discovery of pathogenic mechanisms and 

outcomes directly relevant to the development of disease modifying therapies. Future studies 

should assess the utility of within-individual variability as an additional outcome measure: 1) For 

the (re-)interpretation of the findings of past and current clinical trials, as well as for the design 

of future (clinical) studies, 2) As a translatable outcome measure in cell and animal studies, as by 

definition it provides a scale invariant read-out sensitive to the earliest stages of pathology, and 

3) In the context of other diseases, especially other repeat expansion and neurodegenerative 

diseases.  
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Table 1. Summary of model estimates 
 

 Composite scorea Motor scorea TFC scorea SDMT scorea,c SWRT scorea,c BMIa 
Effect 

estimateb 
p-

value 
Effect 

estimateb 
p-

value 
Effect 

estimateb 
p- 

value 
Effect 
estimat

eb 

p-
value 

Effect 
estimateb 

p-
value 

Effect 
estimateb 

p-
value 

Fixed-effect 
estimates 

            

Intercept -0.136 
(0.040) 

7e-4 0.092 
(0.022) 

<1e-4 -0.090 
(0.025) 

3e-4 -0.023 
(0.024) 

0.350 -0.042 
(0.027) 

0.119 -0.102 
(0.039) 

0.009 

Sex (m) 0.038 
(0.026) 

0.149 -0.026 
(0.014) 

0.062 0.053 
(0.015) 

6e-4 -0.036 
(0.015) 

0.017 -0.009 
(0.017) 

0.603 0.099 
(0.023) 

<1e-04 

Age -1.012 
(0.016) 

<1e-99 1.073 
(0.014) 

<1e-99 -1.002 
(0.014) 

<1e-99 -0.957 
(0.010) 

<1e-99 -0.995 
(0.011) 

<1e-
99 

-0.065 
(0.012) 

<1e-6 

Age2 -0.237 
(0.011) 

<1e-99 0.258 
(0.006) 

<1e-99 -0.275 
(0.007) 

<1e-99 -0.109 
(0.007) 

<1e-56 -0.207 
(0.007) 

<1e-
99 

-0.134 
(0.009) 

<1e-46 

CAG size -1.034 
(0.023) 

<1e-99 1.207 
(0.017) 

<1e-99 -1.047 
(0.018) 

<1e-99 -1.021 
(0.015) 

<1e-99 -1.110 
(0.017) 

<1e-
99 

-0.291 
(0.018) 

<1e-58 

Age × CAG -0.448 
(0.018) 

<1e-99 0.577 
(0.011) 

<1e-99 -0.500 
(0.013) 

<1e-99 -0.386 
(0.012) 

<1e-99 -0.496 
(0.013) 

<1e-
99 

-0.187 
(0.014) 

<1e-40 

WS 
variability 
estimates 

            

Intercept -1.683 
(0.086) 

<1e-84 -2.377 
(0.069) 

<1e-99 -1.918 
(0.069) 

<1e-99 -2.607 
(0.048) 

<1e-99 -2.134 
(0.051) 

<1e-
99 

-1.486 
(0.075) 

<1e-85 

Sex (m) -0.037 
(0.054) 

0.492 -0.031 
(0.046) 

0.533 -0.010 
(0.048) 

0.826 -0.024 
(0.033) 

0.458 0.033 
(0.033) 

0.313 -0.523 
(0.052) 

<1e-23 

Age 0.173 
(0.031) 

<1e-07 0.946 
(0.055) 

<1e-64 0.866 
(0.046) 

<1e-77 -0.397 
(0.020) 

<1e-91 -0.095 
(0.021) 

<1e-
05 

0.120 
(0.041) 

0.003 

CAG size 0.499 
(0.065) 

<1e-13 1.068 
(0.059) 

<1e-72 0.941 
(0.050) 

<1e-78 -0.280 
(0.025) 

<1e-32 0.033 
(0.026) 

0.208 0.296 
(0.044) 

<1e-10 

Age × CAG  0.462 
(0.030) 

<1e-52 0.096 
(0.020) 

<1e-05 0.139 
(0.020) 

<1e-09 -0.102 
(0.017) 

<1e-09 0.001 
(0.017) 

0.942 0.101 
(0.028) 

3e-4 

 
a) To enable comparison of the effect estimates across the different outcome measures, as well as to reduce 
collinearity among the predictor variables, all outcome measures and continuous predictor variables were 
standardized to a mean of zero and a standard deviation of one before inclusion in the models.  
b) All effect estimates were obtained using the within-subject variance estimator by robust regression 
(WiSER) Julia package with default settings and 100 iterations.22 For each of the six clinical outcome 
measures a separate model was run including sex, age, age2, mutant CAG repeat size and its interaction 
with age as fixed-effects, an intercept and slope for age as random effects, and sex, age, mutant CAG 
repeat size and its interaction with age as within-subject variability predictors. Effect estimates represent 
standardized regression coefficients (standard error) with all statistically significant effect estimates 
highlighted in bold. 
c) Both Unified Huntington Disease Rating Scale cognitive scores indicate the total number of correct 
items (in 1 minute). 
 
Abbreviations: BMI = body mass index, CAG = cytosine-adenine-guanine, SD = standard deviation, 
SDMT = symbol digit modalities test, SWRT = Stroop word reading test, WS = within-subject 
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Table 2. The association between residual age-at-onset and within-subject variability 
 

 Residual age-at-onset 
Fixed-effect estimates WS variability estimates 

Effect estimateb p-value Effect estimateb p-value 
Composite scorea 0.595 (0.016) <1e-99 -0.057 (0.029) 0.046 
Motor scorea -0.483 (0.026) <1e-78 -0.707 (0.065) <1e-27 
TFC scorea 0.745 (0.019) <1e-99 -0.084 (0.027) 0.002 
SDMT scorea,c 0.217 (0.026) <1e-15 -0.488 (0.133) 2e-4 
SWRT scorea,c 0.390 (0.023) <1e-63 -0.368 (0.098)  2e-4 
BMIa -0.025 (0.028) 0.369 -0.183 (0.072) 0.011 

 
a) All outcome measures and continuous predictor variables were standardized to a mean of zero and a 
standard deviation of one before inclusion in the models.  
b) All effect estimates were obtained using the within-subject variance estimator by robust regression 
(WiSER) Julia package with default settings and 100 iterations (except for BMI, where 4 iterations were 
used, because more iterations resulted in non-convergence of the model).22 For each of the six clinical 
outcome measures a separate model was run including sex, age, age2, mutant CAG repeat size and its 
interaction with age, and residual age at onset as fixed-effects, an intercept and slope for age as random 
effects, and sex, age, mutant CAG repeat size and its interaction with age, and residual age-at-onset as 
within-subject variability predictors. Effect estimates represent standardized regression coefficients 
(standard error) with all statistically significant effect estimates highlighted in bold. 
c) Both Unified Huntington Disease Rating Scale cognitive scores indicate the total number of correct 
items (in 1 minute). 
 
Abbreviations: BMI = body mass index, CAG = cytosine-adenine-guanine, SD = standard deviation, 
SDMT = symbol digit modalities test, SWRT = Stroop word reading test, WS = within-subject 
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Table 3. Genetic loci associated with within-individual variability or mean levels of body 
mass index, total motor score or symbol digit modalities test scores in Huntington disease. 

Trait Outcome Chr Lead SNP BP (hg19) Effect 
allele 

MAF 
(%) 

Effect 
sizea 

SE P-value Candidate modifier 
genes 

BMI  variability 22 rs62231080 45484152 A 21.8  -0.260 4.57E-02 1.48E-08 NUP50 
mean 16 rs200717776 50145334 CT 10.1 0.408 7.35E-02 3.43E-08 HEATR3 

18 rs11874212 73503347 A 30.1 0.222 3.90E-02 1.59E-08 TSHZ1 
TMS  
 

variability 16 rs772972 27838619 T 32.4 -0.188 3.68E-02 4.10E-07 GSG1L 
mean 3 rs1984782 153289784 G 46.3 0.125 2.50E-02 6.21E-07 P2RY1 

6 rs36079127 99300452 G 37.9 -0.134 2.55E-02 1.93E-07 FBXL4 
SDMT  variability 1 rs4101233 91238773 T 38.5 0.204 3.85E-02 1.26E-07 CDC7, ZNF644 

mean 
 

5 rs34322595 79998532 T 31.2 -0.151 2.64E-02 1.30E-08 MSH3 
12 rs55833733 125839198 T 22.2 0.146 2.74E-02 1.16E-07 TMEM132B 
13 rs9559664 110471106 G 15.3 -0.175 3.41E-02 3.45E-07 IRS2, RN7SKP10 
15 rs55666775 100431982 A 9.5 -0.217 4.07E-02 1.09E-07 CTD-2054N24.2, CTD-

3076O17.1 

 
a) Effect estimates represent standardized regression coefficients. All loci that passed the 
genome-wide (p-value < 5E-8) or suggestive (p-value < 1E-06) statistical significance threshold 
are summarized. Genome-wide significant loci are marked in bold. 
 
Abbreviations: Chr = chromosome, BP = base pair position in Human Genome version 19 coordinates, 
BMI = body mass index, MAF = minor allele frequency, SDMT = symbol digit modalities test, SE = 
standard error, TMS = total motor score.  
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Table 4. Comparison between absolute vs. relative residual age-at-onset genetic modifiers 
 

Chr Modifier Lead SNP BP (hg19) Minor 
allele 

MAF 
(%) 

Effect 
sizea 

(years) 

P-value Effect 
size 
(%) 

P-value Candidate modifier 
genes 

1 1AM1b rs567500111 164283625 A 0.3  -4.4 6.9E-06 -8.2 0.000147   
2 2AM1 rs3791767 190639915 C 20.7  -0.8 6.3E-08 -1.8 3.76E-09 PMS1  
3 3AM1 rs1799977 37053568 G 31.0 0.8 5.1E-10 1.6 8.92E-10 MLH1  
5 
 

5AM1 rs701383 79913275 A 25.7  -0.8 5.5E-10 -1.6 1.45E-08   
5AM2 rs113361582 80086504 G 0.3 6.1 1.3E-09 

1.6 
5.79E-13 
 

MSH3 DHFR 

5AM3 rs1650742 79990883 G 33.1 0.6 1.6E-06 1.2 
 

2.84E-06 
 

  

5BM1 rs79727797 145886836 A 2.4 2.3 3.8E-10 5.5 
 

8.9E-12 
 

TCERG1  

7 
 

7AM1 rs74302792 6079993 A 15.9 0.8 7.4E-08 2.0 6.21E-09 PMS2  
7AM2 rs138433183 158535496 G 0.2 -7.5 6.6E-08 -17.0 4.27E-08 ESYT2 NCAPG2 

8 8AM1 rs79136984 103213640 T 8.2  -1.2 3.6E-09 -2.9 8.37E-11 RRM2B UBR5 
11 
 

11AM1 rs7936234 96106737 A 19.6 0.6 1.7E-05 1.6 4.06E-07 CCDC82  
11BM1b rs79714630 7303052 G 0.1  -9.6 1.1E-08 -17.8 1.85E-06 SYT9  

12 12AM1b rs140253376 108992727 A 0.2  -6.1 8.3E-06 -11.4 0.000192   
15 15AM1 rs150393409 31202961 A 1.4  -5.2 1.8E-28 -11.3 2.39E-27   

15AM2 rs35811129 31241346 A 27.5 1.3 9.4E-26 3.1 2.41E-29 FAN1  
15AM3 rs151322829 31197995 T 0.7  -3.8 1.4E-08 -8.4 1.18E-08   
15AM4 rs34017474 31230611 C 38.2 0.8 8.5E-11 1.8 2.09E-12   

16 16AM1b rs187055476 27873637 G 0.3  -6.1 5.5E-09 -12.8 4.63E-08 GSG1L  
18 18AM1b rs530017366 56126806 T 0.2  -5.1 1.2E-04 -8.5 0.003895   
19 19AM1 rs274883 48622545 G 16.7 0.9 5.3E-09 2.0 2.1E-09   

19AM2 rs3730945 48645976 G 37.1  -0.6 5.8E-07 -1.4 1.89E-08 LIG1  
19AM3 rs145821638 48620943 A 0.1 7.7 1.5E-06 17.4 9.48E-07   

 
a) These effect estimates are based on the results of the continuous analysis by the GemHD 
consortium (see Table 1 in the original publication).16 Loci with relevant differences between the 
two methods are highlighted in bold.  
 
Abbreviations: Chr = chromosome, BP = base pair position in Human Genome version 19 coordinates, 
MAF = minor allele frequency.  
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Figure 1. Within-individual clinical variability in Huntington disease increases with larger 

mutant HTT CAG repeat size. The violin plots depict the association of mutant HTT CAG 

repeat size and the standardized variance independent of the mean (VIM) metric for the Unified 

Huntington Disease Rating Scale composite score, total motor score, total functional capacity, 

and symbol digit modalities and Stroop word reading test scores, as well as body mass index. 

VIM of all clinical measures significantly increased with larger mutant HTT CAG repeat size, 

although for the cognitive scores, the effect tended to level off for larger mutation sizes. The 

boxes indicate the interquartile ranges around the median (thick black lines), with values 

deviating more than 1.5 times the interquartile range from the median represented by black dots. 

After regressing out the effects of sex, age at baseline, and domain-specific disease severity at 

baseline (e.g., for composite score, the composite score at baseline was used as a measure of 

disease severity) from the VIM scores, the residuals were compared across different categories of 

mutant CAG repeat size using the non-parametric Wilcoxon’s rank sum test. 
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Figure 2. Younger age-at-onset is associated with increased within-individual clinical 

variability in Huntington disease. The violin plots depict the association of residual age-at-

onset (i.e., whether the observed age-at-onset was below or above expected age of onset based on 

mutant HTT CAG repeat size) and the standardized variance independent of the mean (VIM) 

metric. The boxes indicate the interquartile ranges around the median (thick black lines), with 

values deviating more than 1.5 times the interquartile range from the median represented by 

black dots. After regressing out the effects of sex, age at baseline, mutant CAG repeat size and its 

interaction with age at baseline, and domain-specific disease severity at baseline from the VIM 

scores, the residuals were compared across the two categories of residual age-at-onset using the 

non-parametric Wilcoxon’s rank sum test. 
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Figure 3. Phenotypic variability increases with higher values of predictive entropy. The 

figure depicts the simulated action (i.e., movements around a predefined set-point) of a simple 

Bayesian agent for different values of the entropy of the distribution that underlies the agent’s 

beliefs about its environment as parametrized through 𝜎". Variability of action is larger for 

higher values of 𝜎". See main text for more details. 
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Figure 4. Increased phenotypic variability results in higher energy expenditure. The agent’s 

phenotypic variability increased with higher values of the entropy of the distribution that 

underlies the agent’s beliefs about its environment as parametrized through 𝜎" (top panel). The 

amount of work performed by the agent required to maintain steady-state – defined as the 

cumulative sum of the product of acceleration and distance traveled over time – increased with 

higher values of 𝜎" (bottom panel). 
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Figure 5. Within-individual variability of motor impairment is associated with lower body 

weight and a faster rate of weight loss. Average body weight (estimated through a random 

intercept linear mixed-effects model with adjustment for age, age2, sex, mutant CAG repeat size, 

as well as its interaction with age, and total motor score) decreased with higher within-individual 

variability of total motor score (left panel). Similarly, the rate of body weight loss (represented 

by the random slope coefficients obtained from a random intercept and slope linear mixed-effects 

model with age, age2, sex, mutant CAG repeat size, as well as its interaction with age, and total 

motor score, as fixed effects, and an intercept and age as random effects) also increased with 

higher variability of total motor score (right panel). The insets indicate the standardized 

regression estimates (standard error (SE)). The red lines represent the regression lines, with the 

corresponding grey areas indicating the SEs around the mean. WS = within-subject.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.20.24307629doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.20.24307629
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Genome-wide association study of body mass index variability in Huntington 

disease. The dashed red line in the Manhattan plot (top plot) indicates the threshold for genome-

wide significance (i.e., p = 5.0E-8). An intergenic locus on chromosome 22, tagged by the lead 

SNP rs62231080, reached genome-wide significance (standardized β = -0.260 ± 4.57E-2, p = 

1.48E-8). Positional (middle panel) and eQTL (bottom panel) analyses mapped this locus to the 

genes NUP50, FAM18A, and RIBC2, and the lincRNA gene CTA-217C2.1 and CTA-268H5.14. 
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Figure 7. Genome-wide association study of mean body mass index in Huntington disease. 

The dashed red line in the Manhattan plot (top plot) indicates the threshold for genome-wide 

significance (i.e., p = 5.0E-8). Two loci on chromosomes 16 and 18, tagged by the lead SNPs 

rs200717776 and rs11874212, respectively, reached genome-wide significance. Positional and 

eQTL analyses (lower panels) mapped the chromosome 16 locus to the protein coding HEATR3 

gene, and the antisense lncRNA RP11-429P3.5, and the chromosome 18 locus to the protein 

coding TSHZ1 and RP11-17M16.1 genes. 
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Figure 8. Age of onset variability in Huntington disease. Although both absolute age of onset 

and residual age-at-onset (RAO) variability decrease with higher mutant CAG repeat size (left 

panels), the relative RAO, as well as its variability increase with larger mutation sizes (right 

panels). The blue lines represent smoothing splines and associated standard errors around the 

mean indicated in grey. See main text for more details. 
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Figure 9. Genome-wide association study of relative residual age-at-onset in Huntington 

disease. The Manhattan (left) and corresponding quantile-quantile plot (right) are depicted. The 

dashed red line in the Manhattan plot indicates the threshold for genome-wide significance (i.e., 

p = 5E-8). See main text and Table 4 for more details about the identified loci. 
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Figure 10. Genome-wide association study of relative residual age-at-onset in Huntington 

disease identifies a novel locus. The figure depicts the genomic location of novel rare variants 

on chromosome 7 within the ESYT2 gene, tagged by the lead (rs138433183) and an 

independently significant (rs545857783) SNP, associated with residual age-at-onset in 

Huntington disease.  
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Appendix: Comparison between absolute and relative residual age-at-onset 
 
Let h represent the extent of pathology (in arbitrary units) required for the disease to become 
clinically manifest, and let t represent the expected age at clinical onset (in years), assuming a 
linear increase of pathological burden with time since birth (Figure A-1):  

 
The average rate of subclinical disease progression r per year could then be defined as: 
 

 
𝑟(𝑡) =

ℎ
𝑡  

Eq. A-1 

Now suppose that a potential disease modifying genetic variant (or drug) would increase the 
expected age at onset by c years, i.e.:  

 𝑟' = 𝑟(𝑡) = (
)
	    and   𝑟* = 𝑟(𝑡 + 𝑐) = (

)+*
 Eq. A-2 

This would have to result in a corresponding decrease in r of: 
 𝑟*

𝑟'
= R1 +

𝑐
𝑡S

,&
 

Eq. A-3 

Thus, Eq. A-3 demonstrates that for smaller values of t, the relative decrease in the rate of disease 
progression needs to be greater to ensure a delay in clinical onset by a certain fixed number of 
years c as compared to larger values of t, and vice versa. For example, to delay the expected age 
of onset by 10 years in two premanifest mutation carriers with expected ages of onset of 30 and 
40 years, the rate of disease progression would need to be lowered by 25% and 20%, 
respectively. In contrast, suppose that a potential disease modifying genetic variant (or drug) 
would change the expected age at onset by a factor f, then in the presence of this modifier the 
rate of disease progression would be given by: 

 
𝑟- = 𝑟(𝑓𝑡) =

ℎ
𝑓𝑡 

Eq. A-4 

Which will result in a similar relative change in the rate of disease progression for different 
values of expected age at onset (and by extension, for different mutant CAG repeat sizes): 

 𝑟-
𝑟'
=
1
𝑓 

Eq. A-5 

Please note that for the above derivation, it was assumed that pathological burden will increase 
linearly over time. For completeness, here follows a derivation assuming an exponential increase 
in pathological burden over time: 
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Suppose that pathological burden p will increase exponentially over time: 
 𝑝(𝑡) = 𝛼𝑒.) + 𝛾 Eq. A-6 

For simplicity, and without loss of generalizability, let’s assume 𝛼 = 1, and 𝛾 = 0. Now, suppose 
that a potential disease modifying genetic variant (or drug) would increase the expected age at 
onset by c years, resulting in a change of the growth parameter 𝛽, i.e.:  

 𝑝'(𝑡) = 𝑒.!) and 𝑝*(𝑡) = 𝑒.") Eq. A-7 

From: 
 ℎ = 	𝑝'(𝑡) = 𝑝*(𝑡 + 𝑐)  Eq. A-8 

It then follows that: 
 𝑒.!) = 𝑒."()+*) ⇒ 𝛽* =

.!
)+*

 Eq. A-9 

Therefore: 
 

𝑝*(𝑡) = 𝑒.!1&+
*
)2
#$

= 𝑝'(𝑡)
&
)+* 	⟺ 	ln 𝑝*(𝑡) =

1
𝑡 + 𝑐 	ln 𝑝'

(𝑡) 
Eq. A-10 

Given that the initial growth parameter 𝛽' will decrease to a greater extent for smaller values of 
t, Eq. A-10 thus demonstrates that also under the assumption of an exponential increase of 
pathology over time, for smaller values of t, the relative decrease in the rate of disease 
progression needs to be greater to ensure a delay in clinical onset by a certain fixed number of 
years c as compared to larger values of t, and vice versa. On the other hand, assuming that a 
potential disease modifying genetic variant (or drug) would change the expected age at onset by 
a factor f, then in the presence of this modifier, for the rate of disease progression the following 
holds: 

 ℎ = 	𝑝'(𝑡) = 𝑝-(𝑓𝑡)  Eq. A-11 

From which it follows that: 
 𝑒.!) = 𝑒.%-) ⇒ 𝛽- =

.!
-

 Eq. A-12 

Therefore: 
 

𝑝-(𝑡) = 𝑒
&!
% ) = 𝑝'(𝑡)

$
%  ⟺	ln 𝑝-(𝑡) = 	

&
-
	ln 𝑝'(𝑡) 

Eq. A-13 

Eq. A-13 thus shows that when assuming that a modifier will result in a relative change of t, the 
growth parameter will simply be scaled to a proportional degree, independent of t. This latter is 
not only biologically more plausible, but also ensures that the effect of the modifier would be 
easier to compare across individuals with different expected ages of onset (and by implication, 
also with different mutant CAG repeat sizes). 
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