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Abstract 18 

Since the appearance of COVID-19, the accurate diagnosis of pneumonia-type lung diseases by 19 

chest radiographs has been a challenging task for experts, mainly due to the similarity of patterns 20 

between COVID-19 and viral or bacterial pneumonia. To address this challenge, a model for the 21 

computer-aided diagnosis of chest X-Rays has been developed in this research. This model might 22 

contribute to substantially increasing the accuracy of the diagnosis. This approach is based on 23 

supervised learning using neural networks, where the quality of the result depends on the quality 24 

of the dataset used during training. Image data augmentation techniques, hyperparameter 25 

adjustments and dropout layer contributed to achieve high performance values on test data in 26 

multi-class classification. The experiments conducted to evaluate the model yielded that it detects 27 

and classifies domain classes with an accuracy of 99.45% on training data, 99.27% on validation 28 

data and 99.06% on selected test data. The main contribution of this paper is X-COVNet a new 29 

Deep Convolutional Neural Network model using Deep Transfer Learning through the Xception 30 

architecture for the assisted diagnosis of COVID-19, pneumonia or healthy patients, trained on 31 

COVID-19 Chest X-Ray Database and evaluated through two external databases, which give the 32 

model novelty within the lack of external validation in all the literature reviewed. 33 
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1. Introduction 1 

During the COVID-19 pandemic crisis, plenty of health institutions suffered periods of 2 

collapse and their workers had to deal with the burden of attending to each of the patients. 3 

Although other techniques were later used to diagnose the disease, resorting to a chest X-ray is 4 

the most common when a patient has signs of respiratory disease such as COVID-19 or 5 

pneumonia. In 2017, more than 808 000 children under five years of age deceased due to 6 

pneumonia, accounting for 15% of all deaths in children under five years of age. Individuals who 7 

are susceptible to developing risk pneumonia encompass those who are above the age of 65 as 8 

well as those with underlying medical conditions [1]. Currently, it is possible to accurately 9 

diagnose pneumonia. However, it is a difficult task, requiring the review of a chest X-ray which 10 

must be performed by highly trained specialists. This disease usually manifests as an area of 11 

increased opacity on the chest X-ray [2]. However, the diagnosis of pneumonia from X-rays is 12 

made difficult in early 2019 by the similarity of patterns between pneumonia and COVID-19. 13 

Differences between pneumonia and COVID-19 in X-rays are difficult for the human eye to 14 

perceive, but intelligent system-assisted diagnosis could result in greater accuracy. For example, 15 

models based on Artificial Intelligent (AI) can study the internal patterns in the pixel array of the 16 

image. Specialists are often faced with reading large volumes of images during each work shift. 17 

Hence, having a tool for computer-aided diagnosis might positively impact the efficiency and 18 

effectiveness of the outcome. 19 

Intelligent systems based on deep learning have been used in multiple solutions for 20 

medicine and healthcare. Yu et al. [3], show a non-exhaustive list of the potential of AI applied 21 

in medicine grouped into, basic biomedical research, translational research and clinical practice.  22 

The field of medical imaging for computer-aided diagnosis has been covered by several 23 

authors with excellent results, studies discussed below perform the classification of chest X-rays. 24 

Hashmi et al. [4], proposed to obtain the optimal weights for five deep convolutional neural 25 

network architectures - ResNet18, DenseNet121, Inception, Xception and MobileNetV2 - and 26 

feed the weighted predictions into a weighted classifier module to obtain the final weighted 27 

prediction to identify healthy patients or patients with pneumonia. Chouhan et al. [5] used an 28 

ensemble model consisting of multiple pre-trained deep neural network models. Toğaçar et al. 29 

[6], combined features from different deep learning models. Ayan et al. [7], applied transfer 30 

learning and fine tuning to VGG16 and Xception architectures. Civit-Masot et al. [8] also applied 31 

transfer learning to the VGG16 architecture to distinguish between COVID-19, pneumonia and 32 

normal classes. Owida et al. [9] proposed a method for extracting effective features from chest 33 

X-ray images using wavelet analysis and the Mel Frequency Cepstral Coefficients (MFCC) 34 

method. These features were then used in a classification process using a Support Vector 35 

Machine (SVM) classifier. In a study by Lee & Lim [10], fine-tuning techniques were applied to 36 

the DenseNet201 architecture to improve its performance in detecting COVID-19 cases from 37 

chest X-rays. Jyoti et al. [11], present a new approach to decompose chest radiographs from two 38 

different datasets using a two-dimensional (2D) tunable Q-wavelet transform (TQWT) based on 39 

a memristive crossbar array (MCA). The decomposed images were then classified as either 40 

COVID-19 or non-COVID-19 using convolutional neural network (CNN) models, specifically 41 

ResNet50 and AlexNet. Their results were achieved with less complexity, energy consumption 42 

and performance compared to conventional techniques. Dalvi et al. [12] proposed to apply 43 

transfer learning and tuning over DenseNet-169 architecture, where the data preprocessing is 44 

performed using the Nearest-Neighbors interpolation technique. 45 
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Considering the significant benefits of Intelligent systems based on deep learning, this 1 

research aims to create a predictive model based on deep learning techniques. This model enables 2 

computer-aided diagnosis of respiratory diseases in chest radiographs using a multiclass 3 

classification between normal/healthy, pneumonia and COVID-19. This approach is based on 4 

supervised learning using neural networks where the quality of the result depends on the quality 5 

of the dataset used during training. Image data augmentation techniques, hyperparameter 6 

adjustments and dropout layer contributed to achieving high performance values on test data in 7 

multi-class classification. 8 

The following is an outline of the contributions which have been provided in order to 9 

draw attention to the relevance of the work that will be presented by this study: 10 

 11 

o X-COVNet is the main contribution of this proposal, a Deep Convolutional 12 

Neural Network model using Deep Transfer Learning through the Xception 13 

architecture for the assisted diagnosis of COVID-19, pneumonia or healthy 14 

patients, trained on COVID-19 Chest X-Ray Database and evaluated through two 15 

external databases that give the model novelty within the lack of external 16 

validation in all the literature reviewed. 17 

o X-COVNets an open-source GitHub repository aiming at a medical imaging 18 

model library. Available online under MIT License: 19 

https://github.com/WiseGeorge/X-COVNets.  20 

o The use of transfer learning to achieve better results in less time and at less cost. 21 

o Image data augmentation techniques are applied and their potential to 22 

significantly improve the results of the image classification task is demonstrated. 23 

o The results confirmed the reliability of the proposed model in multi-class 24 

classification, obtaining remarkable values of around 99% and 95% for internal 25 

and external evaluation, respectively, for each metric assessed. 26 

 27 

The rest of the paper is structured as follows. In Section 2, the main materials and methods 28 

adopted to develop and evaluate the proposal are described. The results of the developed model 29 

are analyzed in Section 3. The comparison of the results presented in this research with those 30 

reported in the literature is discussed in Section 4. Finally, conclusions and future work are 31 

presented. 32 

 33 

2. Materials and Methods 34 

 35 

2.1 Dataset 36 

 37 

The COVID-19 Chest X-Ray Database, which was officially published on Kaggle and developed 38 

by a team of researchers from Qatar University in Doha, Qatar and Dhaka University in 39 

Bangladesh, along with their associates from Pakistan and Malaysia in conjunction with medical 40 

professionals, was deemed the most affordable option for the proposed approach [13]. The 41 

database contains chest X-ray images for healthy, COVID-19 positive and Normal and Viral 42 

Pneumonia cases. The suitability of this database is given by the fact that the data were collected 43 
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from various publicly available datasets, online sources, and published articles, and include 1 

images from several regions, including the Americas and Europe, since images were sourced 2 

from several reputable institutions, such as the Radiological Society of North America, the 3 

Institute for Diagnostic and Interventional Radiology at Hannover Medical School in Hannover, 4 

Germany, the Italian Society of Medical and Interventional Radiology (SIRM), and the Medical 5 

Imaging Databank of the Valencia Region (BIMCV). The inclusion of images from these 6 

different sources ensures that the training dataset is representative of a wide range of radiological 7 

data. 8 

  The database contains 2500 images of the normal class, 1345 of pneumonia, and 3616 of 9 

COVID-19. Originally, the database had more than 10,000 images belonging to the normal class, 10 

to balance the dataset, a random value between the maximum and minimum of the other classes 11 

was selected, resulting in 2500 images for the normal class. Figure 1 shows the first contact with 12 

the database. 13 

 14 

 15 
Fig.1: Chest radiographs of a) a healthy individual, b) an individual with pneumonia, and c) an individual with 16 

COVID-19. 17 

 18 

2.2 Performance Metrics 19 

 20 

All performance metrics used in this paper are discussed below. In the definitions and equations 21 

mentioned below, when classifying normal/healthy, pneumonia and COVID-19 in patients being 22 

category_var any value of the domain to be classified; true positive (TP) denotes the number of 23 

category_var images identified as category_var, true negative (TN) denotes the number of 24 

¬category_var images identified as ¬category_var, false positive (FP) denotes the number of 25 

¬category_var images incorrectly identified as category_var images and false negative (FN) 26 

denotes the number of category_var images incorrectly identified as ¬category_var [4]. 27 

 28 

• Accuracy: Indicates how close the measured value is to a known value. 29 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝐓𝐏+𝐓𝐍)

(𝐓𝐏+𝐓𝐍+𝐅𝐏+𝐅𝐍)
     (1) 30 

• Precision: Indicates how accurate the model is in terms of those predicted to be positive. 31 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝐓𝐏

(𝐓𝐏+𝐅𝐏)
                    (2) 32 
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• Recall: Calculates the number of real positives that the model was able to capture after 1 

labeling it as positive. 2 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝐓𝐏

(𝐓𝐏+𝐅𝐍)
                          (3) 3 

• F1: Provides a balance between precision and recall. 4 

𝑭𝟏 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×𝑹𝒆𝒄𝒂𝒍𝒍

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍)
      (4) 5 

• Confusion Matrix: Summarizes the classification performance of a classifier [14]. 6 

• ROC (Receiver Operating Characteristics) Curve: Graphical representation of the 7 

relationship between a classifier’s sensitivity (true positive rate) and 1 - its specificity 8 

(false positive rate). 9 

• AUC (Area Under the Curve) Score: Measure of the degree to which a classifier can 10 

distinguish between classes. A higher AUC score indicates a better ability to 11 

differentiate between classes. 12 

 13 

2.3 Transfer Learning & Xception Architecture 14 

 15 

Transfer learning is a technique that involves enhancing the learning process for a new task by 16 

transferring knowledge from a related task that has already been learned [15]. The use of pre-17 

trained models as an initial foundation for tasks related to computer vision and natural language 18 

processing is a prevalent methodology within the field of deep learning [16]. Xception is a deep 19 

convolutional neural network architecture that employs depth-wise separable convolutions. The 20 

author postulated that inception modules within convolutional neural networks serve as a 21 

transitional phase between standard convolution and depth-wise separable convolutional 22 

operations [17]. 23 

 24 

 25 

2.4 Developed Predictive Model based on Deep Learning Techniques 26 

 27 

The workflow of the proposed model is shown in Figure 2. The first step is the acquisition of 28 

knowledge about the domain of the subject to be worked on. In this case, medical imaging, the 29 

techniques that are used at a professional level and the standards that govern it. The in-depth 30 

study of the standard DICOM medical imaging format allows for a greater scope of the proposed 31 

model. After data acquisition, exploratory data analysis is used to obtain insights from the dataset. 32 

The architecture of the deep learning model is defined by 3 blocks data preprocessing - data 33 

augmentation, model building - fine tuning and callbacks. The preprocessing is worked 34 

exhaustively because it has a direct impact on the model’s performance, model building - fine 35 

tuning block and callbacks block are inter-connected due to the presence of a feedback 36 

mechanism between them. 37 
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 1 

 2 
Fig.2: Workflow diagram of the proposed model. 3 

With new advances in artificial intelligence, a range of tools and libraries have become popular 4 

that make it easier to build neural network models. The proposed approach was developed 5 

following the coding standard for the Python programming language, PEP8. Likewise, the 6 

proposal uses the main libraries for machine learning, deep learning and data science: Tensorflow 7 

2.10.0 and ScikitLearn 1.2.1 for modeling; Numpy 1.23.3 and Pandas 1.4.4 for the analysis, study 8 

and manipulation of the dataset; Matplotlib 3.5.3 and Seaborn 0.12.0 for visualizations; and 9 

Keras Tuner 1.1.3 for hyperparameters fine tuning. To achieve improved optimization and more 10 

efficient handling of uncertainty, convolutional neural networks and transfer learning techniques 11 

were employed. These methods have demonstrated exceptional performance in computer vision 12 

tasks [18]. In the following sections, each component of this model is described. 13 

 14 

2.5 Exploratory Data Analysis 15 

 16 

During the data reading process, the images pixel arrays and their respective classification were 17 

archived in a dataframe. Pandas dataframe and numpy array are the data types to be worked on. 18 

These allow adequate data manipulation and more efficient and faster processing. The images 19 

were formatted to RGB with a size of 224x224 for optimal processing of the predictive model. 20 

Working with high resolution images would lead to a high level of processing and time cost. As 21 

the scatter plot depicted in figure 3 shows, there is no significant dispersion of values concerning 22 

the total, 91.6% of the images have values distributed in (75 ≤ x ≤ 175) for mean and (30 ≤ y ≤ 23 

80) for standard deviation. Images with values outside this range have very specific 24 

characteristics that can provide the predictive model with patterns that are not common in chest 25 

radiographs. Hence, this small number of outliers are not treated in this research. 26 

Data preprocessing, normalization, and correction were rigorously performed to mitigate 27 

potential biases in the predictive model, enhance its generalizability, and prevent the occurrence 28 

of false positives or false negatives. A detailed manual analysis of stochastic image sets was 29 

conducted to ascertain the number of radiographs with COVID-19 or pneumonia classification 30 
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among patients admitted with visible medical wiring, which could lead to erroneous learning and 1 

misclassifications by the model, based on the assumption that all patients exhibiting these 2 

features belong to a given classification. Images with these features are sparsely represented in 3 

the dataset, obviating the need for their removal or treatment. 4 

 5 

 6 
Fig.3: Scatter plot showing the mean and standard deviation of pixel values in images. 7 

 8 

2.6 Deep Neural Network Architecture 9 

 10 

2.6.1 Data Preprocessing & Data Augmentation 11 

 12 

The dataset was split into three portions, 80% of the images were taken for the training set; 20% 13 

were taken for the validation set, from this 50% were taken for the test set. As a result, the final 14 

distribution of the data set was 80% for training, 10% for validation, and 10% for testing. Table 15 

1 show the dataset’s final distribution. 16 

Table 1. Distribution of train, validation and test set. 17 

Set No. Images 

Train 5968 

Validation 747 

Test 746 

 18 

The images from the training and validation set which had already been formatted to a 19 

scale of 224x224x3 were normalized. The pixel values were taken from the range 0-255 to 0-1 20 

for optimal computational processing. Previously 71x71x3 and 100x100x3 were used, but tests 21 

with these image formats resulted in low performance levels compared to the applied one. 22 

Keeping the images with a resolution around 200 pixels and in RGB scale translates into more 23 
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patterns in the pixel array that can be studied by the model without increasing the processing time 1 

too much. To increase the diversity of the dataset and improve model performance, various image 2 

data augmentation techniques with a probability of 100% such as rotation with 25 degrade limit, 3 

horizontal flipping, random brightness adjustment, and RGB shifting are applied using 4 

Albumentations library, as depicted in figure 4 [19, 20]. 5 

 6 

 7 
Fig.4: Representation of the applied image data augmentation techniques. 8 

 9 

2.6.2 Model Building & Fine Tuning Xception Engine 10 

 11 

The proposed model is initialized and configured using the Xception architecture and adding new 12 

configurations, input layer 224x224x3, pretrained architecture weights were frozen and used the 13 

'imagenet' weights which are pretrained on ImageNet database organized according to WordNet 14 

hierarchy [21]. In the output of the Xception architecture, was added a 2D Global Average 15 

Pooling layer. The parameter compression ratio is exponentially high in this type of layer 16 

resulting in a 2D dimensionality of the form (batch_dimension, n_channels). This is different to 17 

the Flatten layer commonly used to feed fully connected layers, which only restructures the 18 

matrix to a single dimension [22]. Followed by a Dropout layer with 75% probability to avoid 19 

possible overfitting mainly due to the extension of the pretrained model, and a Batch 20 

Normalization layer to normalize the inputs. This layer applies transformations that keep the 21 

mean output close to 0 and the standard deviation output close to 1 [23, 24]. It is concluded with 22 

a Dense output layer with 3 neurons referring to the three classes in the domain, using the softmax 23 

activation function. Figure 5 shows the input and output flow of the deep convolutional neural 24 

network with the proposed configurations, where the red squares represent the main 25 

modifications described above. 26 

The model is compiled using the Adaptive Moment Estimation (Adam) optimizer with a 27 

learning rate of 3e-4, the loss function categorical crossentropy, the metric accuracy and a batch 28 

size of 32. The values corresponding to learning rate and batch size were obtained from the fine 29 

tune process using keras tuner, the hyperparameters search was run on [0.03, 0.003 0.0003] and 30 

[16, 32, 64] for learning rate and batch size respectively [25]. The recommended values for the 31 

batch size parameter in low-performance computing were selected. The learning rate values were 32 

chosen because, although the default value for the Adam optimizer is 0.001, a widely used value 33 

is 0.0003 [26]. Therefore, an interval from 0.03 to 0.0003 was used, decreasing by a factor of 10. 34 

 35 
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 1 
Fig.5: Input and output flow of the proposed model. 2 

 3 

2.6.3 Callbacks 4 

Four callbacks were used during the training process, early stop, learning rate reduction, 5 

tensorboard and checkpoint [22]: 6 

 7 

• Early Stop: Stops the training process after no better values are achieved in the loss 8 

metric. 9 

• Learning Rate Reduction: Reduces the learning rate of the model, set at 3e-4 by 10 

monitoring the loss on validation data allowing for better optimization and accuracy of 11 

the model on validation data. 12 

• Tensorboard: Tool included in the Tensorflow Framework for real-time visualization of 13 

all variables and the model's behaviors, favoring the optimization of hyperparameters. 14 

• Checkpoint: Allows to save the weights and biases of the model in a certain state as it is 15 

trained, in this case it saves each time the model improves depending on the metric 16 

val_loss. 17 

 18 

The value of the training epochs during the first test was 35 epochs. After the first test training, 19 

the early stop callback stops the training process at epoch 15. The value of patience used in this 20 

callback was exceeded, 5 in this case, because the value of the metric val_loss did not improve 21 

from this epoch. Therefore, 15 is set as the definitive value for the training epochs. Table 2 22 

summarizes the hyperparameter settings of the deep neural network. 23 

 24 

 25 

 26 

 27 

 28 

 29 
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Table 2. The hyperparameter settings of the deep neural network. 1 

Parameter Value 

Image size 224 × 224 × 3 

Batch size 32 

Dropout rate 0.75 

Training epochs 15 

Optimizer Adam 

Learning rate 3e-4 

Loss Function Categorical Crossentropy 

 2 

The techniques of image data augmentation, learning rate reduction, dropout layer 3 

together with real-time monitoring of hyperparameters through the tensorboard were 4 

specifically worked on to avoid overfitting of the proposed model. The model training is 5 

performed using an Intel(R) Core (TM) i5-7300HQ computer with 2.50GHz CPU, NVIDIA 6 

GeForce GTX 1050 2GB GPU, 8GB RAM. 7 

 8 

 9 

3. Results  10 

 11 

3.1 Model History 12 

 13 

After training the model on the training set for 15 epochs an accuracy of 0.9945 on training data 14 

and 0.9927 on validation data was obtained. Figure 6 shows the behavior of the metrics during 15 

each epoch corresponding to loss, accuracy, validation loss, validation accuracy and learning rate 16 

reduction. 17 

The model exhibits robust generalization capabilities, as evidenced by its consistent 18 

performance across both the training and validation datasets. The benefits of transfer learning: a 19 

higher start, a higher slope and a higher asymptote are noticeable in the model training history as 20 

shown in figure 6 [27]. After concluding the training, it is visible the considerable contribution 21 

of the callback learning rate reduction to the performance of the model on validation data. Also 22 

shows how the reduction of the learning rate stabilizes the model keeping it close to the best 23 

metrics, the decay of the learning rate is also translated in a smaller amplitude between the 24 

training and validation curve. This is due to the fact that the lower the value of the learning rate 25 

used in the gradient descent implemented by the Adam optimizer, the smaller its displacement in 26 

search of the global minimum, therefore it can locate this or very close values with greater 27 

effectiveness, having less possibility of deviating to less favorable situations [20]. The best values 28 

for each metric are reached at epoch 15, so this is the saved configuration of the model via the 29 

checkpoint callback. 30 
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 1 
Fig.6: Graphical representation of the model’s training process. 2 

 3 

3.2 Assessing the Model Performance 4 

 5 

The model was evaluated on the test set after completion of the training phase, model evaluation: 6 

69s 3s/step - loss: 0.0393 - accuracy: 0.9906. Its performance was validated using accuracy, 7 

recall, precision, F1 and confusion matrix. The model achieved 100% recall for the COVID-19 8 

class, indicating that all instances of this class were correctly identified; such high sensitivity in 9 

detecting patients with COVID-19 suggests that there were no false negatives for this class. 10 

Results detailed in table 3 indicate that the model performed slightly better on the COVID-19 11 

class than on the normal and pneumonia classes, suggesting that the model is more effective in 12 

identifying patients with this disease. 13 

 14 

Table 4. Metrics of the model evaluation on external databases. 15 

Database No Images Loss Accuracy (%) AUC Score (%) 

Training 7641 0.026 99.13 99.95 

Preprocesed 6432 0.231 92.35 99.12 

Raw 5228 0.103 96.78 99.43 

 16 

 17 

The confusion matrix obtained from the evaluation of the model yields high performance values. 18 

The diagonal entries of the matrix correspond to the correctly predicted values, while the off-19 

diagonal elements represent cases of incorrect predictions. As indicated in the figure 7, the model 20 

exhibits a remarkably low misclassification rate. 21 

 22 
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 1 
Fig.7: Confusion matrix for the test set of 746 images. 2 

 3 

A set of images were randomly selected from the test set for classification using the proposed 4 

model. Figure 8 provides a visual representation of each image, accompanied by its respective 5 

predicted classification from the X-COVNet model, indicated by the label on the x-axis 6 

(Predicted Label: PL), and its actual classification, indicated by the label on the y-axis (True 7 

Label: TL). The previous results demonstrate the remarkable performance of the model in 8 

correctly classifying chest X-rays. 9 

 10 
Fig.8: Classification results of chest radiographs using the proposed model. 11 
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 1 

3.3 Assessing Generalization Capabilities on Real-World Data 2 

 3 

It is important to evaluate predictive models on unseen data, especially in the context of medical 4 

imaging. If a model is not thoroughly evaluated with data external to the training process, there 5 

is a risk that it will not perform as well in real-life scenarios as it did during training. This could 6 

lead to incorrect diagnoses and potentially harmful therapeutic decisions. By evaluating the 7 

model with new data, practitioners can gain a more accurate understanding of its real-world 8 

performance and increase confidence in its use for assisted diagnosis. This can help ensure that 9 

the model is reliable and safe for use in clinical settings. 10 

This process involves the use of two external chest radiograph databases containing a 11 

large number of images of 6000 approximately. These databases allow for a comprehensive 12 

evaluation of the model’s performance on both raw and preprocessed images. The evaluation 13 

process begins with an assessment of the model on the training database COVID-19 Chest X-14 

Ray Database [13]. This serves as a reference point for further evaluation on external databases.  15 

The first external database which will be called Raw Database, Chest X-ray (Covid-19 & 16 

Pneumonia), is derived from three previously published datasets and contains a total of 6432 17 

images. One of these datasets is ieee8023 covid-chestxray-dataset, an official database approved 18 

by the University of Montreal’s Ethics Committee and developed by Joseph Paul Cohen and his 19 

team at Mila, University of Montreal [28]. This database contains raw images in various formats 20 

and sizes, including images with figures and other artifacts as detailed in figure 9.  21 

 22 

 23 
Fig.9: Sample images from the raw database. 24 

The second external database used is the Chest X-Ray Images Database, called Preprocessed 25 

Database, which has a total of 5228 images and contains preprocessed images resized to 232x232 26 

in png format, including an even larger number of images with artifacts such as pointers and 27 
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numbers, as detailed in figure 10. It uses information from medical websites such as eurorad.org, 1 

radiopedia.org and coronacases.org [29]. 2 

 3 
Fig.10: Sample images from the preprocessed database. 4 

To gain a deeper understanding of the classification model on the three classes represented in the 5 

assessment databases, the graph in Figure 11 shows the ROC curve for One vs One and One vs 6 

Rest, as well as the AUC score. The AUC score is an indicator of the performance of the model 7 

by domain class, evaluating true positives vs false positives. The OvO and OvR strategies are 8 

used to adapt the ROC curve and AUC score metrics, originally intended for binary classification, 9 

to multi-class classification problems [30, 31]. 10 

As can be seen in Figure 11, the proposed model shows superior AUC values for the 11 

COVID19 class, with overall the highest results in the databases for both the OvO and OvR 12 

approaches. This shows that the model classifies radiographs of patients with COVID-19 more 13 

reliably, which is the best possible result in terms of domain classes because a higher performance 14 

in diagnosing COVID 19 not only implies more safety and care for patients with this disease but 15 

also limits the possibility of contagion by overlooking a patient with SarsCov2. Overall, the 16 

model has excellent values for all AUC scores with a minimum value of 0.9810 and 0.9875 for 17 

the OvO and OvR approaches respectively. 18 

 19 
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 1 
Fig.11: One-vs-One (OvO) and One-vs-Rest (OvR) Receiver Operating Characteristic (ROC) curves, and corresponding 2 

Area Under the Curve (AUC) scores for each database. 3 

 4 

In the context of the ROC Curve and AUC Score, it was found that there were no significant 5 

differences in the results obtained during the evaluation of the databases where the maximum 6 

difference in AUC score was 0.0083, observed between the training database with 0.9995 and 7 

the external preprocessed database with 0.9912. 8 

The evaluation of the model on external databases yielded peculiar results. Contrary to 9 

expectations, the model performed best on the raw database, despite its previously described 10 

characteristics. Values for the accuracy metric obtained were 99.18%, 92.35%, and 96.78% for 11 

the training, preprocessed, and raw databases, respectively. These results are summarized in table 12 

4 indicating a good generalization of the model, as it was able to achieve high accuracy on 13 

external databases with a large number of chest X-rays images. When evaluating external 14 

databases, the lowest accuracy result was observed on the preprocessed database, with a value of 15 

92.35%. However, this result is particularly noteworthy as it exceeds the accuracy values reported 16 

on the test sets of several models previously studied in the literature [7, 8]. These findings 17 

demonstrate the robust generalization capabilities of the proposed approach on real-world data, 18 

which not only achieves high accuracy on previously unseen data, but also outperforms other 19 

models in the field. 20 

 21 

 22 
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Table 4. Metrics of the model evaluation on external databases. 1 

Database 
No 

Images 
Loss 

Accuracy 

(%) 

AUC Score 

(%) 

Training 7641 0.026 99.13 99.95 

Preprocesed 6432 0.231 92.35 99.12 

Raw 5228 0.103 96.78 99.43 

 2 

A deeper evaluation of the model's performance on external datasets was only performed on the 3 

preprocessed dataset, as it had the lowest performance during the model evaluation. The proposed 4 

X-COVNet model showed an accuracy of 92.35% on this dataset, misclassifying a total of 400 5 

chest X-rays out of a total of 5228. The classification report shown in Table 5 details that the 6 

recall for COVID-19 showed the best value among the three classes, which is very close to 1. 7 

This means that the model missed very few patients with COVID-19 in the preprocessed dataset. 8 

On the other hand, a high precision of 98.97% for the Normal class indicates that the model is 9 

very accurate in predicting cases as normal. This means that there are few false positives for this 10 

class, which is crucial in a medical context as it reduces the likelihood of misdiagnosing a patient 11 

with a condition such as pneumonia or COVID-19 as Normal. These results are very reliable as 12 

the dataset is not biased towards any class and has a very balanced total for each class, such as 13 

1802, 1800 and 1626 for the Normal, Pneumonia and COVID-19 classes respectively. 14 

 15 

Table 5. Classification Report of the External Preprocessed Dataset. 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

Table 6 below depicts the total number of misclassified images, categorized by each type of 27 

misclassification for further analysis. As mentioned above, the model rarely classifies patients 28 

with any disease, including pneumonia or COVID-19, as normal, with a total of 16 29 

misclassifications. It is more likely that the model will classify a healthy patient as having a 30 

disease such as pneumonia or COVID-19, with a total of 263 incorrect predictions, or misclassify 31 

pneumonia as COVID-19, with a total of 120 misclassifications. However, it is highly unlikely 32 

that the model would miss a patient with COVID-19 with a total of 10 misclassifications in this 33 

evaluation. As mentioned in the class breakdown of the evaluation dataset, this is not due to any 34 

bias in the evaluation dataset. Thus, it supports the statement in the article that the model 35 

classifies patients with COVID-19 with high performance. 36 

 37 

 38 

 39 

 40 

 

Normal Pneumonia COVID-

19 

Accuracy Macro 

AVG 

Weighted 

AVG 

Precision 0.989 0.939 0.854 0.923 0.927 0.930 

Recall 0.854 0.929 0.993 0.923 0.925 0.923 

F1-Score 0.916 0.934 0.918 0.923 0.923 0.923 

Support 1802 1800 1626 0.923 5228 5228 
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Table 6. Distribution of total 400 misclassifications by category. 1 

True Label 
Predicted 

Label 
Amount 

NORMAL Pneumonia 107 

NORMAL COVID-19 156 

Pneumonia NORMAL 7 

Pneumonia COVID-19 120 

COVID-19 NORMAL 9 

COVID-19 Pneumonia 1 

 2 

For visual understanding, Figure 12 shows a sample of misclassified images with the True Label 3 

(TL) plotted on the y-axis and the Predicted Label (PL) plotted on the x-axis. 4 

 5 

 6 
Fig.12: Random sample of misclassified images. 7 

 8 

 9 

 10 
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4. Discussion  1 

 2 

4.1 Comparison with Published Models 3 

 4 

During the comparison of the developed model with those reported in the literature, it was 5 

observed that, in contrast to the proposed model, 8 of the total 9 studied models for diagnosing 6 

chest radiographs rely on binary classifications. Results used during the comparison process were 7 

reported by their respective authors in their studies. The comparison of the models is carried out 8 

on the basis of the performance metrics obtained in the test set, as these are the ones most 9 

frequently collected in the research studied. While most of the literature reviewed utilized 10 

datasets with a magnitude of approximately 5000 images, the approach proposed in this study 11 

uses a larger dataset consisting of 7641 images.  12 

Hashmi et al. [4] proposed a weighted classifier fed by 5 deep neural network 13 

architectures to classify normal or pneumonia in chest X-rays, achieving a recall value of 99.0%, 14 

higher than the 98.7% obtained by the proposed approach; however, their approach was slightly 15 

lower in terms of precision and accuracy metrics, with values of 98.3% and 98.4%, respectively. 16 

Ayan and Ünver [7] applied transfer learning and fine-tuning to the VGG16 and Xception 17 

architectures and obtained lower performance metrics than the proposed X-COVNet model, with 18 

accuracy, precision, and recall values of 87.0%, 87.0%, and 87.5%, respectively. The ensemble 19 

model proposed by Chouhan et al. [5] achieved recall and accuracy of 99.62% and 96.39%, 20 

respectively. Toğaçar et al. [6] achieved approximately 96.8% for recall, precision, and accuracy 21 

metrics. The approach proposed by Owida et al. [9] using the Mel Frequency Cepstral 22 

Coefficients method and a support vector machine classifier achieved 98.8% accuracy, 23 

unfortunately, others performance metrics were not reported in the research. The study conducted 24 

by Lee & Lim [10] achieved an accuracy of 99.90%, a precision of 98.99%, and a recall of 25 

98.00%. Lee and Lim's approach outperforms the proposed model only in terms of accuracy, 26 

with a difference of 0.84%. Jyoti et al. [11] achieved accuracies of 98.82% and 95.67% on small 27 

and large datasets respectively, which are less accurate than the proposed X-COVNet model. The 28 

approach proposed by Dalvi et al. [12], where data preprocessing is performed using the Nearest-29 

Neighbors interpolation technique, achieved 96.37%, 94.08%, and 98.89% for accuracy, 30 

precision, and recall, respectively, which tends to be less performing than the proposed approach.  31 

All of the models discussed above perform a binary classification of the chest radiograph, 32 

either for the COVID19/non-COVID19 or pneumonia/normal classes. In contrast to the 33 

aforementioned models, Civit-Masot et al. [8] used a training set of 316 images for a multiclass 34 

classification approach similar to the proposed approach, distinguishing between normal/healthy, 35 

pneumonia, and COVID-19 using the VGG16 architecture; they obtained 86.0% for each macro 36 

average of the metrics used in the comparison.  37 

The model proposed in this paper generally showed better performance compared to the 38 

literature reviewed. The closest performance was achieved by Hashmi et al. [4], Lee & Lim [10], 39 

and Jyoti et al. [11], who used binary classification; however, the proposed approach 40 

outperformed these studies by using multi-class classification. Table 7 shows that the proposed 41 

X-COVNet model outperforms other approaches in general terms and demonstrates its 42 

superiority by achieving better metrics in a more complex classification task compared to most 43 

models in the reviewed literature. 44 

 45 

 46 

 47 
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Table 7. Comparison of the proposed model with published models.  1 

Published 

Models 

No. of 

Images 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

Classification 

Type 

External 

Validation 

Civit-Masot et al., [8] 316 86.00 86.00 86.00 Multi-class No 

Ayan & Ünver [7] 5856 87.00 87.50 87.00 Binary No 

Chouhan et al., [5] 5247 93.28 99.62 96.39 Binary No 

Toğaçar et al., [6] 5849 96.88 96.83 98.00 Binary No 

Hashmi et al., [4] 5856 98.26 99.00 98.43 Binary No 

Owida et al., [9] 5856 - - 98.80 Binary No 

Lee & Lim [10] 5000 98.99 98.00 99.90 Binary No 

Jyoti et al., [11] – Small 2193 99.16 98.50 98.82 Binary No 

Jyoti et al., [11] – Large 5275 95.37 95.94 95.67 Binary No 

Dalvi et al., [12] 3010 94.08 98.89 96.37 Binary No 

Proposed Model 

(X-COVNet) 7641 98.99 98.73 99.06 Multi-class 

 

Yes 

The values are highlighted in bold to emphasize superior performance 2 

 3 

4.2 Strengths and Limitations of the Proposed Model 4 

 5 

A new computer-aided diagnostic model for chest X-ray has been achieved, capable of 6 

classifying patients with pneumonia-type lung disease. The model, which employs convolutional 7 

neural networks and transfer learning techniques, has demonstrated remarkable performance on 8 

validation and test data, achieving an accuracy of 0.9906 on test set. With its high accuracy and 9 

ability to differentiate between healthy patients, those with pneumonia and those with COVID-10 

19, the model has the potential to improve the diagnosis of respiratory illnesses and patient care. 11 

The proposed model X-COVNet could serve as an adjunct to clinical decision making, it can 12 

assist radiologists in the decision-making process, but the final decision must be made by an 13 

expert. The proposed model is intended to support, not replace, the expertise of a trained 14 

radiologist in making a diagnosis [4]. 15 

The lack of external validation is a common problem in many research studies [4-12]. As 16 

explained earlier, external validation refers to the evaluation of a model's performance on data 17 

not used during training or validation process. This is critical because it allows researchers to 18 

determine how well the model generalizes to real-world cases and can help identify potential 19 

biases or limitations in the model. 20 

In the present research, an external validation was conducted and it was found that our proposed 21 

model showed high performance on external data. This is an important finding because it 22 

provides evidence that our model can accurately diagnose pneumonia-like lung diseases using 23 

chest X-rays, even when applied to data outside of our training dataset, which helps ensure that 24 

the model can accurately diagnose patients in a clinical setting. 25 

It is also important to note that AI-based tools should be used with caution by trained 26 

professionals and not at the discretion of an individual. Misuse of these tools can pose risks to 27 

the health of patients and communities. Proper training and oversight are necessary to ensure that 28 

AI-based diagnostic tools are used safely and effectively in healthcare settings. 29 
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It should be acknowledged that the model has certain constraints. The Grad-CAM 1 

technique has not yet been implemented to facilitate the interpretation of the model’s 2 

classification decisions by medical specialists. However, work is actively being done to address 3 

this limitation and further improve the utility of the model for medical professionals. 4 

In essence, this new model for computer-aided constitutes a substantial contribution in 5 

the field of computer-assisted diagnosis and has the capacity to profoundly influence both 6 

medical imaging and patient care. Through its ability to increase the accuracy and speed of 7 

diagnoses, reduce costs, and facilitate the use of remote medical consultations and monitoring, 8 

this model can greatly improve the accessibility, convenience, cost-effectiveness, and quality of 9 

healthcare for patients. 10 

 11 

 12 

5. Conclusions and Future Work 13 

The use of intelligent systems to improve the efficiency and effectiveness of medical diagnostics, 14 

as well as to reduce costs, is currently an accepted practice. In this research, a predictive model 15 

for computer-aided diagnosis of pneumonia-type pulmonary disease in chest X-rays based on 16 

Deep Convolutional Neural Networks using Transfer Learning through the Xception architecture 17 

was achieved with outstanding results and superior to those studied in the literature. The 18 

hyperparameter adjustment using Keras Tuner, the Learning Rate Reduction callback together 19 

with the image data augmentation and dropout layer allowed for improved the model’s 20 

performance. The several scores obtained throughout the model evaluation, accuracy, recall, 21 

precision and F1 score, demonstrated the reliability of the model. 22 

Future research aims to integrate an algorithm for Gradient-weighted Class Activation 23 

Mapping (Grad-CAM) into the model to allow specialists understanding how the model has been 24 

driven to make the classification decision. Further, it is suggested to integrate the model with the 25 

help of CESIM into the Xavia-Pacs medical imaging tool deployed in Cuban medical centers. 26 

 27 
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