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ABSTRACT  1 

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary 2 

disease (COPD), but their effect on COPD heterogeneity is unclear. 3 

Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) 4 

and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and 5 

molecular characteristics.   6 

Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing 7 

differences in protein biomarkers in a COPDGene training set and identified these groups in 8 

COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with 9 

clinical outcomes and compared protein-protein interaction networks and drug repurposing 10 

analyses between high-risk groups.   11 

Measurements and Main Results: We examined two high-risk omics-defined groups in non-12 

overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, 13 

n=468 ECLIPSE).  We defined “High activity” (low PRS/high TRS) and “severe risk” (high 14 

PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), 15 

lower lung function, and alterations in metabolic, growth, and immune signaling processes 16 

compared to a low-risk (low PRS, low TRS) reference subgroup. “High activity” but not “severe 17 

risk” participants had greater prospective FEV1 decline (COPDGene: -51 mL/year; ECLIPSE: -18 

40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 19 

5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors.  20 

Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and 21 

molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis 22 
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identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures 23 

may be explained by patient selection. 24 

 25 

  26 
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INTRODUCTION 27 

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and 28 

mortality worldwide1.  Although COPD is characterized by irreversible airflow obstruction, there 29 

is marked heterogeneity amongst individuals in emphysema and airway pathology, exacerbation 30 

incidence, and lung function decline2,3.  Identifying individuals at high risk for rapid COPD 31 

progression or eventual severe disease is critically important to implement personalized 32 

therapeutic approaches.  33 

Large-scale omics data offer the potential to identify via a simple blood test high risk 34 

groups that share distinct, targetable pathobiology.  Genetics, quantified with polygenic risk 35 

scores (PRSs), can identify individuals at high risk for coronary artery disease and guide 36 

consideration of statin therapy earlier than advised by current guidelines4.  In cancer, integrating 37 

genetic and transcriptomic profiling can improve therapy recommendations and outcomes5.  We 38 

demonstrated that both a PRS and a transcriptional risk score (TRS) independently predict 39 

COPD6,7.  Although the PRS and TRS were both based on spirometry measures, the scores are 40 

not correlated7 and likely capture different aspects of lung pathobiology.  Specifically, COPD 41 

genetic risk loci are enriched for aspects of lung development and have a greater effect in early 42 

COPD6,8; in contrast, the COPD TRS is associated with markers of inflammation and lung 43 

function decline and may reflect disease activity and propensity toward disease progression7.  44 

Thus, it may be possible to leverage the different features of the PRS and TRS to identify 45 

clinically and biologically distinct COPD subtypes.   46 

Despite advances in omics-based risk prediction, important clinical translation questions 47 

remain.  Omics risk scores are usually standardized for statistical analyses, leaving the question 48 

of how to use them to risk-stratify individuals9. Risk scores are also continuous measures, often 49 
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normally distributed; the issue of attempting to identify subtypes along a continuum has been 50 

previously recognized10. Despite this limitation, there is a need to classify individuals to link 51 

omics-defined high-risk groups, which might benefit from specific therapies, with specific 52 

pathobiological processes and treatment decisions. COPD drug and drug repurposing candidates 53 

have high failure rates in clinical trials11, but it remains unknown if these therapies have failed 54 

because of patient selection, which currently does not utilize omics or other biomarkers. 55 

The PRS was effective for predicting COPD severity and incident COPD, while the TRS 56 

was better at predicting FEV1 decline; combining both risk scores may identify subgroups at risk 57 

for multiple important COPD outcomes. Therefore, we hypothesized that our published PRS and 58 

TRS, both based on spirometry, could identify COPD subtypes (i.e., heterogeneity) within high-59 

risk groups with clinical and biological differences in two cohorts of ever-smokers.  We aimed to 60 

develop a novel approach for how omics risk scores can be applied to populations and leveraged 61 

for precision medicine.  We used proteomics to obtain an additional biological view of omics-62 

defined subgroups and performed in silico drug repurposing analyses to identify potential 63 

subgroup-specific drug repurposing candidates. 64 

METHODS 65 

Study populations 66 

All study participants provided written informed consent and studies were approved by 67 

local Institutional Review Boards. Details regarding genotyping, RNA-sequencing, gene 68 

expression microarray, and proteomics data acquisition and processing are available in the 69 

Supplement.  70 
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COPDGene 71 

We included Genetic Epidemiology of COPD (COPDGene) study (ClinicalTrials.gov 72 

Identifier: NCT00608764) participants with single nucleotide polymorphism (SNP) genotyping, 73 

RNA-sequencing, and SomaScan proteomic data to calculate the PRS, TRS, and performed 74 

differential protein expression analyses, respectively. 75 

  76 

ECLIPSE 77 

As previously described7, we included Evaluation of COPD Longitudinally to Identify 78 

Predictive Surrogate End-points (ECLIPSE) study (ClinicalTrials.gov Identifier: NCT00292552) 79 

participants with SNP genotyping data, whole blood microarray data, and at least two FEV1 80 

measurements.  81 

 82 

Additional details for both cohorts are in the supplement.  83 

 84 

Polygenic and transcriptional risk scores 85 

The COPD PRS and TRS were both based on spirometry and previously described6,7; more 86 

details can be found in the supplement. 87 

 88 

Proteomic data 89 
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Blood proteomic data were measured using SomaScan v4.0, which uses aptamers (i.e. 90 

SOMAmers) to quantify 4,776 unique human proteins. Further details regarding SomaScan data 91 

and preparation can be found in the Supplement and here12. 92 

Statistical analysis 93 

Overview of study design 94 

To identify high-risk subgroups based on continuous scores, we used the same previously 95 

defined COPDGene training set7, and tested among PRS and TRS quantiles to maximize the 96 

number of associated differentially expressed proteins across the resulting subtype partitions 97 

(Fig. 1). We then determined the raw (non-standardized) score cut offs associated with the 98 

corresponding percentile values in the COPDGene training set.  This approach facilitated 99 

classifying each participant in the COPDGene testing set and the external ECLIPSE validation 100 

set into an omics-defined subtype. We characterized the newly-defined subtypes using proteomic 101 

network and drug repurposing analyses, and applied multivariable linear regressions to test the 102 

association of subtypes with COPD-related outcomes. 103 

 104 

Determining risk score divisions and identifying omics-defined subtypes 105 

Omics-based risk scores are typically standardized prior to statistical analysis, and 106 

therefore, have a normal distribution and by design do not lend themselves to clustering analyses 107 

(Figure S1).  Yet, for clinical application, patients need to be categorized into groups. First, to 108 

determine whether one or more clusters are optimal, we calculated the gap statistic based on the 109 

PRS and TRS using the clusGap function (cluster R package) with a maximum of 8 kmeans 110 

clusters and 500 bootstrap iterations. The gap statistic provides a measure of dispersion for each 111 
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cluster and compares this dispersion metric to the expected dispersion under the null 112 

distribution13; thus, the difference (or “gap”) between the observed and expected within cluster 113 

dispersion is used to calculate the gap statistic and the maximum gap statistic over a range of 114 

cluster numbers indicates the optimal number of clusters. 115 

As an alternative to clustering, individuals are commonly placed into omics risk-score 116 

quantiles, and participants in each quantile are compared to those in the lowest risk quantile4,6,14.  117 

To extend this approach to two separate omics risk scores is more complex, as fewer 118 

subdivisions lead to larger group sizes and more statistical power, but more subdivisions allow a 119 

more extreme comparison group. As genetic and transcriptomic data were used to define the 120 

subtypes, proteomics would provide a third “view” of the data. Thus, to determine the optimal 121 

quantiles we split the PRS and TRS into 2 to 3 quantiles (minimum of 4 and maximum of 9 122 

groups) and tested to see what group divisions maximized the number of associated differentially 123 

expressed proteins using limma15, comparing each quantile category to the lowest quantile. To 124 

test the sensitivity of the groups to partitioning, we also examined clinical characteristics for 125 

each combination of these partitions. Benjamini-Hochberg16 false discovery rate (FDR)-adjusted 126 

p-values less than 0.05 were considered significant.  The number of significantly differentially 127 

expressed proteins associated with each omics risk score category was summed.  128 

 129 

Clinical comparisons of omics-defined subtypes 130 

We compared clinical characteristics across omics-defined subtypes using the tableone R 131 

package. In COPDGene, transcriptomic and proteomic data were collected at the 5-year follow 132 

up visit (i.e., “Phase 2”), so we examined differences in anthropometry (including change in BMI 133 
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per year (Kg/m2/year) from enrollment to the 5-year follow up visit), spirometry (including 134 

prospective FEV1 change (from 5- to 10-year follow up visits)), and CT measures of emphysema 135 

(quantitative emphysema on inspiratory CT scans (% LAA < -950 HU)17, 15th percentile of lung 136 

density histogram on inspiratory CT scans (Perc15)18) and of airway thickening (wall area 137 

percent (WA%)17 and square root of wall area of a hypothetical internal perimeter of 10 mm 138 

(Pi10)19) at the 5-year follow up visit.  In ECLIPSE, we examined the same outcomes but 139 

longitudinal follow up was from the time of study enrollment to the 3-year follow up visit.  140 

 141 

Further details regarding outcomes and regression model specifications are in the Supplementary 142 

Methods.  143 

 144 

Biological characterization of omics-defined subtypes 145 

We performed differential gene and protein expression analyses (accepting FDR-adjusted 146 

p-values <0.05), comparing high risk subtypes to the reference group, defined as the group with 147 

the lowest PRS and TRS quantiles.  We mapped differentially expressed proteins to the human 148 

protein-protein interactome20 and performed Reactome21 pathway enrichment, STRING24 and 149 

Enrichr22–24 analyses; additional details are in the supplement.  150 

 151 
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RESULTS 152 

Characteristics of study populations 153 

We included 3,274 participants across two cohorts of individuals who smoked. The 154 

COPDGene training and testing sets are similar in demographic and spirometry characteristics 155 

(Table 1).  Compared to COPDGene, ECLIPSE participants were more likely to be younger, 156 

male, to have a greater number of smoking pack-years, a lower FEV1 % predicted, and lower 157 

FEV1/FVC, and were less likely to be current smokers. 158 

Defining polygenic and transcriptional risk score divisions 159 

Participants plotted on the axes of PRS and TRS exist along a continuum (Figure S1), as 160 

is the case for spirometric measures of COPD severity (i.e., FEV1 and FEV1/FVC10,25). We 161 

calculated the gap statistic over a range of kmeans cluster numbers in the COPDGene training 162 

set, and consistent with visual inspection of Figure S1, we observed that one cluster yields the 163 

highest gap statistic, indicating that there are no clusters (Figure S2). As an alternative approach 164 

to clustering, we applied the common practice of dividing risk scores into quantiles, though the 165 

optimal quantiles balancing sufficiently high risk yet adequate sample size are not clear. Thus, 166 

we tested four combinations of partitioned omics risk scores, using protein expression 167 

differences (not used in the PRS and TRS) between groups. We observed that dichotomizing 168 

PRS and dividing TRS into tertiles yielded the greatest number of differentially expressed 169 

proteins (Table S1). We then applied these same quantiles to the COPDGene testing set and 170 

ECLIPSE participants (Fig. 2).  To test the robustness of subgroups to specific partitions, we also 171 

examined 4 to 9 subdivisions, and noted stable clinical characteristics of the highest (“low 172 
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PRS/high TRS” and “high PRS/high PRS”) and lowest risk (“low PRS/low TRS”) groups (Table 173 

S2).   174 

Polygenic and transcriptional risk scores identify “high disease activity” and “severe 175 

disease risk” subtypes 176 

We observed, as expected, heterogeneity amongst the two high-risk (i.e., high TRS) 177 

groups (Table 2). We compared these high-risk subtypes to a reference group, which was 178 

defined as the lowest omics risk group (i.e., “low PRS/low TRS” subtype). Compared to the 179 

reference group, the two high-TRS risk groups (i.e., “low PRS/high TRS” and “high PRS/high 180 

TRS”) demonstrated decreased BMI, lower spirometry measures, more emphysema, and thicker 181 

airways across testing cohorts (Table 2).  Both groups had similar mean adjusted prospective 182 

FEV1 decline in the COPDGene testing set compared to the reference group, but this finding was 183 

only consistent for the “low PRS/high TRS” group in ECLIPSE (-40 mL/year).  184 

We then performed linear regression analyses on selected COPD-related outcomes.  We 185 

compared anthropometric, spirometry, CT, and other COPD-related outcomes across COPDGene 186 

and ECLIPSE (Table 3, Table S3).  Compared to the reference group, high-risk groups 187 

exhibited lower spirometry, more emphysema, and thicker airways (Table 3). While none of the 188 

adjusted FEV1 decline measures were statistically significant, the “low PRS, high TRS” means 189 

were consistent between COPDGene and ECLIPSE (-30ml/yr and -24ml/year, P = 0.15 and P = 190 

0.11, respectively), despite that COPDGene participants had only two FEV1 measurements while 191 

ECLIPSE participants had up to six FEV1 measurements. Given the clinical relevance of 192 

accelerated FEV1 decline in the “low PRS/high TRS” group, we renamed this group the “high 193 

disease activity” subtype. While the “high PRS/high TRS” group did not have replicable FEV1 194 

decline across cohorts, this group had the lowest lung function and most emphysema; therefore, 195 
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we renamed this group the “severe disease risk” subtype. In COPDGene NHW participants only, 196 

the “high disease activity” subtype also exhibited a trend toward greater decline in BMI 197 

compared to the reference group (β = -0.154 [95% CI: -0.333 to 0.0253], p=0.094).   198 

 199 

Biological characterization and drug repurposing analyses of subtypes 200 

Having identified clinical differences between the two high-risk groups, we sought to 201 

characterize biological differences between these subtypes. We performed differential gene and 202 

protein expression analyses between the “high disease activity” and “severe disease risk” 203 

subtypes and the reference group in the COPDGene NHW testing set (Tables S4-S6).  The “high 204 

disease activity” subtype had 14 and the “severe disease risk” subtype had 2 differentially 205 

expressed proteins (Table S6).  We did not observe differentially expressed genes or proteins 206 

when directly comparing high risk groups. We examined how the PRS affects differential gene 207 

expression associated with COPD case-control status as detailed in the supplement 208 

(Supplementary Results and Table S7) 209 

 210 

We mapped differentially expressed proteins associated with each high-risk subtype in the 211 

COPDGene testing set to the human protein-protein interactome20 and used the mapped proteins 212 

as seed proteins to construct STRING PPI networks (Figures 3 and 4) with associated MCL 213 

clusters (Table S8) and perform pathway enrichment analyses (Table S9). To identify subtype-214 

specific drug repurposing candidates, we used these same seed proteins to perform enrichment 215 

analyses on the MAGMA Drugs and Disease database26.  Both subtypes demonstrated 216 

enrichment proteomic profiles suggesting potential treatment with ACE inhibitors, thyroid 217 
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medications, carvedilol, bromocriptine, and lovastatin; the “high disease activity” subtype also 218 

had significant findings for 5-lipoxygenase inhibitors, fomepizole, and galantamine, while the 219 

“severe disease risk” (Table S10) subtype had significant findings for atypical antipsychotics.  220 

 221 

DISCUSSION 222 

In this study of 3,274 ever-smokers from two cohorts, we used blood-based polygenic 223 

(PRS) and transcriptional (TRS) risk scores to identify heterogeneity within high-risk 224 

individuals, defining “high disease activity” and “severe disease risk” COPD subtypes.  225 

Compared to a reference group, both subtypes had lower mean BMI values and alterations in 226 

metabolic, growth, and immune signaling processes.  “High disease activity” participants 227 

exhibited prospective FEV1 decline across both replication cohorts, albeit with a non-significant 228 

(though directionally consistent) association in multivariable models adjusted for baseline FEV1.  229 

“Severe disease risk” participants had low spirometry measures with high quantitative 230 

emphysema and thick airways.  We identified biological processes and drug repurposing 231 

candidates associated with each subtype, including therapies previously tested in COPD clinical 232 

trials.  Our study demonstrates how omics risk scores can identify COPD subtypes with 233 

associated clinical and biological characteristics that can be leveraged for therapeutic 234 

interventions. 235 

Linking omics-defined high-risk groups to specific pathobiology is an active area of 236 

research that we now extend to lung disease.  In schizophrenia, PRS-defined high risk groups 237 

were biologically characterized using weighted gene co-expression network analyses27.  Other 238 

approaches have incorporated gene expression into PRSs to improve prediction and imply 239 
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biological mechanisms28–30.  Here, we used genetic and transcriptomic data to define subtypes, 240 

and then leveraged proteomic differences between groups to understand subtype biology.  241 

Importantly, our results suggest that different omics risk scores are not interchangeable, i.e., a 242 

higher omics risk score will not always have the same association with specific outcomes.  243 

Individuals with the highest transcriptomic quantile exhibited different clinical and biological 244 

features depending on their underlying polygenic risk.  We also demonstrate that individuals may 245 

exist along a continuum of COPD risk – i.e., there are no clusters – yet omics-defined subgroups 246 

may have important clinical and biological differences. While we did not observe clusters, we 247 

observed that omics-defined subgroups were robust to varying PRS and TRS subdivisions, with 248 

the two high-risk groups (“low PRS/high TRS” and “high PRS/high TRS”) demonstrating stable 249 

clinical characteristics across risk score subdivisions. Thus, genetics and transcriptomics may 250 

provide alternative yet complementary views of lung function biology.   251 

Of direct clinical relevance, the association of lower spirometry, greater emphysema and 252 

observed FEV1 decline across two cohorts suggests that the “high disease activity” subtype is a 253 

targetable trait, the risk of which, might be modified by approved medications (5-lipoxygenase 254 

inhibitors, angiotensin-converting enzyme (ACE) inhibitors, fomepizole, galantamine).  255 

Fomepizole has not previously been implicated as a COPD drug repurposing candidate to our 256 

knowledge. Galantamine is known to cause bronchospasm, and enrichment for proteins targeted 257 

by galantamine suggests this drug is most likely to cause harm in this subtype of patients. 258 

Although a randomized trial of the 5-lipoxygenase inhibitor, Zileuton, did not reduce length of 259 

stay or treatment failure in patients hospitalized for COPD exacerbations, it was likely 260 

underpowered31, and did not examine longer term outcomes.  ACE inhibitors and angiotensin 261 

receptor blockers (ARB) have been identified as COPD drug repurposing candidates. A recent 262 
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clinical trial showed failure of losartan to decrease emphysema progression32. Our drug 263 

repurposing analyses implicated utility of captopril – not all ACE inhibitors and ARBs - in the 264 

“high disease activity” but not the “severe disease risk” subtype. Conversely, our analysis 265 

suggests potential benefit of atypical antipsychotics in the “severe disease risk” subtype. The 266 

coincidence of schizophrenia and COPD is largely attributed to smoking, though a phenome-267 

wide association and polygenic risk analysis suggests that schizophrenia and obstructive lung 268 

disease may have shared genetic mechanisms33. While we adjusted for self-reported cigarette 269 

smoking status, these measures are imperfect, and thus we cannot address whether shared 270 

mechanisms are due to smoking behavior. A broader implication of the drug repurposing 271 

analyses that merits validation is that previous failure of drugs in clinical trials was due to 272 

heterogeneity in patient selection that could be overcome by omics-based subtyping.  273 

The cachectic COPD patient, who may be prone to more exacerbations, is a well-274 

described clinical phenotype 34–37, and we observed that the “high disease activity” and “severe 275 

disease risk” subtypes have lower mean BMI than other subtypes.  Although pulmonary cachexia 276 

has been proposed to occur only in severe COPD38, we demonstrate additional heterogeneity 277 

within lower BMI ever-smokers and identify a “high disease activity” subtype with less 278 

spirometric severity and distinct biology.  The “high disease activity” group may also overlap 279 

with a previously identified comorbidity cachexia subgroup39, and in the current analysis, we 280 

identified molecular profiles that might guide therapy. Relevant to body composition, the 281 

adipocyte product leptin exhibited altered expression in both subtypes, which has several 282 

potential, not mutually exclusive interpretations.  Leptin acts both as a hormone negatively 283 

regulating hunger and adipocyte fat storage40 and as a proinflammatory cytokine essential for 284 

host defense41,42.   285 
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The role of leptin in regulating hunger suggests it could be relevant to the “severe disease 286 

risk” subtype, which had the largest effect size in leptin expression (-0.71 log-fold change); the 287 

observed decrease in leptin could be a compensatory response to or share a causal relationship 288 

with pulmonary cachexia. In addition, the lower leptin levels observed in malnourished 289 

populations are associated with dysfunctional cell-mediated immunity and increased 290 

susceptibility to infections41,43.   In COPD, elevated leptin concentrations have been reported in 291 

the plasma and airways in some44–48, but not all studies49, and has been identified as a potential 292 

biomarker of emphysema progression50,51.  Our results suggest that “high disease activity” or 293 

“severe disease risk” subtype individuals might exhibit humoral and cytokine profiles similar to 294 

those seen in malnourished individuals with increased susceptibility to infections.  It remains 295 

unclear whether the observed peripheral blood proteomic alterations are merely a consequence of 296 

disease activity, or a causal component of a positive feedback loop involved in driving disease 297 

progression. The biomarkers used in this study are blood-based, making it difficult to identify the 298 

relevant mechanisms in lung tissue. However, blood-based biomarkers are practical in a clinical 299 

setting and follow up studies linking changes in these biomarkers to pathophysiologic 300 

mechanism in lung tissue can help to bridge the gap between prediction and precision 301 

therapeutics. 302 

This study leveraged multiple omics data in the form of validated, replicated, risk scores, 303 

to identify COPD subtypes in two cohorts of ever-smokers. One major challenge of this analysis 304 

was determining how to subset subjects from a standardized, continuous distribution. To 305 

overcome this limitation, we varied the number of quantiles and assessed which combination of 306 

divisions yielded the greatest number of differentially expressed proteins, then identified 307 

corresponding raw score cut-off values that allowed each participant in the COPDGene and 308 
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ECLIPSE testing sets to be categorized into an omics-defined subtype. We acknowledge that 309 

there are other reasonable approaches for applying omics risk scores to identify COPD subtypes.  310 

Individuals near the cut-off value for PRS might exist on a continuum between “high 311 

disease activity” and “severe disease risk” subtypes, and these participants might be able to 312 

transition between subtypes; regardless, defining thresholds and categories are an important step 313 

toward clinical translation. We observed similar results in COPDGene AA participants, 314 

including the “high disease activity” subtype association with FEV1 decline in multivariable 315 

analyses; however, additional work to optimize multi-ancestry genetic and omics-based 316 

prediction is crucial to prevent omics technologies from becoming a vehicle for worsening 317 

existing healthcare disparities52.   We based our drug repurposing candidates on enrichment 318 

analyses of proteomic profiles, but directionality of biological processes was not accounted for in 319 

enrichment analyses; additional mechanistic and clinical trial validations are needed.  Finally, we 320 

identified two high-risk subtypes using this approach, but these do not explain all of COPD 321 

heterogeneity, and there are almost certainly other important subtypes. 322 

In conclusion, polygenic and transcriptional risk scores, both based on spirometry, 323 

identified “high disease activity” and “severe disease risk” subtypes with distinct clinical and 324 

biological characteristics.  Proteomic and drug repurposing analysis identified subtype-specific 325 

enrichment for therapies, some of which were previously hypothesized in COPD.    326 
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Table legends 

Table 1: Characteristics of study populations.  COPD = chronic obstructive pulmonary disease. 

COPDGene = Genetic Epidemiology of COPD. ECLIPSE = Evaluation of COPD to 

Longitudinally Identify Predictive Surrogate Endpoints study.  FEV1 = forced expiratory volume 

in 1 second. FEV1/FVC = FEV1/forced vital capacity. NHW = non-Hispanic white. AA=African 

American. 

 

Table 2: Omics-defined subtypes in the COPDGene testing set and ECLIPSE. The was defined 

as the "Low PRS, Low TRS" group.   BMI = body-mass index. LAA = low attenuation area. HU 

= Hounsfeld units. Perc15 = 15th percentile of lung density histogram on inspiratory CT scans. 

WA % = wall area percent. Pi10 = square root of wall area of a hypothetical internal perimeter of 

10 mm. ACO = asthma-COPD overlap. See Table 1 legend for other abbreviations. NHW = non-

Hispanic white. AA=African American. 

 

Table 3. Multivariable linear regressions in the COPDGene testing sets and ECLIPSE.  Models 

were adjusted or age, sex, current smoking status, pack-years of smoking, and principal 

components of genetic ancestry. Computed tomography imaging outcomes were additionally 

adjusted for CT scanner.  Abbreviations are detailed in the Table 1 and 2 legends.  

 

Figure legends 

 

Figure 1: Schematic of study design. COPD = chronic obstructive pulmonary disease. 

COPDGene = Genetic Epidemiology of COPD study. ECLIPSE = Evaluation of COPD to 

Longitudinally Identify Predictive Surrogate Endpoints study. PRS = polygenic risk score. TRS 

= transcriptional risk score. STRING = Search Tool for the Retrieval of Interacting 

Genes/Proteins. MAGMA = Multi-marker Analysis of GenoMic Annotation.   

 

Figure 2. Omics-defined groups or subtypes overlaid on a plot of the polygenic risk score (PRS; 

x-axis) and transcriptional risk score (TRS; y-axis) in the COPDGene testing set. 
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Figure 3. High disease activity (“low PRS, high TRS”) subtype STRING protein-protein 

interaction networks using differentially expressed proteins in Omics-defined groups (subtypes) 

in the COPDGene testing set as seed proteins, permitting up to 10 interactors in the first shell and 

5 interactors in the second shell. Only high-confidence interactions were included and greater 

line thickness indicates greater confidence. Differentially expressed proteins were identified by 

comparing group assignments to the reference group. Colors represent MCL (Markov) clusters.  

 

Figure 4: Severe disease risk (“high PRS, high TRS”) subtype STRING protein-protein 

interaction networks using differentially expressed proteins in Omics-defined groups (subtypes) 

in the COPDGene testing set as seed proteins, permitting up to 10 interactors in the first shell and 

5 interactors in the second shell. Only high-confidence interactions were included and greater 

line thickness indicates greater confidence. Differentially expressed proteins were identified by 

comparing group assignments to the reference group. Colors represent MCL (Markov) clusters. 
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Table 1: Characteristics of study populations.  COPD = chronic obstructive pulmonary disease. 
COPDGene = Genetic Epidemiology of COPD. ECLIPSE = Evaluation of COPD to 
Longitudinally Identify Predictive Surrogate Endpoints study.  FEV1 = forced expiratory volume 
in 1 second. FEV1/FVC = FEV1/forced vital capacity. NHW = non-Hispanic white. AA=African 
American. 
 

Characteristic COPDGene training set COPDGene testing set ECLIPSE 

  NHW NHW AA NHW 

n 1374 1133 299 468 

Age in years (mean (SD)) 67.38 (8.25) 68.13 (8.30) 61.01 (6.95) 64.43 (6.09) 

Sex (No. % female) 677 (49.3) 560 (49.4) 153 (51.2) 156 (33.3) 

Pack-years of smoking (mean (SD)) 45.47 (24.61) 45.47 (23.65) 
39.55 (20.74) 

49.33 
(26.87) 

Current smoking (No %)  343 (25.0) 289 (25.5) 182 (60.9) 70 (15.0) 

FEV1 % predicted (mean (SD)) 78.37 (24.21) 77.85 (24.81) 
81.79 (23.54) 

44.22 
(14.64) 

FEV1/FVC (mean (SD)) 0.67 (0.15) 0.66 (0.15) 0.71 (0.14) 0.44 (0.11) 
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Table 2: Omics-defined subtypes in the COPDGene testing set and ECLIPSE. The was defined as the "Low PRS, Low TRS" group.   
BMI = body-mass index. LAA = low attenuation area. HU = Hounsfeld units. Perc15 = 15th percentile of lung density histogram on 
inspiratory CT scans. WA % = wall area percent. Pi10 = square root of wall area of a hypothetical internal perimeter of 10 mm. ACO 
= asthma-COPD overlap. See Table 1 legend for other abbreviations. NHW = non-Hispanic white. AA=African American. 
 

Characteristic 

COPDGene NHW testing set COPDGene AA testing set ECLIPSE 

Reference group 
(Low PRS, Low 

TRS) 

    Reference group 
(Low PRS, Low 

TRS) 

    Reference 
group (Low 
PRS, Low 

TRS) 

  

Low PRS, 
High TRS 

High PRS, 
High TRS 

Low PRS, 
High TRS 

High PRS, 
High TRS 

Low PRS, 
High TRS 

High PRS, 
High TRS 

n 196 65 68 61 16 11 57 63 56 

Age in years (mean 
(SD)) 

67.85 (8.52) 67.16 (6.46) 69.04 (8.11) 61.26 (7.55) 60.58 (7.24) 
65.95 
(8.05) 

63.00 (5.10) 
65.43 
(6.65) 

66.59 
(5.95) 

Sex (No % female) 114 (58.2) 19 (29.2) 24 (35.3) 36 (59.0) 5 (31.2) 8 (72.7) 30 (52.6) 10 (15.9) 11 (19.6) 

Pack-years of smoking 
(mean (SD)) 

36.51 (22.27) 60.07 (26.49) 57.28 (23.35) 37.01 (20.85) 
43.42 

(16.14) 
61.36 

(38.87) 
45.49 

(26.24) 
55.29 

(35.25) 
54.29 

(21.10) 
Current smoking (No. 
%)  

20 (10.2) 36 (55.4) 36 (52.9) 31 (50.8) 15 (93.8) 8 (72.7) 6 (10.5) 7 (11.1) 12 (21.4) 

BMI (Kg/m^2) (mean 
(SD)) 

30.00 (6.84) 26.51 (5.81) 25.70 (5.58) 30.61 (6.36) 29.14 (8.52) 
25.26 
(6.57) 

27.54 (5.06) 
26.70 
(6.22) 

25.49 
(4.76) 

FEV1 % predicted 
(mean (SD)) 

90.15 (18.13) 66.50 (27.07) 60.55 (24.11) 90.83 (17.41) 80.61 
(25.43) 

71.08 
(10.67) 

50.25 
(13.42) 

43.41 
(15.65) 

37.44 
(13.44) 

FEV1/FVC (mean (SD)) 
0.75 (0.09) 0.57 (0.15) 0.53 (0.15) 0.77 (0.10) 0.73 (0.14) 

0.61 
(0.12) 

45.84 
(11.13) 

43.16 
(12.79) 

39.71 
(10.29) 

% LAA < -950 HU 
(mean (SD)) 

2.78 (4.71) 8.50 (10.39) 11.00 (11.98) 1.71 (4.00) 3.51 (8.08) 
5.49 

(7.30) 
16.01 

(11.46) 
20.88 

(13.50) 
22.44 

(13.22) 
Perc15 (mean (SD)) 

-913.62 (20.43) 
-927.23 
(27.21) 

-931.05 
(31.55) 

-895.53 (26.89) 
-901.19 
(29.94) 

-913.62 
(34.95) 

-943.75 
(50.13) 

-960.00 
(49.44) 

-971.11 
(45.84) 

Pi10 (mean (SD)) 
2.01 (0.50) 2.55 (0.65) 2.60 (0.51) 2.11 (0.48) 2.56 (0.59) 

2.42 
(0.44) 4.38 (0.20) 

4.42 
(0.23) 

4.43 
(0.19) 

WA % (mean (SD)) 
46.97 (8.11) 54.46 (8.35) 54.61 (7.41) 47.48 (7.76) 

54.86 
(10.52) 

51.62 
(4.06) 

64.35 (2.79) 
65.05 
(3.58) 

67.22 
(3.44) 

Change in FEV1 
mL/year  (prospective) 
(mean (SD)) 

-32.11 (48.07) 
-51.21 
(74.41) 

-66.45 
(61.58) 

-42.28 (36.59) 
-87.86 

(156.98) 
-56.26 
(76.62) 

-32.21 
(59.54) 

-40.13 
(75.31) 

-15.22 
(67.46) 
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Table 3. Multivariable linear regressions in the COPDGene testing sets and ECLIPSE.  Models were adjusted or age, sex, current 
smoking status, pack-years of smoking, and principal components of genetic ancestry. Computed tomography imaging outcomes were 
additionally adjusted for CT scanner.  Abbreviations are detailed in the Table 1 and 2 legends. 
 
  COPDGene NHW testing set COPDGene AA testing set ECLIPSE 

COPD-related 
outcome 

Low PRS, High TRS High PRS, High TRS Low PRS, High TRS High PRS, High TRS Low PRS, High TRS High PRS, High TRS 

beta (95% CI) p 
beta (95% 

CI) 
p 

beta (95% 
CI) 

p 
beta (95% 

CI) 
p beta (95% CI) p 

beta (95% 
CI) 

p 

FEV1 % 
predicted 

-22.3 (-29.5 to -
15.2) 

4.3E-09 
-31.5 (-38.2 

to -24.8) 
1E-17 

-4.11 (-16.8 
to 8.59) 

0.53 
-19.6 (-32.7 

to -6.51) 
0.0048 

-7.8 (-13.6 to 
-1.95) 

0.01 
-15.5 (-21.4 

to -9.61) 
1.3E-06 

FEV1/FVC 
-0.147 (-0.184 

to -0.11) 
3E-13 

-0.197 (-
0.233 to -

0.161) 
4.8E-22 

-0.00368 (-
0.0731 to 
0.0657) 

0.92 
-0.118 (-
0.193 to -

0.043) 
0.0032 

-4.5 (-9.07 to 
0.0772) 

0.057 
-8.83 (-13.5 

to -4.16) 
0.00035 

% LAA < -
950 HU 

3.1 (1.8 to 5.2) 3.30E-05 
3.4 (2.1 to 

5.6) 
2.30E-06 

1.3 (0.44 to 
3.7) 

0.66 
0.94 (0.23 

to 3.9) 
0.93 

2.33 (-3.34 to 
8) 

0.42 
6.97 (-

0.0748 to 
14) 

0.058 

Perc15 -11.2 (-18.6 to -
3.72) 

0.0037 -15.3 (-22.8 
to -7.89) 

7.6E-05 -0.305 (-17.1 
to 16.5) 

0.97 -4.66 (-26.2 
to 16.9) 

0.67 -0.994 (-24.1 
to 22.1) 

0.93 -19.2 (-49.3 
to 10.8) 

0.21 

Pi10 
0.498 (0.298 to 

0.698) 
2.10E-06 

0.605 (0.429 
to 0.78) 

1.40E-10 
0.346 (-0.032 

to 0.724) 
0.079 

0.475 
(0.00489 to 

0.946) 
0.054 

-0.0786 (-
0.147 to -
0.00988) 

0.029 
-0.0753 (-
0.163 to 
0.0124) 

0.099 

WA % 
5.88 (3.19 to 

8.58) 
2.90E-05 

7.17 (4.63 to 
9.71) 

8.90E-08 
4.55 (-1.6 to 

10.7) 
0.15 

7.48 (-
0.0534 to 

15) 
0.058 

0.516 (-0.972 
to 2) 

0.5 
2.18 (0.376 

to 3.98) 
0.021 

FEV1 change 
(mL/year) 

-30 (-70.6 to 
10.7) 0.15 

-43.9 (-91.7 
to 3.94) 0.077 

-103 (-294 to 
87.5) 0.32 

-60.5 (-105 
to -15.6) 0.033 

-23.7 (-52.9 
to 5.47) 0.11 

6.97 (-25.8 
to 39.8) 0.68 
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