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Abstract.

Objective: Sarcoidosis is a granulomatous disease affecting the lungs in over 90%

of patients. Qualitative assessment of chest CT by radiologists is standard clinical

practice and reliable quantification of disease from CT would support ongoing efforts

to identify sarcoidosis phenotypes. Standard imaging feature engineering techniques

such as radiomics suffer from extreme sensitivity to image acquisition and processing,

potentially impeding generalizability of research to clinical populations. In this work,

we instead investigate approaches to engineering variogram-based features with the

intent to identify a robust, generalizable pipeline for image quantification in the study

of sarcoidosis.

Approach: For a cohort of more than 300 individuals with sarcoidosis, we

investigated 24 feature engineering pipelines differing by decisions for image

registration to a template lung, empirical and model variogram estimation methods,

and feature harmonization for CT scanner model, and subsequently 48 sets of

phenotypes produced through unsupervised clustering. We then assessed sensitivity

of engineered features, phenotypes produced through unsupervised clustering, and

sarcoidosis disease signal strength to pipeline.

Main results: We found that variogram features had low to mild association

with scanner model and associations were reduced by image registration. For each

feature type, features were also typically robust to all pipeline decisions except image
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registration. Strength of disease signal as measured by association with pulmonary

function testing and some radiologist visual assessments was strong (optimistic AUC

≈ 0.9, p ≪ 0.0001 in models for architectural distortion, conglomerate mass, fibrotic

abnormality, and traction bronchiectasis) and fairly consistent across engineering

approaches regardless of registration and harmonization for CT scanner.

Significance: Variogram-based features appear to be a suitable approach to image

quantification in support of generalizable research in pulmonary sarcoidosis.

Keywords: sarcoidosis, variograms, radiomics, computed tomography, quantitative

imaging, robustness
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1. Introduction

Sarcoidosis is a systemic granulomatous disease affecting the lungs in over 90% of

patients (Baughman et al. 2011). The disease is highly heterogeneous in presentation

and prognosis, and etiology and treatment of disease remain under investigation

(Baughman & Lower 2015). Sarcoidosis often presents in the lungs as textural changes

in the lung parenchyma. In practice, these abnormalities may be qualitatively assessed

on chest computed tomography (CT) scans by radiologists to produce visual assessment

scores (VAS) for presence and severity of abnormalities with different visual textures.

Qualitative visual assessment has been shown to have low inter- and intra-rater reliability

(Van den Heuvel et al. 2015, Lovinfosse et al. 2022, Benn et al. 2024). Reliable

quantification of disease related textures from images could support ongoing efforts to

identify meaningful phenotypes of pulmonary sarcoidosis (Desai et al. 2023, Carlson

et al. 2024, Lin et al. 2022, Schupp et al. 2018, Lew et al. 2023, Rubio-Rivas &

Corbella 2020).

A standard approach to quantify texture or spatial structure in images is radiomics

(Van Timmeren et al. 2020, Haralick et al. 1973). In radiomics-based approaches,

statistical measures of texture are computed from images and these measures serve

as observations of engineered features in later analyses. Previous investigation of

whole-lung classical radiomics in sarcoidosis showed consistently strong associations

with clinical measures of disease such as pulmonary function testing (PFT) (Carlson

et al. 2024, Ryan et al. 2019). However, computed radiomic feature values are known

to vary substantially on the bases of differences in image acquisition, reconstruction,

and processing (Rizzo et al. 2018, Mackin et al. 2015, Van Timmeren et al. 2020, Shiri

et al. 2020). Indeed, in radiomics applications, the scanners which were used to obtain

images may account for more variability than disease, necessitating harmonization

(Rizzo et al. 2018, Mackin et al. 2015). Although harmonization or batch correction

can be useful to produce meaningful analyses within a single study, harmonization

approaches are typically not generalizable beyond the particular application, leaving

it difficult to move these measures into less controlled settings such as clinical use. This

suggests we might improve upon previous work by identifying alternative approaches

to feature engineering which efficiently capture sarcoidosis-relevant textures while

disregarding systematic variation due to study factors unrelated to disease.

In this work, we investigate potential clinical relevance of and optimal pipelines

for engineering variogram-based features in the study of pulmonary sarcoidosis, with

specific interest in exploring phenotyping via unsupervised clustering. Variograms

are a common geostatistical tool for measuring and modelling spatial covariance

within an image or spatial process as a function of distance between locations

(Banerjee et al. 2014). Empirical variograms have previously been used as a type of

engineered radiomic feature in biomedical imaging to investigate health associations

with spatial structures like texture, such as associating age and sex with bony trabecular

shadows (Gough et al. 1994), investigating chromatin patterns in various tissues (Diaz
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et al. 1997, Muniandy & Stanslas 2008), assessing malignancy of lung nodules (Silva

et al. 2004), and identifying the presence and location of tumors in the breasts (Ericeira

et al. 2013). We did not find previous application of variograms in the study of interstitial

lung diseases like sarcoidosis, though other measures specifically related to spatial

covariance such as Geary’s C and Moran’s I have been considered (Ryan et al. 2019).

Models for variogram functions typically include overall magnitude of variation and a

notion of spatial scale of correlation as parameters, and tend to be more interpretable

measures of spatial structure than their classical radiomic counterparts. As variograms

are closely related to measures of spatial covariance, variogram features also have the

potential to be less sensitive to noise and distortions attributable to image acquisition

which happen not to affect the spatial covariance structure in particular.

Use of variogram-based features as engineered radiomic features is historically

handled differently from classical radiomics, for which robustness of features to the

imaging pipeline is considered fundamentally important (Van Timmeren et al. 2020,

Zwanenburg et al. 2020, Lambin et al. 2017). While empirical variogram features have

long been observed to also differ with image acquisition and pre-processing factors,

these features have been valued as a sensitive analytic tool for that reason (Carr

& De Miranda 1998, Goodin et al. 2004, Dai & Khorram 1998, Luo et al. 2022).

Investigations of variograms as radiomics routinely consider optimal decisions such as

regions and resolutions for computation and standardization of images with respect

to image contrast (Gough et al. 1994, Diaz et al. 1997, Keil et al. 2012, Jacob

et al. 2013, Jacob & Carson 2014). By comparison, relatively little attention has

been given to classical radiomics as a sensitive tool for which image processing and

feature engineering might be optimized to produce strong signal (Au et al. 2021, Lv

et al. 2018). While robustness of feature computation to variability in image acquisition

and processing is desirable in that it supports generalizability of research to new cohorts

and contexts, understanding which processing decisions lead to efficient extraction of

disease signal is also fundamentally important.

The purpose of this paper is to establish clinical relevance of and identify an

appropriate pipeline for variogram-based study of sarcoidosis chest CT phenotypes in

future clinical cohorts. To uncover influential decisions in the engineering pipeline,

we quantified sensitivity of variogram-based features and clusters to processing

specifications under 24 different feature engineering pipelines producing 48 clustering

analyses. We further assessed presence and strength of disease-relevant signals of

heterogeneity for each clustering analysis to identify pipelines which best supported

study of sarcoidosis.
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2. Materials and Methods

2.1. Data

The Genomic Research in Alpha-1 Antitrypsin Deficiency (AATD) and Sarcoidosis

(GRADS) study (Moller et al. 2015, Vukmirovic et al. 2021) was a multi-site study

in the United States (N=368). All subjects gave written informed consent according to

the site’s institutional review board. Enrolled subjects underwent physical examination,

pulmonary function testing (PFT), research chest X-ray (CXR), and high resolution

computed tomography (CT) imaging.

CXR was performed based on the site’s standard protocol and Scadding Stage was

determined by the site radiologist. CT was obtained in accordance with the GRADS

protocol (Moller et al. 2015). 3D chest CT scans were obtained as a series of 2D axial

images or slices. Scans from this cohort included a complete set of sequentially adjacent

axial slices.

From the GRADS cohort, N = 337 subjects had CT scans available and of

sufficient quality for investigation in this study; that is, inspiratory scans of appropriate

resolution and reconstruction lacking artifacts and successfully masked and segmented.

See (Carlson et al. 2024) for details of original image acquisition, reconstruction, and

selection for use in analysis. All images were resampled to have the same resolution (1

x 1 x 1 mm) and centered. Images were then masked and segmented using the lungct

package (Ryan et al. 2020) in R (R Core Team 2020), producing two binary images

indicating presence of left or right lung tissue. For registered analyses, an individual’s

3D lung mask was further registered to a sarcoidosis-specific template lung mask, and

the corresponding transformation was then used to register each individual’s CT scan

to a template lung. See (Ryan et al. 2020) for details of masking and registration.

While GRADS CTs were interpreted for many CT abnormalities by a dedicated

thoracic chest radiologist determined by GRADS to evaluate sarcoidosis and AATD, we

used a simplified visual assessment scoring (VAS) method developed by our radiologists

for sarcoidosis. Experienced thoracic radiologists evaluated CT for the presence

of the following features: mediastinal and hilar lymphadenopathy, micronodules,

ground-glass opacity, consolidation, conglomerate perihilar or peribronchovascular

mass, linear or reticular abnormality, fibrotic abnormality, honeycombing, mosaic

attenuation, architectural distortion, traction bronchiectasis, bronchial wall thickening,

cysts, cavity, emphysema, and air trapping. Definitions of these findings were based

on (Bankier et al. 2024). For this work, we considered only a subsetted VAS panel

for abnormalities deemed present in 15-85% of the GRADS cohort: mediastinal

and hilar lymphadenopathy, micronodules, ground-glass, conglomerate mass, reticular

abnormality, fibrotic abnormality, mosaic attenuation, architectural distortion, and

traction bronchiectasis.

PFT was performed according to established criteria per the GRADS protocol

(Moller et al. 2015), including post broncho-dilation forced expiratory volume in one

second (FEV1), forced vital capacity (FVC), ratio of FEV1 to FVC (FEV1/FVC), and
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single-breath carbon monoxide diffusing capacity (DLCO). DLCO was corrected for

elevation in accordance with (Graham et al. 2017).

Collected demographics included age, height, weight, BMI, sex, and self-reported

primary race and ethnicity. Self-reported primary race and ethnicity were collapsed in

this study into a single marker to reduce identifiability of participants with rarer self-

reported descriptions and improve power in analyses as follows: all subjects reporting

Hispanic ethnicity were reported in this study as Hispanic subjects and all subjects

self-reporting ethnicity as non-Hispanic and primary race as White or as Black were

reported as White subjects or as Black subjects respectively. All remaining subjects

self-reported a primary race as Asian, American Indian, or Alaska Native, or did not

identify a single primary race (identifying as multi-racial, having no primary race, or

having unknown primary race), and are reported together as subjects in a combined

group.

2.1.1. Cohort descriptive statistical analysis Covariates comprised of demographics

age, height, sex, BMI, and race/ethnicity, PFT outcomes, and presence of VAS outcomes

are summarized for the N = 337 individuals in this study, stratified by Scadding stage,

and reported with counts and percents for categorical covariates and with means and

standard deviations for continuous covariates.

2.2. Feature engineering

2.2.1. Variogram Theory We discuss variogram theory explicitly in the context of

3D images such as CT scans. In this context, a voxel is a 3D analog of the 2D

pixel. To describe the models, we will assume stationarity, meaning the image has

the same distribution at every location, and isotropy, meaning the image has the same

distribution in every direction. As described below, we can later relax these assumptions

for investigation of their impact on estimation.

Under further reasonable assumptions, the variogram function γ(h) may be

understood as C(0) − C(h) where C(h) is the common covariance of the hues of any

two voxels separated by a distance h. More generally, let z denote an image meeting

the above conditions with hues z = {zi}i∈I at observed voxels I. If z is observed at any

two voxels i, j ∈ I a distance h apart, we may define

γ(h) =
1

2
E
[
(zi − zj)

2
]

(1)

noting this definition to be independent of the specific pair (i, j) by stationarity and

isotropy. See (Banerjee et al. 2014) for more detail. We note that terminology around

the variogram is not settled. Some might say semivariogram or semivariance (Banerjee

et al. 2014) or γ-variance (Bachmaier & Backes 2011), among other terms. We use the

term variogram for limited consistency with established literature.

To model variograms, we consider the Matérn family as well as the special case of

the exponential model. The Matérn family of models is very flexible, standardly used,

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.20.24307618doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.20.24307618
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantifying lung disease through variograms 7

and mathematically natural for variograms (Banerjee et al. 2014). The Matérn family

has parameters nugget, partial sill, range, and kappa or degrees of freedom. In turn,

these parameters may be understood to describe noise, overall variability not attributed

to noise, the distance at which image voxels appear to become roughly uncorrelated,

and image smoothness. Exponential models are a widely used special case which are

more analytically tractable with kappa (image smoothness) set to 0.5.

For a high resolution image of a large region such as chest CT of the lungs, the

variogram value γ(h) is well-estimated empirically using voxel pairs a distance h ± ϵ

apart. If we expect the assumption of stationarity to be violated by a non-constant mean,

empirical variograms may also be computed from residuals obtained by subtracting off

an assumed or estimated mean image from the observed image. In absence of statistical

models, variogram models are classically fit from empirical variograms using weighted

least squares (Cressie 1985).

2.2.2. Application to GRADS From the chest CT scans, 24 similar datasets were

engineered through the use of variograms; see Figure 1. Datasets were distinguished

through the decisions to a) register images to a template or not, b) assume stationarity

or account for linear drift in computation of empirical variograms, c) use empirical

variograms or fit variogram model parameters for either exponential or Matérn models,

and d) harmonize or not harmonize data for CT scanner effects; details follow.

To ensure sufficient data for variogram estimation, all top and bottom axial slices

of the left lung and right lung images with fewer than 1000 voxels indicated to be lung

tissue by the corresponding mask were removed from consideration. Unregistered images

paired with the unregistered mask or registered images paired with the template mask

were then used for this study. For unregistered images, this typically produced images

with 150-300 axial slices with at most 3.3% of lung voxels removed from consideration.

For registered images, this produced 228 (left) and 232 (right) sequential axial slices

with 0.3% of lung voxels removed from consideration.

The number of axial slices considered was then substantially reduced to account for

the sometimes reduced availability of axial slices in clinically obtained images. Requiring

fewer slices supports broader inclusion of participants and potentially more consistent

feature extraction. Specifically, for each image, observations for the inner decile axial

slices of each lung were extracted, resulting in 18 axial slices per 3D CT image. That

is, for each lung, 9 axial slices were selected which broke the masked lung into 10 equal

height segments. Decile 1 corresponded with the lowest retained axial slice of the lung

while decile 9 corresponded with the uppermost retained axial slice. Decile indices were

determined independently for individuals and for right and left lungs. These decile slices

were then used for computation of variogram features.

For each axial slice, two empirical variograms were computed under the assumption

of either stationarity and isotropy (from raw data) or the same except permitting a linear

mean trend (from linear residuals). The variogram function from the gstat package

(Gräler et al. 2016) in R was used for computation with a cutoff of 25mm, a formula
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of HU ~ 1 indicating no drift, and otherwise default settings for variograms from raw

data. Default settings estimated variogram values at 15 h values from 0 to the cutoff

using equal size bins. For variograms from linear residuals, the same function was used

with a cutoff of 25mm, a formula of HU ~ x + y indicating linear drift, and otherwise

default settings. This produced four empirical variogram datasets differing by decisions

on registration and accounting for drift.

Resample 
and Mask

Register

•Unregistered
•Registered

Select 
Decile Slices

Fit Empirical 
Variograms

•No drift (raw)
•Linear drift (res)

Fit Model 
Variograms

•No (emp)
•Yes, exponential (exp)
•Yes, Matérn (mat)

Harmonize 
for Scanner

•Unharmonized
•Harmonized

Cluster

•Using BIC
•Using MICL

1

2

2

4

12

24

48

Figure 1. Steps in the image

processing, feature engineering, and

clustering pipeline. The number of

datasets or analyses after complet-

ing each step is listed to the left, and

steps permitting decisions have de-

cision options listed to the right.

An additional eight engineered datasets were com-

puted from these four by fitting either an exponen-

tial or Matérn variogram model to the empirical var-

iograms and using the fit model parameters as fea-

tures. Models were fit using the fit.variogram func-

tion from the gstat package in R with initial psill

value given by the maximum empirical variogram value,

initial range value 1, and fit.method 2 corresponding

with weighted least squares. In each case, the nugget

parameter (noise) is set to zero. For computational

reasons, parameter kappa is not fit continuously but

rather permitted to take one of a list of pre-specified

values: seq(0.01,5,0.01). Fit range and psill param-

eters were then log-transformed to account for skew and

standardized. For two subjects, model fit parameters

were estimated as negative for some datasets, which is

not reasonable. These two subjects were thus removed

across all datasets to preserve comparability, resulting

in N = 335 subjects with unharmonized engineered

feature data.

Finally, from these twelve datasets, another twelve

datasets were produced via harmonization. The

ez.combat package (Koscik 2021) in R was used with

default settings to adjust for CT scanner model while

preserving variability associated with Scadding stage,

height, age, BMI, and sex. N = 330 subjects had

complete Scadding and demographic data for producing

harmonized engineered feature data.

In summary, 24 datasets were computed, differing by registration, accounting for

drift, data type (empirical, exponential, Matérn), and harmonization; see Figure 1. For

each dataset, lung-deciles were presumed to correspond across individuals, resulting

in balanced datasets with features identified by lung, decile, and value computed,

either an empirical variogram value at a specific distance h (p = 270 features) or an

estimated parameter value for a specific variogram model parameter (p = 36 features

for exponential model, p = 54 features for Matérn model).
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2.2.3. Feature robustness and association with scanner We assessed dataset association

with scanner model by regressing each feature in each dataset onto scanner model and

reporting dataset distributions of model R squared and F-test p-value.

We also assessed robustness or stability of feature computation for matched pairs

of variables across datasets. For a pair of variables from different datasets, the variables

were considered matched if they were computed for the same lung-decile and were either

(a) both empirical variogram values at the same specified distance or (b) both estimates

of the same parameter. For example, the right lung decile 9 empirical variogram values

at distance 25mm would be matched for the (empirical, linear residual, unregistered,

unharmonized) dataset and the (empirical, raw data, unregistered, harmonized) dataset,

as would the left lung decile 1 estimates of partial sill for the (exponential, linear

residual, unregistered, harmonized) dataset and the (Matérn, raw data, registered,

unharmonized) dataset.

Following (Lv et al. 2018, Denzler et al. 2021), for each matched pair of variables,

for all available data (N = 330, 335) we computed the two-way random effects,

single measurement intra-class correlation coefficient for consistency (ICC(3,1)) using

the icc function from the irr package (Gamer et al. 2019) in R with specifications

model="twoway", type="consistency", unit="single". In accordance with (Koo &

Li 2016, Lv et al. 2018, Denzler et al. 2021), we understand ICC values above 0.9 to

indicate excellent robustness.

We compute also the Spearman’s correlation coefficient using the cor function

in R to investigate monotonicity of association between matched pairs in absence of

robustness.

2.3. Clustering analyses

2.3.1. Clustering Each of the 24 datasets was clustered in two ways (unharmonized

data: N = 335; harmonized data: N = 330), producing 48 clustering analyses; see

Figure 1. Model-based clustering was used, specifically a sparse diagonal Gaussian

mixture model assuming homoscedasticity of irrelevant features and selecting sparsity

using an information criterion (Celeux & Govaert 1995, Marbac & Sedki 2017). The

VarSelCluster function from the VarSelLCM package (Marbac & Sedki 2017, Marbac

et al. 2020) in R was used to cluster features allowing for between 1 and 8 resultant

clusters. One clustering approach used default settings which performs model selection

using the Bayesian Information Criterion (BIC). The other clustering approach used

Maximum Integrated Complete-data Likelihood (MICL) for model selection and

otherwise default settings. The MICL is a less standard information criterion previously

observed to outperform BIC when paired with the VarSelLCM approach (Marbac &

Sedki 2017). Features selected as relevant and number of clusters selected in cluster

analysis are reported.

As we use empirical and model fit variogram measures which are highly related

to measures of covariance as features for clustering, we note that we effectively take a
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covariance-based clustering approach (Hallac et al. 2017, Ieva et al. 2016) similar to that

of (Marquez et al. 2021).

2.3.2. Cluster descriptives and comparisons Each cluster analysis was compared in

turn to covariates scanner model, PFT, and VAS outcomes. Cluster analyses were

further compared pairwise to each other to assess sensitivity of clustering results to

data processing and analysis decisions. Strength of association was assessed using R

squared values when comparing to PFT and bias-corrected Cramér’s V (Bergsma 2013)

otherwise. Differences in covariates and in demographics across groupings were assessed

and p-values reported via Fisher exact test with simulated p-value from 20,000 replicates

for categorical covariates or via F-test p-value for continuous covariates. For these

analyses, complete case analyses were performed for each assessment individually.

2.3.3. Cluster associations with clinical outcomes We assessed strength of association

between clusters and clinical outcomes PFT and VAS after adjusting for demographics

or for demographics and Scadding stage. Linear regression was used to predict PFT and

Firth logistic regression was used to predict VAS. Demographics adjusted for included

sex, height, age, and BMI. Note, we exclude self-reported race and ethnicity as an

adjustment factor in these analyses. The nature of the relationship between self-

reported race and ethnicity and disease presentation in sarcoidosis remains under study

(Hena 2020, Zhou et al. 2021, Sharp et al. 2020), and adjustment could hide disease

signal or compound systematic biases in selection of appropriate pipelines.

For each outcome, two models were fitted without clusters, one with covariates

demographics (base model) and one with covariates demographics and Scadding stage

(Scadding only model). Then, for each cluster analysis, two more models were fitted, one

with covariates demographics and clusters (cluster only model), and one with covariates

demographics, clusters, and Scadding stage (full model).

For each model predicting PFT, we reported an R squared value. For each model

predicting VAS, we reported an AUC value obtained from predicting the observed

outcomes. Models were fitted to and AUC values were computed for the same data, and

so AUC values are ‘optimistic’ training AUC values and understood here as a summary

of model fit. For each pair of outcome and cluster analysis, we report likelihood ratio test

p-values (PFT) or penalized likelihood ratio test p-values (VAS) for 3 pairs of models:

the full and Scadding only models, the cluster only and base models, and the full and

cluster only models. Additionally, for each outcome, we report a p-value comparing the

Scadding only and base models.

For these analyses, subjects with complete adjustment demographic, Scadding

stage, and PFT data (N = 313) were analysed for PFT outcomes and subjects with

complete adjustment demographic, Scadding stage, and VAS data (N = 322) were

analysed for VAS outcomes.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.20.24307618doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.20.24307618
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantifying lung disease through variograms 11

Table 1. Demographics, post-bronchodilator PFT, and VAS by Scadding for full cohort.
Scadding Stage

N

miss

0, N = 43 I, N = 69 II, N = 97 III, N = 45 IV, N = 79 NA, N = 4 Overall, N = 337

Sex 2

Female 27 (62.8%) 43 (62.3%) 43 (44.3%) 23 (51.1%) 43 (55.1%) 2 (66.7%) 181 (54.0%)

Male 16 (37.2%) 26 (37.7%) 54 (55.7%) 22 (48.9%) 35 (44.9%) 1 (33.3%) 154 (46.0%)

Race/Ethnicity 3

White 33 (76.7%) 54 (78.3%) 65 (67.0%) 30 (68.2%) 44 (56.4%) 3 (100.0%) 229 (68.6%)

Black 6 (14.0%) 12 (17.4%) 22 (22.7%) 12 (27.3%) 28 (35.9%) 0 (0.0%) 80 (24.0%)

Hispanic 3 (7.0%) 3 (4.3%) 4 (4.1%) 1 (2.3%) 5 (6.4%) 0 (0.0%) 16 (4.8%)

Combined∗ 1 (2.3%) 0 (0.0%) 6 (6.2%) 1 (2.3%) 1 (1.3%) 0 (0.0%) 9 (2.7%)

Age (years) 2 53.04 (9.51) 51.57 (11.47) 53.15 (9.29) 50.62 (10.89) 55.16 (9.02) 53.04 (5.86) 52.94 (9.99)

BMI (kg/m2) 0 33.40 (6.46) 31.81 (6.93) 29.53 (5.38) 32.49 (7.35) 28.29 (5.57) 31.45 (6.97) 30.62 (6.42)

Height (in) 0 66.67 (4.08) 66.96 (3.45) 67.71 (4.23) 66.49 (4.23) 66.51 (4.04) 63.75 (4.19) 66.93 (4.03)

DLCo (ml/min/mmHg) 18 24.45 (7.52) 23.86 (7.82) 23.69 (7.39) 21.54 (8.06) 17.60 (7.16) 20.80 (1.74) 22.08 (7.90)

FVC (L) 11 3.69 (1.04) 3.76 (1.09) 3.84 (1.12) 3.58 (1.14) 3.11 (1.15) 3.75 (0.80) 3.60 (1.14)

FEV1 (L) 11 2.92 (0.82) 2.97 (0.91) 2.90 (0.88) 2.72 (0.99) 2.11 (0.89) 2.68 (0.80) 2.70 (0.95)

FEV/FVC (%) 11 79.77 (9.32) 78.74 (8.48) 75.69 (8.26) 76.14 (12.69) 68.61 (13.50) 71.15 (12.58) 75.18 (11.19)

Mediastinal LA 9 12 (27.9%) 37 (55.2%) 61 (64.2%) 12 (27.3%) 47 (61.8%) 1 (33.3%) 170 (51.8%)

Hilar LA 9 8 (18.6%) 27 (40.3%) 55 (57.9%) 8 (18.2%) 42 (55.3%) 1 (33.3%) 141 (43.0%)

Micronodules 9 14 (32.6%) 38 (56.7%) 81 (85.3%) 32 (72.7%) 65 (85.5%) 0 (0.0%) 230 (70.1%)

Conglomerate 9 0 (0.0%) 2 (3.0%) 26 (27.4%) 8 (18.2%) 53 (69.7%) 0 (0.0%) 89 (27.1%)

Architectural Distortion 9 2 (4.7%) 8 (11.9%) 47 (49.5%) 16 (36.4%) 73 (96.1%) 0 (0.0%) 146 (44.5%)

Traction Bronchiectasis 9 2 (4.7%) 4 (6.0%) 34 (35.8%) 11 (25.0%) 71 (93.4%) 0 (0.0%) 122 (37.2%)

Fibrotic Abnormality 9 2 (4.7%) 5 (7.5%) 44 (46.3%) 14 (31.8%) 74 (97.4%) 0 (0.0%) 139 (42.4%)

Ground-glass 9 5 (11.6%) 16 (23.9%) 36 (37.9%) 15 (34.1%) 52 (68.4%) 0 (0.0%) 124 (37.8%)

Reticular Abnormality 9 1 (2.3%) 11 (16.4%) 44 (46.3%) 19 (43.2%) 60 (78.9%) 0 (0.0%) 135 (41.2%)

Mosaic Attenuation 9 1 (2.3%) 8 (11.9%) 14 (14.7%) 9 (20.5%) 32 (42.1%) 0 (0.0%) 64 (19.5%)

∗Includes subjects who both did not identify as Hispanic and also either identified as Asian, American Indian, Alaska Native, or did not identify as a single primary race.

3. Results

3.1. Cohort descriptives

Subjects were 54% Female and 53 years old on average; see Table 1 (N = 337). Subjects

predominantly identified as Non-Hispanic and White (69%) followed by Non-Hispanic

and Black (24%). All PFT and VAS assessments appear to differ substantially by

Scadding stage with subjects in stage 0 exhibiting least severe disease and subjects

in stage IV exhibiting most severe disease as expected. Inconsistencies between CT-

based assessments (VAS) and CXR-based assessments (Scadding) of lymphadenopathy,

parenchymal abnormalities, and fibrosis have been previously noted (Zhang et al. 2022),

including for this cohort for lymphadenopathy and parenchymal abnormalities (Benn

et al. 2024). Inconsistencies included 46% and 32% of subjects in stages II and III

having fibrotic abnormalities on CT.

3.2. Feature robustness and association with scanner

Among the 12 unharmonized datasets, use of unregistered images or empirical variogram

data was typically associated with stronger associations between features and scanner

model; see Figure 2. Matérn data were typically least associated with scanner and

exhibited near uniform distributions of p-values for association with scanner model

consistent with lack of association. R squared values were typically below 0.15.

Harmonized datasets exhibited feature R squared values of approximately 0 and p-values
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Figure 2. Density histograms of R squared values and p values obtained by regressing each engineered

feature onto scanner model, stratified by the 24 engineered datasets (see Figure 1).
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Figure 3. Histograms of intraclass correlation coefficients between matched variable pairs from

different engineered datasets, stratified by engineered dataset (see Figure 1). Harmonized and

unharmonized data are similar and thus pooled.
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Table 2. For each of the 48 cluster analyses (see Figure 1), we report the strength of association

between clusters and scanner model using Cramér’s V. In parentheses, we report simulated Fisher’s

exact test p-values (20,000 replicates) with * indicating p < 0.001 and - indicating p > 0.1.

Registered Unregistered

Data Drift IC Harmonized Unharmonized Harmonized Unharmonized

Empirical Linear BIC 0.000 (-) 0.086 (0.035) 0.055 (-) 0.188 (*)

Empirical Linear MICL 0.000 (-) 0.092 (0.034) 0.000 (-) 0.163 (*)

Empirical Raw BIC 0.062 (-) 0.078 (0.050) 0.020 (-) 0.178 (*)

Empirical Raw MICL 0.000 (-) 0.126 (0.005) 0.000 (-) 0.151 (*)

Exponential Linear BIC 0.023 (-) 0.069 (0.059) 0.000 (-) 0.271 (*)

Exponential Linear MICL 0.065 (-) 0.052 (-) 0.000 (-) 0.279 (*)

Exponential Raw BIC 0.057 (-) 0.083 (0.013) 0.000 (-) 0.247 (*)

Exponential Raw MICL 0.000 (-) 0.076 (0.035) 0.000 (-) 0.276 (*)

Matern Linear BIC 0.000 (-) 0.000 (-) 0.000 (-) 0.189 (*)

Matern Linear MICL 0.000 (-) 0.092 (0.012) 0.000 (-) 0.187 (*)

Matern Raw BIC 0.000 (-) 0.076 (0.076) 0.000 (-) 0.188 (*)

Matern Raw MICL 0.000 (-) 0.031 (-) 0.000 (-) 0.196 (*)

biased towards 1 as expected.

Pairs of matched variables from datasets differing only in handling of drift and

use of harmonization typically exhibited excellent robustness (ICC> 0.9); see Figure

3, top two rows. Pairs of matched variables differing in use of registration (bottom

row) exhibited moderate to good robustness for empirical datasets (0.5 <ICC< 0.9)

and variable robustness for exponential and for Matérn datasets. Pairs of matched

variables from datasets differing in harmonization exhibited slightly reduced ICC but

harmonization was not substantially impactful; see Supplementary Figure 8. Spearman’s

correlation was generally consistent with ICC, suggesting non-excellent robustness

related to registration was generally not attributable to monotonic transformation; see

Supplementary Figure 9.

Matched variable pairs for which one variable was from Matérn data and the

other was from exponential data exhibited differing robustness patterns by parameter;

see Supplementary Figure 10. Patterns for the psill parameter were consistent with

patterns described above, with robustness typically excellent unless datasets differed

by registration as well. Robustness for the range parameter was highly variable and

especially poor when datasets differed by registration, suggesting these data may not

be comparable.

3.3. Cluster results, consistency, and association with scanner

The 48 clustering analyses typically resulted in between 6 and 8 clusters; see

Supplemental Table 3. Most cluster analyses selected models which were not sparse; see

Supplemental Figure 11. Analyses of empirical variogram data selected all variables.
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Figure 4. Pairwise comparisons by Cramér’s V of 48 cluster analyses (see Figure 1).
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Figure 5. Cramér’s V comparing 48 cluster analyses (see Figure 1) to VAS and linear model r-squared

values predicting PFT from each analysis without adjustment.
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Analyses of fit Matérn variogram model parameters, especially those using MICL for

model selection, tended to be sparser. Partial sill parameters were deemed relevant

from all locations by all analyses while range exhibited variable relevance and kappa

parameters were typically deemed relevant almost everywhere for analyses using BIC,

and relevant at the bottom of the lungs for analyses using MICL. Relevance patterns

did not differ substantially between left and right lungs. Analyses of fit exponential

variogram model parameters similarly deemed partial sill parameters to be relevant

everywhere. Range parameters were deemed relevant everywhere when registration was

used in feature engineering and at the tops and bottoms of the lung when it was not.

Harmonization and drift were not substantial factors for relevance.

All cluster analyses from harmonized data were not significantly associated with

scanner (p > 0.1), as expected; see Table 2. Cluster analyses from unharmonized,

unregistered data exhibited stronger, more significant associations (p < 0.001) with

scanner model than cluster analyses from unharmonized, registered data (p > 0.01),

consistent with patterns of associations between variogram features and scanner model.

Association strength between clusters from unharmonized, unregistered data and

scanner model ranged from 0.15 to 0.3 as measured by Cramér’s V, indicating cluster

analyses did differ substantially from scanner model.

Pairwise comparisons of cluster analyses using Cramér’s V showed strong

consistency across analyses; see Figure 4. All comparisons produced values above 0.4,

40% produced values above 0.6, and 15% produced values above 0.7. 70% of comparisons

of unregistered analyses produced values above 0.6 while 60% of comparisons of

registered analyses produced values above 0.6. 48% of comparisons of unharmonized

analyses produced values above 0.6 while 54% of comparisons of harmonized analyses

produced values above 0.6.

Registration was the most influential factor in consistency across the 48 analyses,

followed by harmonization and data type (empirical, exponential, or Matérn). Strongest

consistency was observed between analyses differing only in handling of drift or selection

criterion.

3.4. Clinical outcomes and demographics by clusters

Comparisons of demographics, PFT, and VAS to each of the 48 clustering analyses are

summarized; see Figure 5 for unadjusted association strength and Supplemental Figure

12 for corresponding p-values.

All analyses produced clusters which differed significantly by DLCO, FEV1, and

FVC (p < 0.001) and by BMI and FEV1/FVC (p < 0.05). Most analyses produced

clusters which differed significantly by self-reported race and ethnicity indicator (p <

0.001), with analyses from data not harmonized for scanner effects exhibiting stronger

association. Most analyses produced clusters which differed significantly by sex (p <

0.05), though no clusters produced from unharmonized empirical variogram data differed

significantly by sex. Most analyses produced clusters which did not differ significantly
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by age and height (p > 0.05), though all analyses from registered exponential data

differed significantly by height (p < 0.001).

Most analyses produced clusters which differed significantly (p < 0.001) by each

VAS measure except mediastinal lymphadenopathy.

A comparison of cluster analyses with VAS using Cramér’s V showed that clusters

tended to capture architectural distortion, conglomerate mass, fibrotic abnormality,

and traction bronchiectasis particularly well (typical Cramér’s V > 0.6), as well as

ground-glass, mosaic attenuation, and reticular abnormality more modestly (typical

Cramér’s V > 0.3); see Figure 5. A comparison of cluster analyses with PFT further

suggested strong associations between PFT and clusters. Clusters generally explained

15-35% of variability observed in FEV1, FVC, and DLCO. Clusters obtained from fitting

exponential variogram models to registered data were particularly strongly associated

with FEV1 and typically explained 25-35% of variability. Overall, clusters obtained from

registered data exhibited slightly stronger unadjusted associations with PFT outcomes

than those from unregistered data.

3.5. Cluster associations with clinical outcomes after adjustment

After adjusting for base demographic factors, clusters exhibited strong associations

with PFT; see Figure 6 for R squared summaries, Supplemental Figure 13 for p-value

summaries. Clusters typically explained another 10-15% of variability beyond base

adjustment factors.

Associations with DLCO, FEV1, and FVC were similar compared to each other

and across cluster analyses. Scadding stage typically lost significance (p > 0.001 or

p ≈ 0.001) in the presence of clusters and clusters were significant (p ≪ 0.001) with or

without adjusting for Scadding. Clusters alone explained much more variability than

Scadding stage alone beyond base adjustment factors. Scadding stage did not explain

substantially more variation beyond cluster grouping and base adjustment factors.

Clusters from registered data typically exhibited slightly stronger associations, with

the effect of registration most pronounced for FEV1.

For FEV1/FVC, clusters produced from registered data exhibited stronger

associations more often with or without adjusting for Scadding stage, especially when

clusters were produced from unharmonized exponential data. Clusters alone typically

explained as much variability as Scadding stage alone beyond base adjustment factors.

Most full models of VAS produced (training) AUC roughly 0.05 greater than

Scadding models, while most cluster models produced AUC roughly the same as

Scadding models; see Figure 7 for AUC summaries, Supplemental Figure 14 for p-

value summaries. Full models of architectural distortion, conglomerate mass, fibrotic

abnormality, and traction bronchiectasis all produced AUC around or above 0.9,

with full models of ground-glass, micronodules, mosaic attenuation, and reticular

abnormality producing AUC around or above 0.8. All models of hilar and mediastinal

lymphadenopathy failed to produce AUC above 0.75.
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Figure 6. R squared values for various linear models predicting PFT from base adjustment factors,

cluster analysis grouping, and Scadding stage, with color indicating inclusion or exclusion of Scadding

stage as a variable and shape indicatating whether engineered data were harmonized prior to clustering.

For each of 48 cluster analyses (see Figure 1), we fitted a model with base factors and group and a

model with base factors, group, and Scadding. Additionally, we fitted a model with base factors and a

model with base factors and Scadding, indicated as the base analyses. For reference, horizontal lines

indicate R squared values for base models.

AUC values were typically comparable between registered and unregistered

analyses, and between harmonized and unharmonized analyses.

Association between clusters and VAS measures was typically significant (p <

0.001) for cluster and full models of architectural distortion, conglomerate mass,

fibrotic abnormality, reticular abnormality, and traction bronchiectasis. Associations

between clusters and VAS measures were typically significant in cluster models

but lost significance after adjustment for Scadding stage in models of ground-glass,

hilar adenopathy, micronodules, and mosaic attenuation. Scadding stage typically

remained significant in full models of architectural distortion, fibrotic abnormality, hilar
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Figure 7. AUC values for various Firth-type logistic models predicting VAS from base adjustment

factors, cluster analysis grouping, and Scadding stage, with color indicating inclusion or exclusion of

Scadding stage as a variable and shape indicatating whether engineered data were harmonized prior to

clustering. For each of 48 cluster analyses (see Figure 1), we fitted a model with base factors and group

and a model with base factors, group, and Scadding. Additionally, we fitted a model with base factors

and a model with base factors and Scadding, indicated as the base analyses. For reference, horizontal

lines indicate AUC values for base models.

and mediastinal lymphadenopathy, micronodules, reticular abnormality, and traction

bronchiectasis, while dropping to marginal significance (p ≈ 0.001) in full models of

conglomerate mass and ground-glass and losing significance (p > 0.001) in full models

of mosaic attenuation.

4. Discussion

In this paper, we investigated potential clinical relevance of variograms-based feature

engineering pipelines for quantification of chest CT imaging and phenotyping in the

study of sarcoidosis. Factors of interest included feature robustness, consistency of

identified phenotypes across approaches, and strength of association between identified

phenotypes and clinical measures of disease.
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Consistent with the literature, computed variogram-based features were not robust

to the decision to register images to a template (frequently ICC < 0.5). If the decision

on registration was fixed, feature robustness was typically excellent with respect to

other decisions (ICC> 0.9). Even in absence of robust feature computation, however,

resulting clusters from each of 48 clustering analyses were surprisingly consistent (typical

Cramér’s V > 0.5). Mild but statistically significant associations between features and

scanner model used in image acquisition were found for all 24 unharmonized datasets,

especially empirical and exponential datasets, which persisted through to associations

between phenotypes and scanner model. Associations between features and scanner were

mild at worst, unlike in radiomics (Rizzo et al. 2018, Mackin et al. 2015). Registering

images before feature extraction appeared to reduce feature and phenotype association

with scanner model.

Presence and strength of disease signal were impressively consistent across

all 48 approaches considered for processing images, engineering features, and

phenotyping/clustering. Associations of variogram-based phenotypes with PFT were

observed to be similarly strong compared to previously identified associations of

radiomics-based phenotypes with PFT in the GRADS cohort (Carlson et al. 2024)

and results were consistent with similar radiomics-based studies of PFT and VAS in

lung diseases such as COPD and ILD (Occhipinti et al. 2019, Schniering et al. 2022).

Associations of variogram-based phenotypes with visual assessments of architectural

distortion, conglomerate masses, fibrotic abnormalities, and traction bronchiectasis

(optimistic AUC ≈ 0.9) establish strong potential relevance of variogram-based

approaches in future study of sarcoidosis and quantitative biomarker development.

Lowest strength associations between clusters and measures of disease were observed

for lymphadenopathy measures (optimistic AUC between 0.65 and 0.75), though we

note that lymph nodes were masked out of images for all 48 pipelines.

Consistency in identified clusters and disease signal across approaches suggested

that use of unharmonized variogram data from unregistered images, consistent with a

simple, expedient, and generalizable processing pipeline, is reasonable for future study

of sarcoidosis. Further, the low-dimension variogram-based feature sets considered

here are more interpretable and apparently much less influenced by scanner model

than radiomics while also showing strong association with disease features. This work

suggests variogram-based features are a promising alternative to classic radiomics in

sarcoidosis.

4.1. Limitations

The GRADS study enrolled subjects representing clinically pre-defined phenotypes,

and so analyses of heterogeneity in a subcohort may not be generalizable to clinical

populations. Furthermore, CT scans obtained for the GRADS study were more

consistent in image acquisition and reconstruction than is typical for clinical populations.

Variation in image acquisition protocol could not be assessed. Future investigations
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should more thoroughly assess pipeline robustness to variation in image acquisition and

reconstruction, as well as the highly related factor of image resolution.

5. Conclusion

All feature engineering pipelines and clustering approaches considered produced similar

measures of heterogeneity and strong association with sarcoidosis disease signal as

measured by PFT and VAS, clearly establishing potential for clinical relevance

of variogram-based approaches in future research. While clusters produced from

unregistered data were typically more significantly associated with scanner model than

those produced from registered data, this association was mild in strength and did not

appear to impede detection of disease related signal in subsequent analyses. As such,

optimality of pipelines and approaches among those considered might reasonably be

selected on other bases, such as simplicity and expediency of pipeline, dimensionality of

data produced, robustness of feature computation, and appropriateness of pipelines

for clinical cohorts having more variability in CT image metadata such as original

reconstructed resolution, convolution kernel used in reconstruction, and retention of

axial slices.

In particular, future investigation of variogram-based features in clinical sarcoidosis

cohorts might reasonably consider unharmonized, unregistered Matérn data without

accounting for drift, corresponding with a balance of simplicity in implementation and

robustness of engineered features. In principle, this harmonization- and registration-

free pipeline should also be more readily applicable to both research and clinical cohorts

without substantial modification. Building and applying a template is typically a time-

consuming cohort-specific process with the potential to impede generalizability while

harmonization directly impedes generalization to new contexts.

Registered image data do appear slightly more appropriate for establishing clinically

relevant phenotypes through clustering as registration seems to reduce association of

engineered features and clustering-based phenotypes with scanner model; however, care

would need to be taken to ensure templates and registration process were appropriate

for application to diverse clinical populations of sarcoidosis patients in support of

generalizable research.
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Figure 8. Histograms of intraclass correlation coefficients between matched variable pairs from 24

different engineered datasets (see Figure 1).
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Figure 9. Histograms of Spearman’s correlation between matched variable pairs from 24 different

engineered datasets (see Figure 1). Harmonized and unharmonized data are similar and thus pooled.
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Figure 10. Histograms of intraclass correlation coefficients and Spearman’s correlation between

matched variable pairs, one each from exponential and Matérn data, stratified by type of feature

engineered (partial sill or range), registration (both datasets from registered data, both from

unregistered data, or one of each), and harmonization (both datasets from harmonized data, both

from unharmonized data, or one of each).
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Table 3. For each of 48 cluster analyses (see Figure 1), we report the number of clusters selected.

Registered Unregistered

Data Drift IC Harmonized Unharmonized Harmonized Unharmonized

Empirical Linear BIC 8 8 8 8

Empirical Linear MICL 6 6 6 6

Empirical Raw BIC 8 8 8 8

Empirical Raw MICL 6 6 6 6

Exponential Linear BIC 8 8 7 8

Exponential Linear MICL 7 8 7 8

Exponential Raw BIC 7 8 7 8

Exponential Raw MICL 7 8 7 8

Matern Linear BIC 6 7 6 6

Matern Linear MICL 6 7 7 6

Matern Raw BIC 6 8 5 7

Matern Raw MICL 7 7 6 6
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Figure 11. Relevant variables selected in producing clusters in each of 32 cluster analyses of model

fit variogram data (see Figure 1). An additional 16 cluster analyses of empirical variogram data each

deemed all variables relevant and are not depicted. Variables are indicated as a combination of lung

decile (1-9), lung (left or right), and feature type (psill, range, or kappa).
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Figure 12. P-values for significance of association in comparing each of 48 cluster analyses (see Figure

1) to demographics, VAS, and PFT without adjustment. Fisher’s exact test was used for VAS measures,

sex, and self-identified race while Welch’s ANOVA was used for PFT measures, age, height, and BMI.
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Figure 13. Likelihood ratio test p-values comparing various linear models predicting PFT from base

adjustment factors, cluster analysis grouping, and Scadding stage after negative log10 transformation.

For each cluster analysis, a model with base factors and group was compared to the base model, a model

with base factors, group, and Scadding was compared to the model with base factors and Scadding,

and a model with base factors, group, and Scadding was compared to the model with base factors and

group. Additionally, the model with base factors and Scadding was compared to the model with base

factors, indicated as the base analysis. A black horizontal line indicates a p-value of 0.001, with higher

plotted values corresponding with lower, more significant p-values.
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Figure 14. Penalized likelihood ratio test p-values comparing various Firth-type logistic models

predicting VAS from base adjustment factors, cluster analysis grouping, and Scadding stage after

negative log10 transformation. For each cluster analysis, a model with base factors and group was

compared to the base model, a model with base factors, group, and Scadding was compared to the model

with base factors and Scadding, and a model with base factors, group, and Scadding was compared

to the model with base factors and group. Additionally, the model with base factors and Scadding

was compared to the model with base factors, indicated as the base analysis. A black horizontal line

indicates a p-value of 0.001, with higher plotted values corresponding with lower, more significant p-

values. Apparent capping of p-values for significance of cluster group in some models is a result of near

perfect or perfect separation producing p-values indistinguishable from 0 up to computer precision.
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