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Abstract 
Introduction: AI  based software, including computer aided detection software for chest 
radiographs (CXR-CAD), was developed during the pandemic to improve COVID-19 case finding 
and triage.  In high burden TB countries, the use of highly portable CXR and computer aided 
detection software has been adopted more broadly to improve the screening and triage of 
individuals for TB, but there is little evidence in these settings regarding COVID-19 CAD 
performance. 
Methods: We performed a multicenter, retrospective cross-over study evaluating CXRs from 
individuals at risk for COVID-19. We evaluated performance of CAD software and radiologists in 
comparison to COVID-19 laboratory results in 671 individuals evaluated for COVID-19 at sites in 
Zambia and Malawi between January 2021 and June 2022. All CXRs were interpreted by an 
expert radiologist and two commercially available COVID-19 CXR-CAD software.  
Results:  Radiologists interpreted CXRs for COVID-19 with a sensitivity of 73% (95% CI: 69%-
76%) and specificity of 49% (95% CI: 40%-58%). One CAD software (CAD2) showed performance  
in diagnosing COVID-19 that was comparable to that of radiologists, (AUC-ROC of 0.70 (95% CI: 
0.65-0.75)), while a second (CAD1) showed inferior performance ( AUC-ROC of 0.57 (95% CI: 
0.52-0.63)). Agreement between CAD software and radiologists was moderate for diagnosing 
COVID-19, and very good agreement in differentiating normal and abnormal CXRs in this high 
prevalent population. 
Conclusions: The study highlights the potential of CXR-CAD as a tool to support effective triage 
of individuals in Malawi and Zambia during the pandemic, particularly for distinguishing normal 
from abnormal CXRs.  These findings suggest that while current AI-based diagnostics like CXR-
CAD show promise, their effectiveness varies significantly. In order to better prepare for future 
pandemics, there is a need for representative training data to optimize performance in key 
populations, and ongoing data collection to maintain diagnostic accuracy, especially as new 
disease strains emerge. 
 
Author Summary 
During the COVID-19 pandemic, AI-based software was developed to help identify and manage 
cases, including software that assists in reading chest X-rays (CXR-CAD). This technology has 
also been used in high tuberculosis (TB) burden countries to screen and manage TB cases. 
However, there's limited information on how well these tools work for COVID-19 in these 
settings. This study examined chest X-rays from people at risk for COVID-19 in Zambia and 
Malawi to evaluate the performance of CXR-CAD software against expert radiologists and 
laboratory COVID-19 tests. The research included X-rays from 671 participants, reviewed by 
two AI software programs and radiologists. 
The results showed that radiologists had a sensitivity of 73% and specificity of 49% in detecting 
COVID-19. One AI software (CAD2) performed similarly to radiologists, while another (CAD1) 
performed worse. The agreement between the AI software and radiologists varied, but both 
were good at distinguishing between normal and abnormal X-rays. 
The study suggests that while AI tools like CXR-CAD show potential, their effectiveness can vary. 
To improve these tools for future pandemics, more representative training data and continuous 
data collection are necessary. 
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Introduction 
The  COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has had devastating 
consequences for healthcare systems worldwide. By the end of 2023, there were over 7.7 
million reported deaths, and over 18 million estimated deaths globally. (1) A breakdown in 
global coordination regarding testing, vaccination, and allocation of resources has been 
described as a major factor involved in the failure of this global response. (2) Limited access to 
adequate testing and treatment during the pandemic was a consequence of this breakdown, 
and likely contributed to deaths due to COVID-19 and a number of other communicable 
diseases. (3, 4)  
 
Use of medical imaging to help diagnose COVID-19  and differentiate it from other respiratory 
conditions remains a challenge given the overlapping clinical and radiological manifestations of 
respiratory illnesses.  Chest X-rays (CXRs) have been a valuable tool in the evaluation and 
diagnosis of respiratory diseases for decades. While not as sensitive as computed tomography 
(CT) scans, CXRs are more widely available, less costly, less infrastructure intensive and can be 
performed with minimal exposure risk to healthcare providers. Newer, highly portable digital 
CXR devices have been deployed in many high burden TB settings, improving access to medical 
imaging outside of regional hospitals, and CXRs may aid in the identification of individuals with 
communicable respiratory diseases including those at greater risk for worsening. (5),(6, 7)  Such 
interventions may also be beneficial when future respiratory pandemics arise. Yet, the 
interpretation of CXR findings, especially in a setting where the caseload of patients with 
respiratory symptoms is high, requires novel strategies given variation in access to radiologists 
and expert readers. (8) 

 
Leveraging artificial intelligence (AI) to interpret CXRs (computer aided detection, or CXR-CAD) 
showed promise early in the COVID-19 pandemic. In research settings, use of COVID-19 
algorithms with CXR CAD reported very high performance.   CXR-CAD software have been 
deployed in many high burden TB settings and many CXR-CAD developers added  COVID-19 
specific algorithms during the pandemic. (9-11) However, in many instances, training data for 
these software leveraged datasets drawn from populations outside of the African continent, 
and it has been unclear how COVID-19 specific CAD algorithms could perform in populations in 
the region. 
 
In addition to uncertainty on performance, as the pandemic evolved, policy shifted away from 
medical imaging (and CXR) as a first step in the diagnostics evaluation of an individual at risk for 
COVID-19. This has limited the understanding of the benefit of CXR-CAD for this use. (12)  As a 
consequence of a decrease in reimbursement for COVID-19 specific screening and diagnostic 
tools, many commercially available COVID-19 CAD algorithms have been removed from the 
market, while the potential benefit for use has never been fully defined. 
 
Understanding how AI based algorithms for COVID-19 that interpret CXRs can benefit at risk 
populations in Africa can better inform their potential for use in this region for future 
respiratory pandemics, especially in settings where access to radiologists may be limited. 
Malawi and Zambia are two African countries with innovative digital health strategies which 
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consider governance of digital technology to ensure local benefit. (13, 14) In this study, we 
explore the potential benefits, challenges, and applications of CXR-CAD systems specifically for 
use in diagnosing COVID-19 and CXR abnormalities in populations at risk for COVID-19 from 
Zambia and Malawi. In doing so, we aim to elucidate the role that AI specific diagnostics for CXR 
could play in the diagnosis and disease management COVID-19 and future respiratory 
pandemics. 
 
Materials and Methods 
 
Study design and participants 
We performed a multicenter, retrospective cross-over study evaluating CXRs from individuals at 
risk for COVID-19 with both CXR-CAD software and radiologist in comparison to WHO approved 
COVID-19 laboratory testing. Individuals were enrolled from one of two sites in Zambia (the 
University Teaching Hospital and the Levey Mwanawasa University Teaching Hospital, both in 
Lusaka, Zambia) and one of five sites in Malawi (Mzuzu Central Hospital, Kamuzu Central 
Hospital, Queen Elizabeth Central Hospital, Nsanje District Hospital, and Mwaiwathu Hospital).  
Included patients were adults evaluated at the enrolling sites from January 1, 2021 to June 1, 
2022 who had symptoms consistent with COVID-19 based on a clinical evaluation; and who also 
had received both a WHO approved Sars CoV2 test as well as a digital chest radiograph within 
72 hours of evaluation. Individuals  younger than 18 years of age, and those who did not have a 
result for COVID-19 testing and a CXR digital image accessible in DICOM format were excluded.   
 
Sample size and sampling 
For the comparison of sensitivity and specificity between radiologist and CXR CAD diagnostics, a 
sample size calculation was generated using a previously established formula for comparison of 
proportions in cross-over designs. (15) The sample size of 500 total participants per country was 
calculated based on existing data to demonstrate a difference in accuracy of 10% between CXR-
CAD systems and human readers at a COVID-19 prevalence of 20%, and was powered to 
determine  a sensitivity of 90% and a specificity of 60% against laboratory reference standards 
at a COVID prevalence of 20%. 
 
Data Collection 
Records from all patients with COVID-19 testing during the study period were reviewed 
consecutively by researchers at each site to determine eligibility. In individuals meeting 
inclusion criteria, data were collected and anonymized for evaluation using Open Clinica 
(Waltham, USA). Additionally, DICOM CXR images from included individuals were obtained by 
site researchers. Prior to sharing of DICOM images with FIND, identifying information was 
removed by use of a previously described DICOM anonymizing tool. (16)  Patient clinical data 
and radiologist interpretations  were aggregated and duplicate study subjects were excluded 
prior to analysis.  
 
Reference standards 
The COVID-19 laboratory reference standard was defined based on the result of a WHO-
approved Sars CoV2 diagnostic test. (17)   COVID-19 cases were defined as positive by one or 
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more diagnostic test results within 72 hours of clinical evaluation. COVID-19 controls were 
defined as negative by all diagnostic test results performed within 72 hours of clinical 
evaluation. 
 
Our radiology reference standard (RRS) for COVID-19 drew on expert radiologists (> 5 years 
experience) from Malawi and Zambia who were blinded to COVID-19 testing results.   A single 
radiologist from the country where the image was acquired independently evaluated CXRs for 
findings and recorded results as described below. Radiologists were encouraged to use 
published guidelines on chest radiograph interpretation for COVID-19 as a component of their 
interpretation. (18)  
 
Expert radiologists characterized CXRs in one of the following 3 categories:  
 

1. CXR pattern consistent with COVID-19 
2. CXR pattern abnormal, but findings not consistent with COVID-19 
3. CXR pattern normal 

 
For the primary analysis, RRS  were considered positive for COVID-19 if radiologist 
interpretation determined the CXR pattern was consistent with COVID-19 (category #1). The 
RRS was considered negative for COVID-19 if the interpretation determined the CXR pattern 
was normal, or was abnormal, but with findings not consistent with COVID-19 (categories #2 
and #3).   
 
For the secondary analysis, radiologist evaluations were considered abnormal if interpretation 
of the CXR was characterized as abnormal and consistent with COVID-19, or abnormal, but with 
findings non consistent with COVID-19 (categories #1 and #2).  Radiologist evaluations were 
considered normal only for CXRs interpreted with findings consistent with a normal CXR pattern 
(category #3).  
 
In instances where multiple DICOM CXR images were available within 72 hours of evaluation, 
the first CXR chronologically was collected for analysis. In instances where there were duplicate 
DICOM images, the higher resolution/larger file was selected and used for evaluation.  If these 
parameters were identical, one image was selected for analysis and any duplicates were 
deleted. 
 
Ethics and Privacy Statement 
The study received approval through the Clinton Health Access Initiative Institutional Review 
Board (CHAI IRB), and  received in country ethical/IRB approval. Because of this study’s 
retrospective design, informed consent was not obtainable. In all instances data was 
anonymized on site prior to sharing with FIND for evaluations. Data and images were stored in 
an encrypted password protected storage, with full data only available to the study PI and 
relevant members of the FIND data science team.  
 
Change in approach to developer evaluations during the study 
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Initially, a comparative analysis of multiple COVID-19 CAD algorithms was planned, including 
multiple developers FIND previously identified with CXR-CAD algorithms for TB. (10, 19) 
However, as the pandemic evolved, many CXR-CAD developers removed their COVID 19 
algorithms from commercial use. As a result, FIND established an agreement with 2 CXR-CAD 
developers to independently evaluate performance of their COVID-19 CXR-CAD and 
normal/abnormal CXR-CAD algorithms that had been in commercial use during the height of 
the pandemic, in this cohort of individuals at risk for COVID-19. However, given the removal of 
many of these products from the market, a stipulation to this evaluation was that publicly 
available results would blind specific developer performance in this analysis. Both developers 
included in this analysis have CXR-CAD products in use for the evaluation of CXRs for TB, and 
both have received WHO stringent regulatory approval for at least one diagnostic use for CXR-
CAD. For this publication, these software developers are referred to as CAD1 and CAD2. 
 
Data analysis 
For the primary analysis, both radiologist and COVID-19 algorithms were evaluated in 
comparison to a WHO approved laboratory reference standard.  For CXR-CAD software 
interpretation, images were first pre-processed as needed to conform to CXR-CAD software 
developer specifications for DICOM files.  Images were then exposed to CXR-CAD software with 
outputs/probability scores recorded for COVID-19 algorithms and for normal/abnormal 
algorithms (i.e. determining if any abnormalities are observed), using the FIND validation 
platform, as has been described elsewhere. (20) Performance metrics (sensitivity and 
specificity) of CXR-CAD for COVID-19 were compared to radiologist readings using CXR-CAD 
thresholds set to observed radiologist sensitivity and, separately, to observed radiologist 
specificity. This analysis mirrors a similar approach that has been described in other studies 
evaluating CXR-CAD for TB. (16, 21) Subgroup analysis was performed based on country, site, 
age group, sex, symptoms, diabetes status (if known), and HIV status (if known). Results were 
presented for CXR-CAD sensitivity and specificity with 95% confidence intervals.  
 
CXR-CAD scores were used to generate receiver operating characteristic (ROC) curves for both 
COVID scores and any abnormalities scores . (22) The Area Under the ROC curve (AUC-ROC) for 
each CAD system was calculated against laboratory reference standards using binomial 
distribution assumptions for the primary analysis.  
 
Radiologist sensitivity and specificity assessments for COVID-19 were calculated in comparison 
to laboratory reference standards.  CXR-CAD software estimates of sensitivity and specificity 
were then calculated at the threshold produced by the same sensitivity or specificity achieved 
by the radiologist. 
  
For the secondary analysis, CXR-CAD was evaluated for agreement with a radiologist in 
differentiating normal and abnormal CXRs, based on the AC1 coefficient.  (23) In this secondary 
analysis, CXR-CAD algorithms for abnormal CXRs were evaluated using the manufacturer 
suggested threshold.   
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Results:  
Population characteristics and image assessment 
 
 

Figure 1 This study, participants were selected based on Reads shared (CXR interpretation by a 
radiologist); available MRS diagnostic output (Covid-19 MRS); CXRs processed by CAD-1 and 
CAD-2 (CXR processed); and quality checks (CXR passing QC).  
 
In total 758 CXR images were available for this study. A total of 749 CXR images were read with 
findings reported by radiologist and 9 were not. Among the shared reads, 13 CXR images had to 
be excluded from this study as they were not properly de-identified; for 11 patients, age 
information was missing and these files were excluded; and 14 patient entries did not report a 
COVID-19 test which was recorded withing 72 hours of evaluation. In the remaining 711 images, 
there were 40 images which could not be processed by CAD1 or CAD2, and the associated 
subjects were removed from the evaluation.  

13

40

11671

14

36
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This left a total of 671 participant with complete clinical data and appropriate images available 
for evaluation (89% of the image total) which were included in the comparative covid analysis. 
A Venn diagram of participants inclusion in the final analyses based on image assessment and 
processing is shown in Figure 1.   
 
The included participants included 269 (40% of the total) from Malawi and 402 (60% of the 
total) from Zambia. This total included 540 COVID-19 cases and 131 controls, with a 
considerably higher prevalence of COVID-19 cases than in our pre-study power calculations.  Of 
the total number of cases, 212 (39%) were from Malawi and 328 (61%) were from Zambia. Of 
the total controls, 57 (44%) were from Malawi and 74 (56%) were from Zambia.   
 
The majority of participants were male (n= 410, 61%) and the average age was 51 years (range 
18 to 90 years). In most instances, the test sample was collected via nasopharyngeal swab (N= 
474, 71%). A minority of patients were tested HIV positive (n= 77, 11%) or were known to be 
diabetic (n=86, 13%). A description of the populations by site are described in table 1.  
 
 
Variable		 Total		Positive	Cases		Negative	Cases		
All		 671		540		 131		
Study	Site	ID		
Zambia		

UTH		 190		142	(26.3%)		 48	(36.6%)		
LEVY	M.	UTH		 212		186	(34.4%)		 26	(19.8%)		

Malawi		
Mzuzu	Central	Hospital		 30		30	(5.6%)		 0	(0.0%)		
Kamuzu	Central	Hospital		 105		101	(18.7%)		 4	(3.1%)		
Queen	Elizabeth	Central	Hospital		 62		62	(11.5%)		 0	(0.0%)		
Nsanje	District	Hospital		 8		8	(1.5%)		 0	(0.0%)		
Mwaiwathu	Hospital		 64		11	(2.0%)		 53	(40.5%)		

Age	group		
[18-25]		 36		30	(5.6%)		 6	(4.6%)		
[26-35]		 87		60	(11.1%)		 27	(20.6%)		
[36-45]		 141		111	(20.6%)		 30	(22.9%)		
[46-55]		 145		118	(21.9%)		 27	(20.6%)		
[56-65]		 128		107	(19.8%)		 21	(16.0%)		
[>=66]		 134		114	(21.1%)		 20	(15.3%)		

Gender		
Female		 260		203	(37.6%)		 57	(43.5%)		
Male		 410		337	(62.4%)		 73	(55.7%)		
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Variable		 Total		Positive	Cases		Negative	Cases		
Not	recorded		 1		0	(0.0%)		 1	(0.8%)		

Type	of	COVID-19	test	done		
Antigen		 154		90	(16.7%)		 64	(48.9%)		
PCR		 516		449	(83.1%)		 67	(51.1%)		
NA		 1		1	(0.2%)		 0	(0.0%)		

HIV	status		
Positive		 77		71	(13.1%)		 6	(4.6%)		
Negative		 459		381	(70.6%)		 78	(59.5%)		
Not	recorded		 135		88	(16.3%)		 47	(35.9%)		

Diabetes	status		
Positive		 86		70	(13.0%)		 16	(12.2%)		
Negative		 450		382	(70.7%)		 68	(51.9%)		
Not	recorded		 135		88	(16.3%)		 47	(35.9%)		

Symptoms		
Present		 586		479	(88.7%)		 107	(81.7%)		
Absent		 35		22	(4.1%)		 13	(9.9%)		
Not	recorded		 50		39	(7.2%)		 11	(8.4%)		

Sampling	method		
Bronch-alveolar	lavage		 1		1	(0.2%)		 0	(0.0%)		
Nasal	swab		 186		173	(32.0%)		 13	(9.9%)		
Nasopharyngeal	swab		 474		356	(65.9%)		 118	(90.1%)		
Not	recorded		 3		3	(0.6%)		 0	(0.0%)		
Throat	swab		 7		7	(1.3%)		 0	(0.0%)		

Table 1 Demographic and clinical characteristics from includes participants 

 
 
Radiologist Reference Standard (RRS) for COVID and radiologist interpretation other 
abnormalities 
Radiologists interpreted 460 images (72.8% of cases and 51.2 % of controls, based on 
microbiologic reference standard or MRS) as having findings consistent with COVID-19.  Of the 
remaining COVID cases positive by MRS, radiologists interpreted the majority (89, 16.5%) as 
abnormal but with findings not consistent with COVID-19 pneumonia.    Details of radiologist 
interpretation of CXRs for COVID-19 are shown in Table 2. 
 
 

Human	interpretation	of	CXR	 Total	 MRS	
Positive	

MRS	Negative	
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COVID-19	
Positive	

CXR	pattern	consistent	with	
COVID-19	

460		 393	(72.8%)		 67	(51.2%)		

COVID-19	
Negative	

1. CXR	pattern	abnormal,	
but	findings	not	

consistent	with	COVID-
19	

(non	COVID-19)		

116		 89	(16.5%)		 27	(20.6%)		

CXR	pattern	normal	(no	
abnormalities)		

95	 58	(10.7%)	 37	(28.2%)	 

 
Table 2 radiologist interpretation of CXRs in comparison to laboratory testing results. Positive and 
Negative cases are defined based on the Sars CoV – 2 Microbiologic Reference Standard (MRS). 

 
In comparison to the COVID-19 laboratory testing (MRS), blinded expert radiologists had a 
pooled specificity of 49% (95% CI 40% - 58%) and a pooled sensitivity of 73% (95% CI 69%-76%) 
for diagnosis of COVID-19. However, specificity varied significantly by country.  In Zambia, the 
observed specificity was 30% (95% CI 20%-41%) and sensitivity was 73% (95% CI 68%-78%), 
while in Malawi, radiologist observed specificity was 74% (95% CI 60%-84%) and sensitivity was 
73% (95% CI 66%-79%) for COVID-19. Radiologist diagnostic accuracy is shown in table 3, figure 
2 and figure 3 
 
 
	 N		 RRS	Pos	 RRS	

Neg		
Sensitivity	(95%	

CI)		
Specificity	(95%	

CI)	
Overall	 671		 460		 211		 73%	(69-76%)	 49%	(40-58%)		
Zambia	 402		 291		 111		 73%	(68-78%)	 30%	(20-41%)		
Malawi	 269		 169		 100		 73%	(66-79%)	 74%	(60-84%)	

 

Table3: Radiologist accuracy in identifying COVID-19 on CXR in comparison to laboratory test results. 

 
Software interpretation of CXR images for COVID-19 
 
Two commercially available CAD software were included in this analysis (deemed CAD1 and 
CAD2). CAD software interpretation of CXRs was compared to COVID-19 laboratory testing and 
radiologist performance. The diagnostic outcome of these 2 CAD software is reflected by a 
score that is generated from a CXR image, and then defined as positive or negative according to 
a set threshold.  
 
The observed area under the receiver operating curve (AUC-ROC) for CAD1 was 0.57 (95% CI 
0.52-0.63) and for CAD2 was 0.70 (95% CI 0.65-0.75).  Pooled estimates for CAD1 were inferior 
to our RRS for COVID-19, when software thresholds were set at the radiologist observed 
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sensitivity and specificity (Table 4).  CAD2 had an observed software performance that was 
comparable to the observed radiologist performance. 
 

 
 

Figure  2  Aggregate performance and 95% confidence intervals of radiologist and software CAD1 and 
CAD2 at identifying Covid-19 in comparison to baseline molecular testing. AUC: Area under Curve, 
RadRS: Radiologist reference standard for COVID-19. 
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Figure 3:   Performance of radiologist and software CAD1 and CAD2 at identifying Covid-19 in 
comparison to baseline molecular testing. A Performance in the Malawi cohort; B performance in the 
Zambia cohort 

 
Although CAD1 had a similar performance in Malawi (AUC 0.55, 95% CI 0.47, 0.63) and in 
Zambia (AUC 0.56, 95% CI 0.49, 0.64), given the lower observed specificity in Zambia, 
performance of CAD1 was not inferior to RRS in this subgroup (Figure 3). CAD2 demonstrated 
an AUC of 0.75 (95% CI of 0.68, 0.82) in Malawi and 0.66 (95% CI 0.59, 0.72) in Zambia and was 
non inferior in performance to a RRS at set specificities in CXRs from both countries. 
 
We evaluated the agreement between CAD software and radiologists at vendor recommended 
thresholds, and found that agreement was very low for CAD1, with only 60% agreement 
regarding COVID-19 cases and controls, having an AC1 coefficient value of 0.28. Agreement was 
moderate for CAD2 (75%) with a AC1 of 0.53.  (Appendix table 1a and 1b) 
   

CAD1  CAD2  

Description  Fixed 
Value  Th  Sens (95% CI) Spec (95% CI)  Th  Sens (95% CI) Spec (95% CI)  

Fixed Threshold 
Vendor 

recommended Th  0.55  47% [38%-
55%]  

66% [62%-
70%]  1.5  70% [62%-

78%]  
65% [61%-

69%]  
Fixed Sensitivity 

Radiologist 
performance  Sens  0.99  73% [66%-

80%]  
35% [31%-

39%]  1.5  70% [62%-
78%]  

65% [61%-
69%]  

Fixed Specificity 
Radiologist 

performance  Spec  0.91  61% [53%-
69%]  

46% [42%-
50%]  2.5  79% [71%-

85%]  
50% [46%-

54%]  
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Table 4 Software performance at a set radiologist observed sensitivity and specificity. Fixed values 
(threshold, sensitivity, specificity) were mapped to their closest point from the ROC. This may lead to 
slight differences between the actual fixed value and the corresponding value from the ROC. Th: 
threshold Sens: Sensitivity Spec: Specificity CI: confidence interval 

 
 
Given the poor observed performance, we assessed whether a difference in COVID-19 strains 
could have resulted in a difference in algorithm performance (24). Therefore, we performed a 
secondary analysis evaluating performance before and after November of 2021 (when the 
Omicron strain first superseded the Delta strain as the globally dominant variant).  As shown in 
figure 4, The performance of CAD1 demonstrated an AUC of 0.55 (95% CI 0.48, 0.61) before the 
emergency of the Omicron strain and an AUC of 0.64 (95% CI 0.53,0.75) after the emergence of 
Omicron. CAD2, which demonstrated a non-significant trend towards better overall 
performance,  had an observed AUC of 0.71 (95% CI 0.65-0.77) before the emergence of 
Omicron, and an observed AUC of 0.65 (95% CI 0.55- 0.75) after this time.  Radiologist 
sensitivity also decreased after emergence of the Omicron strain, and observed CAD2 software 
performance remained non-inferior to a radiologist as set sensitivity and specificity. 
 

 
 
Figure 4:  software and radiologist performance at diagnosing COVID-19 before and after the shift to 
Omicron being the dominant variant. 

 
Software analysis by subgroup 
We also evaluated subgroups by age, gender, HIV status, and diabetes status.  Given the low 
numbers in each of these groups, we observed large confidence intervals in AUCs with non 
significant trends.  Further subgroup analysis is (appendix figures 1-4). 
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Software interpretation of normal vs. abnormal CXR images 
For our secondary aim, we evaluated the agreement between CAD software and radiologists at 
identifying any abnormalities on CXRs. Of the includes CXRs, two lacked a radiologist 
interpretation of normal vs. abnormal; and 5 additional CXR images read by CAD2 which 
produced a COVID-19 score did not produce an normal/abnormal score. Therefore, the total 
number of images included in this secondary analysis were 669 for CAD1 and 664 for CAD2. For 
this secondary aim, agreement of both CAD software with a radiologist was very good, with 
89% agreement and a calculated agreement coefficient of 0.86 (table 5b).   In settings where a 
radiologist identified a CXR as “abnormal” level of agreement with software was better, with 
93% of  images read by CAD1 and 95% of images read by CAD2 as also identifying CXRs as 
abnormal. (table 5a) 
 
 
Table 5 
  

Radiologist	assessment			
Abnormal		 Normal		

CAD1		
Abnormal		 532	(93%)		 33	(35%)		
Normal		 42	(7%)		 62	(65%)	
CAD2	
Abnormal		 544	(95%)		 43	(47%)		
Normal		 29	(5%)		 48	(53%)	

Table 5a: Agreement of CAD software with radiologists, at manufacturer suggested thresholds 
for normal vs. abnormal CXRs. 
 
 
Software	 N		 Agreement		 AC1		

CAD1	 669		 89.00%		 0.86	
CAD2	 664		 89.00%		 0.86	

Table 5b: Percentage agreement of CAD software with radiologists, at manufacturer suggested 
thresholds for normal vs. abnormal CXRs and the calculated agreement coefficient. AC1: Gwet’s 
Agreement Coefficient. 
 
 
Discussion  
In this study, we independently evaluated performance of CXR-CAD software, in comparison to 
a radiologist, at identifying COVID-19 or other radiographic abnormalities in individuals 
evaluated for COVID-19 in two countries in Africa.  In doing so, we aim to highlight the potential 
uses and benefits of CXR-CAD software for COVID-19 and consider the implications for use in 
future respiratory pandemics.  There are a number of key takeaways from this work. 
 
First, we found that performance of CXR-CAD in evaluating CXRs for findings consistent with 
COVID-19 varied for the two software’s evaluated.  In comparison to a radiologist against 
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pooled data from Zambia and Malawi, one software performance (CAD1) was inferior to an 
expert human radiologist in diagnosing COVID-19, but a second (CAD2) was comparable.   It is 
unclear how different the training data sets were for these two software, or how well they 
aligned with the populations we evaluated these tools in. As is the case for many commercial 
products, details related to algorithm development and training are not publicly available. 
However, these key aspects in software training data are known to be central to appropriate 
development and deployment of AI based tools. (25, 26) Such issues are critical to address 
during a rapidly evolving respiratory pandemic, where digital data are limited, and where 
clinical presentation and radiographic manifestations may change. Our findings suggest that use 
of CXR-CAD to identify novel respiratory infections can achieve performance comparable to 
human interpretation. However, it is likely that development of CXR CAD for future pandemics 
would require more training data from populations in Africa in order to optimize performance 
in these settings.  However, if performance validation is possible, such tools may be considered 
as an alternative to a human radiologist, or to support through preliminary interpretations in 
settings in Zambia and Malawi where trained expert readers are scarce. 

Second, we found that performance of CAD software and radiologist interpretation varied over 
time, and a decrease in sensitivity was observed which coincided with emergence of the 
Omicron wave of COVID-19.  This finding highlights the need for novel strategies to re-train and 
fine tune algorithms when strains with different phenotypes and differing levels of respiratory 
involvement emerge. (24)  In instances where AI based diagnostics are supporting clinical care, 
including those that use medical imaging, emergence of new strains should be a key 
consideration for software re-training and version updates.   

Third, both software showed strong agreement with a radiologist in differentiating normal and 
abnormal CXRs in this cohort of individuals at risk for COVID-19. This was particularly true in 
settings where a radiologist identified no abnormalities on CXR. Algorithms for differentiating 
normal vs. abnormal CXRs may be an alternative for use early in a pandemic which can identify 
a subset of individuals with normal CXRs.  As a result,  when data is scarce and disease specific 
algorithms will take long to adequately train such models may be valuable in triaging those 
without respiratory involvement. While such a strategy would likely not have had a large 
influence on disease transmission, it could rapidly screen or triage a large group of at risk 
individuals to identify those who and do not need close monitoring or further testing, thereby 
optimize clinical resources and enhance robustness in the diagnostic network.  

CXR-CAD software is a promising tool that is currently being used with portable CXR in many 
settings globally, and for diagnosis of TB and other radiographic findings.  Some of these 
software were adapted for use in identifying COVID-19 during the height of the global 
pandemic.   In these future, consideration of where and how these tools can be used may be a 
valuable consideration for future pandemics preparedness in Zambia and Malawi, and in other 
countries in Africa as a component of a digital health strategy. However, as will most AI based 
diagnostics, key considerations need to be made regarding the collection and use of high 
quality, representative data for use in the training and testing of these products in the settings 
where they will be deployed, and in post deployment monitoring.  This study demonstrates that 
some commercially available CAD software could achieve parity with a radiologist in 
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performance during the pandemic, and that the key considerations mentioned above are 
central to maintaining benefit.  

Limitations 

There are a number of limitations to this study. First, the retrospective nature and the inclusion 
criteria may have selected a subset of individuals which may not be representative of a general 
population being triaged for COVID-19.  Second, there was a significant difference in radiologist 
performance between Malawi and Zambia.  It is unclear whether this represented a difference 
in approach to CXR interpretation or other factors. Third, although a number of developers had 
developed algorithms for COVID during the pandemic, many withdrew their software from the 
market and a comparison of more products could have added more insight into the findings. It 
is unclear how those other products would have performed against this dataset.  Lastly, most 
CAD developers now offer some strategy for local threshold setting or fine tuning.  Local fine 
tuning on a subset of images would often improves performance for a given setting and 
population. However, given the independent nature of our assessment, fine tuning on this 
dataset was not offered, but likely would have improved software performance.  
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Supporting information 
 
 
Appendix figure 1 
 

 
 
Appendix figure 1: subgroup analysis of performance of radiologist and software CAD1 and 
CAD2 at identifying COVID-19 in comparison to baseline molecular testing grouped by age. 
 
Appendix figure 2 
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Appendix figure 2: subgroup analysis of performance of radiologist and software CAD1 and 
CAD2 at identifying COVID-19 in comparison to baseline molecular testing grouped by gender. 
 
Appendix figure 3 

 
 
Appendix figure 3: subgroup analysis of performance of radiologist and software CAD1 and 
CAD2 at identifying COVID-19 in comparison to baseline molecular testing grouped by HIV 
status. 
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Appendix figure 4 

 
Appendix figure 4: subgroup analysis of performance of radiologist and software CAD1 and 
CAD2 at identifying COVID-19 in comparison to baseline molecular testing grouped by diabetes 
status. 
 
 
Appendix table 1  

Radiologist	assessment			
Negative		 Positive		

CAD1		
Negative		 95	(45%)		 151	(33%)		
Positive		 116	(55%)		 309	(67%	
CAD2	
Negative		 162	(77%)		 119	(26%)		
Positive		 49	(23%)		 341	(74%)	

Appendix table 1a: Agreement of CAD software with radiologists, at manufacturer suggested 
thresholds for COVID-19 
 
Software	 N		 Agreement		 AC1		

CAD1	 671		 60.00%		 0.28	
CAD2	 671		 75.00%		 0.53	

Appendix table 1b: Percentage agreement of CAD software with radiologists, at manufacturer 
suggested thresholds for COVID-19 and the calculated agreement coefficient. AC1: Gwet’s 
Agreement Coefficient. 
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