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Abstract

This paper introduces an innovative method for fine-
tuning a larger multi-label model for abnormality de-
tection, utilizing a smaller trainer and advanced knowl-
edge distillation techniques. It delves into the effects of
fine-tuning on various abnormalities, noting varied im-
provements based on the Original Model’s performance
in specific tasks. The experimental setup, optimized for
on-device inference and fine-tuning with limited compu-
tational resources, demonstrates moderate yet promising
enhancements in model performance post-fine-tuning.
Key insights from the study include the importance
of aligning the µ-Trainer’s behavior with the Original
Model and the influence of hyper-parameters like the
batch size on fine-tuning outcomes. The research ac-
knowledges limitations such as the limited exploration
of loss functions in multi-label models and constraints
in architectural design, suggesting potential avenues for
future investigation. While the proposed Naive Contin-
ual Fine-tuning Process is in its early stages, it highlights
the potential for long-term model personalization. More-
over, using weight transfer exclusively for fine-tuning am-
plifies user privacy protection through on-device fine-
tuning, devoid of transferring data or gradients to the
server. Despite modest performance improvements after
fine-tuning, these layers represent a small fraction (0.7%)
of the total weights in the Original Model and 1.6% in the
µ-Trainer. This study establishes a foundational frame-
work for advancing personalized model adaptation, on-
device inference, and fine-tuning while emphasizing the
importance of safeguarding data privacy in model devel-
opment.
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1 Introduction

The electrocardiogram (ECG) is a pivotal technology
in cardiac dynamics assessment, furnishing insights into
the electrical impulses originating from the myocardium.
This diagnostic modality holds substantial utility in de-
tecting cardiac irregularities and aberrations, thereby
contributing to the early diagnosis of heart abnormali-
ties and subsequent mitigation of stroke risk [1].
Despite the existence of smaller models conducive to op-
eration on edge devices, the incorporation of larger mod-
els heralds the prospect of markedly enhanced perfor-
mance metrics. Such advancements underscore the sig-
nificance of this approach within the domain of model
deployment strategies.
Previously, several studies have focused on compact mod-
els, but their performance may not match that of larger
models [2, 3, 4, 5]. In this research, we developed a sys-
tem using knowledge distillation and offsite tuning tech-
niques to fine-tune a large model on an edge device. This
approach eliminates the need to transmit user data to the
cloud, ensuring patient privacy and saving transmission
power. Fig. 1 illustrates the differentiation among con-
ventional methods, methods that share similarities with
our proposed approach, and our proposed method.
Privacy and security pose a significant challenge in the
AI-driven biomedical field, where balancing data utiliza-
tion for medical progress with safeguarding individual
privacy is paramount. Researchers actively seek solu-
tions to navigate this complex terrain, integrating AI ex-
pertise, healthcare knowledge, and legal considerations
to address privacy risks effectively [6].

1.1 Background

Several models on edge devices have been developed for
ECG analysis. Hartmann et al. [7] introduced a Dis-
tilled Deep Learning network achieving an accuracy of
over 90% for abnormal heartbeat classification. On the
other hand, Ram et al. [8] developed a model utilizing
random forest for detecting atrial fibrillation, achieving
an accuracy of 99%. However, these models may have
sub-optimal performance or can only classify a single ab-
normality. Furthermore, restricting the model’s inference
capability to the edge device would impede the device’s
capacity to learn and adjust to individual usage patterns.
Leveraging large models on edge devices typically neces-
sitates uploading data to the cloud (see Fig. 1(a)), which
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(a) Conventional (c) Proposed(b) Federated Learning

Data Breach Gradient Breach

(Data Replication) 

Figure 1: The primary emphasis of this work is on its utilization within wearable devices. a) In contrast to the
conventional practice of transmitting data outside the device for fine-tuning, which raises privacy concerns. b) In
contrast to Federated Learning, which prioritizes data privacy but necessitates continuous exchange of weight up-
dates during fine-tuning, our approach uniquely addresses the limited fine-tuning capability of devices and enhances
model personalization. c) The proposed approach uses a small trainer to fine-tune the data directly on the device.
This process updates the original model to generate more personalized inferences, with the potential for continual
learning tailored to individual usage patterns.

brings forth several challenges. Privacy becomes a sig-
nificant concern as transmitting data to the cloud for
robust model analysis can result in potential data leaks
[9]. Furthermore, the substantial network communica-
tion costs are a bottleneck for training models, thereby
calling for local edge training solutions [9]. Moreover, ex-
tensive data transmission requires a considerable power
supply in devices, imposing constraints on device design.

1.1.1 Federated Learning

To address the issue of protecting users’ privacy, a
method called Federated Learning (FL) has been de-
veloped. This method involves a collaborative and de-
centralized approach to privacy-preserving technology,
aimed at addressing challenges related to data silos and
data sensitivity as shown in Fig. 1(b) [10]. FL has been
widely adopted in healthcare, including electronic health
record management, medical image processing, and re-
mote health monitoring [11].

1.1.2 Federated Learning Vulnerability

However, it still carries the risk of leaking user data.
Zhu et al. [12] proposed Deep Leakage from Gradients
(DLG), which can recover training inputs and labels from
gradients. Boenisch et al. [13] present a method to breach
FL protected by Distributed Differential Privacy (DDP)
and Secure Aggregation (SA). Both studies demonstrate
that FL is not entirely secure for protecting user privacy.
In Federated Learning (FL), gradients are calculated us-
ing Equ. 1, where xt and yt represent a batch of input
data and true labels, respectively, and ∇Wt denotes the
gradient at a specific point in time. F () represents the
model training within the FL context.

∇Wt =
∂ℓ(F (xt,Wt), yt)

∂Wt
, (1)

∇W ′ =
∂ℓ(F (x′,W ), y′)

∂W
, (2)

Equ. 2 depicts the process where attackers prepare for
data replication, where x′ and y′ are the attacker-
constructed dummy and random input data and dummy
labels, respectively. The attacker’s knowledge about the
data batch can be gained easily due to FL’s training re-
quirements. The attacker constructs dummy input data
(x′) and dummy labels (y′) to replicate the data. Us-
ing this information, the attacker can match the shape
of the original input data and label batch when gener-
ating their dummy data and labels. The function F ()
is basically the training model used during the regular
operation of FL.
This process allows attackers to achieve the best possi-
ble match between the true gradients (∇W ) and dummy
gradients (∇W ′), as denoted in Equ. 2, by minimizing
the difference. The input data and labels can be repli-
cated through iterative minimization of this gap, as il-
lustrated in Equ. 3. This vulnerability underscores the
susceptibility of FL to attacks, as it is shown that the gra-
dients sharing during training can unintentionally create
pathways for original data replication and, subsequently,
disclosure of sensitive and personal information.

x′∗, y′∗ = argmin
x′,y′

∥∇W ′ −∇W∥2 (3)

1.1.3 Privacy-Aware µ-Trainers

In our study, we’ve introduced a system that allows for
on-device fine-tuning of large models, enhancing perfor-
mance by generating personalized results without the
need to transmit data and information externally. To
maintain strict access controls over personal data and
closely mimic real-world scenarios, we employ a dataset
that the model has not previously encountered as a sub-
stitute for private personal data. To emulate the very
constraint nature of computing power on the edge, we
used Raspberry Pi 3 Model B devices to serve as our
fine-tuning platform ( µ-Trainers).
In essence, this work presents a novel approach to ad-
dressing on-device training of sizable models while also
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demonstrating a technique to enhance the privacy and
protection of highly sensitive data significantly. In this
paper, we chose to show the results of our tests on med-
ical data. We evaluated our proposed technique on two
separate datasets of 12-lead electrocardiography (ECG):
Telehealth Network of Minas Gerais and China Physio-
logical Signal Challenge 2018 presented in Sec. 3.
We provide an overview of the proposed technique with
mathematical explanations in Sec. 1.2, followed by a de-
tailed explanation of the approach in Sec. 4.

1.2 Overview of the Proposed Approach

The proposed method, outlined in Fig. 2, is structured
into three steps to fine-tune a large model for more accu-
rate personalized usage. Throughout this process, per-
sonal data is not transferred beyond the device, miti-
gating potential privacy concerns. In addition, there is
no exchange of information during training, eliminating
privacy concerns associated with FL. During the fine-
tuning process, information regarding input data batches
xt, true labels yt, and gradients ∇Wt is kept confidential
and not shared beyond the device. Instead, fine-tuning
is carried out locally on the device using privately col-
lected data. The iterative batch-level fine-tuning process
is described in Equ. 4, and the entire local fine-tuning
procedure is outlined in Equ. 5. Subsequently, the fine-
tuned trainable weights are shared outside the device.

Wtn,i,t+1 = Wtn,i,t−α∇Wtn,i,t
L(Wtn,i,t,Wuntn, x, y) (4)

Wf = Wuntn +
N∑
i=1

T∑
t=1

(Wtn,i,t+1 −Wtn,i,t) (5)

The trainable parameters at iteration t+ 1 and t within
epoch i are denoted byWtn,i,t+1 andWtn,i,t, respectively.
Wuntn represents the fixed, untrainable model weights
from the initial pre-trained model. x represents the input
data, and y represents the labels used in the training
process. The loss function, denoted as L, may depend
on the trainable and untrainable weights, input data, and
label data. ∇Wtn,i,tL represents the gradient of the loss
function with respect to the trainable weights at iteration
t. The learning rate used in the fine-tuning process is
denoted by α. N represents the total number of epochs,
and T represents the total number of iterations within
each epoch. Wf represents the fine-tuned weights of the
model.
A smaller trainer, compact enough to enable on-device
training, is utilized to fine-tune the large model, mak-
ing local training viable. This fine-tuned trainer then
updates the weights of the large model, enhancing its
ability to provide improved and personalized inferences
on the device.
A continuous fine-tuning process, designed to handle in-
coming data streams over time, was also introduced.
This process is outlined in Fig. 3 and extends the previ-
ously described method to enable continual fine-tuning.

Table 1: Comparsion between different methodologies
(
√
: Yes; ×: No; –: Challenging)

Privacy Personalize
On-

device
Learning

Continual
Learning

Conventional – † √
– ‡ √

FL × [12] – [13] ×
√

Proposed
√ √ √ √

† The conventional method of transmitting user data exter-
nally poses significant privacy risks due to the potential for
unauthorized access by malicious entities, such as hackers,
who can exploit this direct access to sensitive user informa-
tion.
‡ Edge devices often lack the memory or computational re-
sources needed for the full model training or fine-tuning pro-
cess, as typically done conventionally.

The detailed approach is further elaborated in the Meth-
ods section. Two datasets were utilized to mimic the ex-
periment process while preserving limited personal data.
The first dataset represents the original training data for
the large model, while the second dataset is used to eval-
uate the fine-tuning results of the proposed approach.
Further details regarding these datasets are provided in
the section dedicated to showcasing the datasets.
Compared to other methodologies in this study, our pro-
posed method advances privacy protection, personaliza-
tion, on-device training, and continuous learning. A
qualitative comparison is provided in Table 1 to help bet-
ter understand the contribution of this work relative to
other comparable efforts.

2 Prerequisite

2.1 Deep Neural Network

Ribeiro et al. [14] developed a network architecture for
ECG detection comprising a sequence of layers. The ar-
chitecture begins with a convolutional layer (Conv), fol-
lowed by four residual blocks (ResBlk), each containing
two convolutional layers. The final output from the last
block is passed through a fully connected layer (Dense)
with a Sigmoid activation function σ, chosen due to
the non-mutually exclusive nature of the classes. Batch
normalization (BN) is applied after each convolutional
layer, followed by rectified linear activation (ReLU),
and dropout regularization is used after the activation.
Fig. 4(a) provides detailed insight into the ResNet layer,
which forms the basis of the entire model as shown in
Fig. 4(b), illustrating the overall model architecture.
The convolutional layers use a filter lengths 16, initially
starting with 4096 samples and 64 filters for the first
layer and block. The number of filters increases by 64
every second block, and subsampling by a factor of 4 is
done in each block. Skip connections with Max Pooling
and 1 × 1 convolutional layers are employed to ensure
the dimensions match those in the main branch of the
network [14]. This model was trained on the Telehealth
Network of Minas Gerais dataset.

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.18.24307564doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.18.24307564


Conv

ResBlk

ResBlk

ResBlk

ResBlk

Dense

Conv

ResBlk

ResBlk

Dense
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ResBlk

ResBlk

ResBlk

ResBlk

Dense

Conv

ResBlk

ResBlk

Dense

Original Model µ-Trainer Fine-tuned µ-Trainer Updated Model

• The µ-Trainer's top and bottom layers have 
inherited weight from the corresponding 
layers of the original model

• Freeze the top and bottom layers of the µ-
Trainer during training

• Apply Knowledge Distillation to train the µ-
Trainer on TNMG dataset

1
• The middle layers of the Trainer 

model were frozen during training on 
the CPSC dataset

• The fine-tuning process is proposed 
to be conducted on-device

2
• The weights of the top and bottom 

layers of the Trainer model are 
transferred to their corresponding 
layers in the original model, thereby 
updating the model

3

Step 1 Step 2 Step 3

The weights in the layers will be updated during the current step

Figure 2: The chart provides a comprehensive overview of the entire method and process, segmented into three
distinct steps. In Step 1, weights for the top and bottom layers of the µ-Trainer are inherited from the corresponding
layers of the original model. These layers are then frozen during training, and Knowledge Distillation is applied
to train the µ-Trainer on the original dataset. Step 2 involves freezing the middle layers of the Trainer model
during fine-tuning on the new dataset on-device. Finally, in Step 3, the weights of the top and bottom layers of
the Trainer model are transferred to their corresponding layers in the original model, thereby updating the model.
Green highlights in the chart signify that the weights in the layers will be updated during the current step.

2.2 Knowledge Distillation (KD)

Hinton et al. [15] developed a method that can compress
knowledge into a smaller model. The basic theorem be-
hind this is to use a larger model to train a smaller model,
which can perform better than training the smaller model
directly on the dataset. It is a method that transfers
knowledge from a cumbersome model to a smaller model,
making it more suitable for deployment.

One effective strategy for transferring the generalization
ability of a complex model to a smaller one is to utilize
the class probabilities generated by the complex model as
“soft targets” during the training of the smaller model.
This transfer process can involve either using the same
training dataset or a distinct “transfer” dataset [15]. In
cases where the complex model consists of a large ensem-
ble of simpler models, we can compute the arithmetic or
geometric mean of their predictive distributions to form
the soft targets.

Soft targets with high entropy offer significantly more in-
formation per training instance than challenging targets.
Moreover, they exhibit lower variance in gradient across
training instances. Consequently, the small model can
often be trained with substantially less data than the
original complex model, allowing for a higher learning
rate [15].

Leveraging soft targets derived from the complex model
enhances the transfer of generalization capabilities to the
smaller model, facilitating more efficient training with re-
duced data requirements and higher learning rates. The
resulting model from this method can exhibit greater ac-
curacy and behavior similarity to the large model com-
pared to a model trained directly on the dataset.

2.3 Offsite-Tuning

To strengthen the capacity for deploying substantial
models on edge computing platforms, Xiao et al. [16]
have introduced a methodology. This approach entails
the development of an adapter, which undergoes train-
ing by a large model and subsequent fine-tuning on an
edge device. Notably, the adapter’s refined weights are
relayed back to the large model, facilitating a seamless
integration between the large model and the edge com-
puting infrastructure.
The original model architecture, M = [A, ϵ], comprises
a trainable adapter A and the remaining portion ϵ of
the model. A lossy comparison is conducted with the
emulator component ϵ, resulting in a compressed rep-
resentation ϵ∗. Consequently, the new model is [A, ϵ∗],
where fine-tuning updates adapter A to A′. The updated
adapter A′ is integrated back into the original model,
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Original Model
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ResBlk

ResBlk

Dense

Fine-tuned µ-Trainer

Conv

ResBlk

ResBlk

ResBlk

ResBlk

Dense

Updated Model

Step 1

This step remains the same
• The µ-Trainer's top and bottom layers have 

inherited weight from the corresponding layers of 
the original model

• Freeze the top and bottom layers of the µ-Trainer 
during training

• Apply Knowledge Distillation to train the µ-Trainer 
on TNMG dataset

1
This step is slightly different
• The µ-Trainer, acquired in the previous step, fine-tunes on the CPSC dataset while 

keeping the middle layer weights frozen
• The µ-Trainer updates both the top and bottom layer weights of the Updated Model 

through the fine-tuned µ-Trainer
• In the second iteration, the Updated Model replaces the Original Model as the 

primary model for further training
• The Fine-tuned µ-Trainer exclusively handles weight updates and is not retained 

during this process

2

The weights in the layers will be updated during the current step

Conv

ResBlk

ResBlk

Dense

µ-Trainer

Step 2

Figure 3: The chart illustrates the proposed continual learning process, which is divided into two distinct steps. In
Step 1, the µ-Trainer inherits weights for its top and bottom layers from the corresponding layers of the original
model, freezes these layers during training, and undergoes Knowledge Distillation to train on the original dataset.
Moving to Step 2, the fine-tuned µ-Trainer, acquired in the previous step, undergoes further training on the new
dataset with its middle layer weights frozen. During this process, the µ-Trainer updates the Updated Model’s top
and bottom layer weights. Subsequently, in each iteration, the Updated Model replaces the Original Model as the
primary model for ongoing training. It’s important to note that the Fine-tuned µ-Trainer is exclusively responsible
for weight updates and is not retained beyond this process. Layers highlighted in green on the chart signify how
weights within those layers are updated.

Conv BN ReLU ResBlk Dense σResBlk ResBlk ResBlk

Conv BN ReLU Drop 
out Conv BN ReLU Drop 

out

1 × 1
Conv

Max 
Pooling

(a)

(b)

Figure 4: Ribeiro et al. [14]’s model: a) Detailed layout
within a ResBlk layer. b) Overview of the model archi-
tecture.

forming M ′ = [A′, ϵ]. This iterative process enhances
model performance on fine-tuned datasets while main-
taining similarity to the original frozen component. This
approach confines data locally, improving privacy pro-
tection [16].

To improve performance across tasks, a sandwich design
M = A1◦ϵ◦A2 is used, employing both shallow and deep

layers, where A1 and A2 are the top and bottom lay-
ers of the original model and are going to be fine-tuned
[16]. The emulator component is intentionally more mi-
nor than the original model, enhancing computational
efficiency and adaptability. A layer-drop-based compres-
sion method is considered, where a subset of layers is
uniformly dropped from the original model, and the re-
maining part is used as the emulator. Notably, retaining
the first and last layers is beneficial in this approach [16].
The emulator is further trained with KD under the super-
vision of the original component ϵ with the pre-training
dataset and mean squared error as shown in Equ. 6 as the
loss function, where xi refers to the hidden representa-
tion of the i-th input sample produced by previous layers
A1, N refers to the number of samples in the pre-training
dataset.

Ldistill =
1

N

N∑
i=1

||ϵ∗(xi)− ϵ(xi)||2 (6)

After comprehensively evaluating the prerequisites, it is
enlightening to explore a system that enables on-device
fine-tuning for improved personalized inference results.
This approach maintains data privacy and eliminates the
need to transfer large amounts of data outside the device.

5

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 20, 2024. ; https://doi.org/10.1101/2024.05.18.24307564doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.18.24307564


3 Datasets

This study utilized two distinct datasets to evaluate the
proposed models. The first dataset, known as the Tele-
health Network of Minas Gerais (TNMG) dataset [14],
is specifically designed for automatically detecting ab-
normalities in rhythm and morphology within 12-lead
ECGs. The Original Model used in the study was ini-
tially trained on this dataset.
The second dataset utilized in this research is the CPSC
dataset (12-lead ECG dataset), developed for The China
Physiological Signal Challenge 2018 [17]. This dataset
contains abnormality labels for 12-lead ECG data and
was explicitly employed for the fine-tuning process to
simulate scenarios involving new and unseen data recep-
tion.

3.1 TNMG

The full TNMG dataset consists of 2,322,513 uniquely
different labeled samples, each representing 10 seconds
of 12-lead ECG data. These samples cover six dis-
tinct types of abnormalities: Atrial Fibrillation (AF),
First Degree Atrioventricular Block (1dAVb), Left Bun-
dle Branch Block (LBBB), Right Bundle Branch Block
(RBBB), Sinus Bradycardia (SB), and Sinus Tachycar-
dia (ST) [14]. Initially, the ECG data was sampled at a
frequency of 400 Hz.
For model training, a balanced dataset was created by
randomly selecting 3000 data points for each of the six
abnormalities and an additional 3000 data points without
any abnormalities, resulting in 21,000 samples. In cases
where patients exhibited multiple abnormalities, any re-
maining samples needed to reach the subset size of 21,000
were chosen randomly from the TNMG dataset. Refer
to Table 2 for detailed information about these six ab-
normalities.
The dataset underwent normalization to a consistent
length of 4096 readings, ensuring uniformity for anal-
ysis and modeling purposes. Readings exceeding this
length were removed to streamline data processing and
comparison. Fig. 5 illustrates a balanced distribution of
genders in the resampled dataset, promoting inclusivity
and valid analysis. The dataset also reflects the age dis-
tribution observed in the general population, enhancing
representativeness for age-related analysis. Additionally,
the balanced distribution of different abnormalities in the
dataset improves the model’s learning process and overall
performance [24].

3.2 CPSC

The CPSC dataset consists of 12-lead ECGs ranging from
6 to 60 seconds, each recorded at a sample rate of 500 Hz.
For compatibility with the CPSC dataset, the TNMG
data was resampled at a rate of 500 Hz specifically for
training purposes. This dataset includes ECGs from pa-
tients diagnosed with various cardiovascular conditions
and exhibiting common rhythms, with accurate annota-

Figure 5: The TNMG subset represents a highly bal-
anced dataset containing six types of abnormalities and
exhibits a higher concentration of older patients, reflec-
tive of the general population.

tions for abnormalities. Overall, the dataset encompasses
eight distinct types of abnormalities.

The CPSC dataset, which is new and unseen by the Orig-
inal Model, is employed to assess the fine-tuning poten-
tial of the proposed methods. Despite containing eight
(8) classes of abnormalities, four (4) of these classes over-
lap with those in the TNMG dataset, making them the
key classes used to evaluate the proposed fine-tuning
strategy. The four chosen abnormalities for evaluation
are AF, LBBB, RBBB, and 1dAVb. It’s important to
note that this study does not include four other types
of abnormalities: Premature Atrial Contraction (PAC),
Premature Ventricular Contraction (PVC), ST-segment
Depression (STD), and ST-segment Elevated (STE).

As part of the data selection process, entries with miss-
ing readings were excluded, resulting in a final dataset of
6,877 distinct ECG tracings. The data was standardized
to 4,096 readings for analysis purposes, with any addi-
tional readings removed during data cleaning. Fig. 6
provides detailed insights into the distribution of abnor-
malities within the CPSC dataset.

The analysis of the CPSC dataset revealed a gender dis-
parity with a higher representation of male patients com-
pared to female patients. However, the age distribution
aligns with the general population, showing a more signif-
icant proportion of older individuals. Additionally, while
most abnormalities are well represented in the dataset, a
slight imbalance is observed in the occurrence of LBBB
compared to other abnormalities.

4 Methods

To assess the viability of our proposed technique, we’ve
developed a comprehensive experiment methodology de-
tailed in Fig. 2. The entire process adheres to the steps
illustrated in the figure.

The entire process can be segmented into three signifi-
cant steps, each of which will be elaborated upon in the
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Table 2: Abnormalities within the TNMG Dataset Categorized into Different Classifications.
Abnormality Description

Sinus Bradycardia
(SB)

Characterized by a slower firing of electrical impulses from the heart’s
sinus node, resulting in a heart rate slower than the typical resting
rate [18].

Atrial Fibrillation
(AF)

Most prevalent form of arrhythmia, characterized by a fast and irreg-
ular heartbeat [19].

Sinus Tachycardia
(ST)

Characterized by an increased resting heart rate and an exaggerated
heart rate response to mild physical exertion or changes in body pos-
ture, indicating a tachyarrhythmia [20].

Right Bundle Branch
Block (RBBB)

Disrupts normal electrical activity in the heart’s ventricles, leading to
a delay in the depolarization of the right ventricle due to interrupted
signal transmission in the His-Purkinje system [21].

First Degree Atrioven-
tricular Block (1dAVb)

Indicated by a PR interval exceeding 200 ms on a surface electrocar-
diogram [22].

Left Bundle Branch
Block (LBBB)

Causes a specific order of activation in the right ventricle preceding
the left ventricle, resulting in changes in perfusion, mechanics, and
workload within the left ventricle [23].

Abnorm

Norm

a) b)

Figure 6: Distribution of patients with studied abnormalities versus those without abnormalities or with normal
ECG readings in the CPSC dataset, along with a breakdown of specific individual abnormalities.

following subsections.

4.1 Step 1 - Training of µ-Trainer

The initial step of the entire process is conducted ex-
ternally to the device and involves creating a compact
model that mirrors the behavior of the larger model.
This smaller model will be utilized in subsequent steps for
on-device fine-tuning using personal data. This approach
enables on-device fine-tuning since the larger model de-
mands significant computational resources for training,
rendering it impractical for on-device implementation.
As a result, the larger model is exclusively used for infer-
ence on-device, while its smaller counterpart is employed
for fine-tuning personal data.

The initial model utilized in this experiment is derived
from Ribeiro et al. [14]’s research, which was designed
for abnormality detection using 12-lead ECG data. A
reduced version of the original model termed the ”Tiny
Trainer,” was developed for this study. Specifically, the
third and fourth layers of the original model were omitted
to create the µ-Trainer. As a result, while the µ-Trainer

shares a similar architectural framework with the Origi-
nal Model, it diverges regarding layer count and weight
distribution.

The training began by initializing the weights of the first
and bottom layers of the µ-Trainer with those from the
corresponding layers of the original model. Subsequently,
the weights of the top and bottom layers of the µ-Trainer
remained constant throughout the training phase. To
achieve this, a method called KD was used to train the
µ-Trainer model to mimic the original model’s behav-
ior closely. The main goal of this approach was to en-
sure a high degree of alignment in the behavior of the
middle layers between the Original Model and the mu
trainer. The entire training process was conducted us-
ing the TNMG subset, as the pre-trained Original Model
had initially been trained on the TNMG dataset.

4.2 Step 2 - On-Device Fine-tuning

The second step involves the fine-tuning process, in-
tended to be carried out on-device, allowing the model
to be personalized using individual data for personal
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use. By conducting this process on-device, there is no
need to transfer personal data externally. This approach
safeguards user privacy and conserves device energy, as
transmitting large amounts of sensitive data wirelessly
consumes considerable (electrical) power, particularly in
medical devices, which is crucial for the next generation
of wearable and implantable systems.
During this fine-tuning process, the middle layers of the
µ-Trainer are kept frozen throughout, ensuring that they
retain the knowledge and patterns learned from the orig-
inal training. Meanwhile, the top and bottom layers can
adapt and learn from the personalized data, enabling the
model to refine its predictions based on individualized in-
formation.
The CPSC dataset was employed to simulate the fine-
tuning process on personal data, enabling the observa-
tion and analysis of performance changes before and af-
ter the fine-tuning procedure. This methodology facili-
tates a thorough assessment of how the model’s perfor-
mance evolves and improves when fine-tuned using tar-
geted datasets like CPSC.

4.3 Step 3 - Updating Weights on Orig-
inal Model

In this step, the main goal is to use the fine-tuned µ-
Trainer to update the weights of the Original Model.
This will result in an updated model that delivers en-
hanced inference results tailored to personalized usage.
Depending on the subsequent action phase, the updating
process can be executed either on-device or externally.
During this step, the weights of the top and bottom layers
of the Original Model are directly replaced with the cor-
responding layers of the fine-tuned µ-Trainer. This inte-
gration of personalized learning into the Updated Model
ensures that it is optimized for future on-device inference
for personal usage.

4.4 Naive Continual Fine-tuning Process

After detailing the entire process, a continual fine-
tuning process is proposed to handle incoming new data
streams. This process is summarized in Fig. 3. The
iterative nature of this continual learning process ap-
plies the presented methodology to learn from new data
streams. The process is divided into two steps: the first
step mirrors that of the previously explained method,
while the second step combines the two steps proposed in
the method. Subsequently, the Updated Model replaces
the Original Model for the next iteration.

4.5 Evaluation Metrics

Evaluation metrics are crucial to helping with meaningful
model performance comparisons. Precision (P ) 8 and re-
call (R) 7 represent fundamental metrics for model eval-
uation, assessing predictive accuracy, and identification
of actual positives, respectively. The F1-score (F1) 9 har-
monizes precision and recall, balancing their trade-off.

R =
TP

FN + TP
(7)

P =
TP

FP + TP
(8)

F1 = 2× R× P

R+ P
(9)

Area Under the Receiver Operating Characteristic Curve
(AUROC) metric gauges a model’s ability to discrimi-
nate between negative and positive cases across various
threshold levels, commonly applied in binary classifica-
tion scenarios.
Area Under the Precision-Recall Curve (AUPRC), mea-
suring the area under the precision-recall curve, offers
critical insights into model performance, particularly in
imbalanced binary classification tasks. Higher AUPRC
scores signify a more balanced precision-recall relation-
ship.
These evaluation metrics, including F1-score, precision,
recall, AUROC, and AUPRC, are pivotal in assessing
machine learning models, especially in anomaly detection
within binary classification contexts.

5 Experiment

The experiment mirrors the overall process by dividing
it into three distinct stages, breaking the entire proce-
dure into three smaller sections aligned with each method
step.

5.1 Step 1 - Training of µ-Trainer

In this process phase, we conducted experiments on sev-
eral key aspects of the training process for the µ-Trainer
model. Firstly, we focused on the model’s architecture,
aiming to minimize the number of weights to ensure
it remains lightweight enough for on-device fine-tuning.
To achieve this, we initially tested incorporating a sin-
gle layer of ResBlk between the top and bottom layers.
However, despite significantly reducing the number of
weights, this led to a considerable decline in the model’s
performance.
Secondly, we explored using KD during the training pro-
cess of the µ-Trainer. Although it’s possible to train the
model without KD, we observed that it does impact the
model’s performance in subsequent stages.
Lastly, we delved into the choice of loss function for KD,
which is a critical factor to consider. Given that the
model is tailored for multi-labeled classification, where
individuals may have multiple abnormalities simultane-
ously, determining an appropriate loss function for dis-
tilling a multi-labeled model remains an area of ongoing
exploration. In this experiment, we made initial forays
into this domain to identify a suitable loss function from
existing methodologies.
The Kullback-Leibler (KL) divergence is a widely used
loss function in KD for classification models. However,
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based on experiments, its efficiency in distilling multi-
labeled models is limited. Therefore, we devised a cus-
tom loss function based on binary cross-entropy, which
is well-suited for training multi-labeled models.

Loss = 0.1 ∗BCE(ytrue, ystudent)

+ 0.9 ∗BCE(yteacher, ystudent)
(10)

Equ. 10 illustrates the loss function employed in distill-
ing the µ-Trainer model, with BCE denoting the Binary
Cross-Entropy Loss function. Here, ytrue denotes the ac-
tual labels assigned to each datum, while yteacher signifies
the binary predictions generated by the teacher model
(specifically, the Original Model). On the other hand,
ystudent represents the probabilistic predictions generated
by the student model (in this context, referring to the µ-
Trainer).

The design of the loss function aims to align the behavior
of the µ-Trainer model as closely as possible with that of
the Original Model while ensuring a reasonable connec-
tion to the ground truth (i.e., the true labels).

5.2 Step 2 - Fine-tuning Process

In the process of fine-tuning, we aim to adjust the µ-
Trainer model using the unfamiliar CPSC dataset. We
conducted a series of evaluations on various aspects of
this fine-tuning procedure. The CPSC dataset encom-
passes eight distinct classes of abnormalities, of which
only four align with those found in the TNMG dataset.
Consequently, our fine-tuning efforts are focused exclu-
sively on these four shared classes.

To facilitate this fine-tuning, we employed a Binary
Cross-Entropy loss function that was customized explic-
itly. This tailored loss function exclusively considers pre-
dictions related to those above four common classes while
disregarding predictions related to the remaining classes.

Batch size also plays a pivotal role in this context, with
smaller batch sizes demanding less computational power
and proving feasible for on-device training. However, ex-
cessively small batch sizes can impact the performance
of the fine-tuned model.

The utilization of the Raspberry Pi 3 Model B Rev 1.2
to experiment with the on-device fine-tuning capability
of the µ-Trainer is noteworthy. This device features
a Broadcom BCM2387 chipset with a 1.2GHz Quad-
Core ARM Cortex-A53 processor and 1GB of RAM.
These specifications render the Raspberry Pi an opti-
mal platform for conducting experiments and assessing
the performance of the µ-Trainer, especially in resource-
constrained environments.

The characteristics of the fine-tuning data also play a
crucial role in fine-tuning the µ-Trainer model. Since
the CPSC dataset is highly unbalanced, a smaller but
balanced dataset was extracted from CPSC to investigate
whether the behavior of the fine-tuned model would be
affected.

5.3 Step 3 - Weights Update

Updating the weights from the fine-tuned µ-Trainer to
the Original Model facilitates the ultimate comparison
between the Updated and Original Models. This com-
parison is primarily carried out on a separate test set
derived from the CPSC dataset, which was not utilized
during the fine-tuning process.
Furthermore, we can also analyze the behavioral differ-
ences between the models on the dataset they were ini-
tially trained on (TNMG dataset).

5.4 Naive Continual Fine-tuning Process

After completing the experiments throughout the overall
process, we propose a continuous fine-tuning approach
to fine-tune the model privately when new data streams
are collected from the device.
This experiment provides an initial demonstration of the
feasibility of such a mechanism. Due to limited data
availability, the experiment involved only a few itera-
tions, each on a subset of the dataset.

6 Result

This section will present the results obtained from the
designed experiments in the order presented in the pre-
vious section.

6.1 Training of µ-Trainer

During the initial stages of the experiment, we faced the
primary challenge of integrating KD into the training
process. Researchers have relatively understudied the ap-
plication of a KD loss function for a Multi-Label model.
Despite testing widely used loss functions for KD, such
as KL divergence, we encountered unsatisfactory train-
ing results. In particular, the µ-Trainer did not effec-
tively acquire knowledge from the Original Model. Con-
sequently, we opted to utilize the proposed loss function
for KD in training the µ-Trainer.
Given the preference for a smaller µ-Trainer for on-device
fine-tuning, we reduced the size of the Original Model by
removing several layers. Initially, we tested a µ-Trainer
with just one ResBlk layer to assess its performance com-
pared to the Original Model. This µ-Trainer was trained
using the TNMG subset, the dataset used to create the
Original Model. We then evaluated and compared the
performance of the µ-Trainer with the Original Model on
a test set within the subset. The results are presented in
the upper part of Table 3, providing a summary of the
Original Model’s performance and displaying the perfor-
mance of the µ-Trainer with a single ResBlk layer trained
using KD, tested on the test set.
Compared to the Original Model, the µ-Trainer with
1 ResBlk layer performs significantly differently, espe-
cially for the 1dAVb condition, where a substantial per-
formance gap is observed. This indicates that the µ-
Trainer fails to mimic the performance of the Original
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Table 3: Models Tested on TNMG (P: Precision, R: Recall)
Class P R F1 AUROC AUPRC P R F1 AUROC AUPRC

Original Model 1-ResBlk µ-Trainer w/ KD
1dAVb 89.98% 63.81% 74.67% 97.34% 88.54% 35.29% 1.94% 3.68% 68.61% 25.60%
RBBB 97.51% 90.53% 93.89% 99.39% 98.24% 92.25% 86.61% 89.34% 97.04% 92.86%
LBBB 96.47% 88.01% 92.05% 99.59% 98.13% 94.70% 83.63% 88.82% 98.31% 95.21%
SB 95.00% 79.78% 86.73% 99.40% 96.07% 79.02% 52.72% 63.25% 93.24% 71.63%
AF 98.00% 81.67% 89.09% 98.67% 96.58% 80.04% 55.69% 65.68% 89.69% 73.33%
ST 96.86% 85.67% 90.92% 99.66% 98.30% 83.94% 70.88% 76.86% 97.14% 86.64%
Average 95.64% 81.58% 87.89% 99.01% 95.98% 77.54% 58.58% 64.60% 90.67% 74.21%

2-ResBlk µ-Trainer w/ KD 2-ResBlk µ-Trainer w/o KD
1dAVb 81.76% 60.10% 69.27% 93.60% 78.42% 69.63% 84.81% 76.47% 95.97% 83.86%
RBBB 97.84% 89.03% 93.23% 98.58% 96.87% 95.25% 90.30% 92.71% 98.46% 96.36%
LBBB 95.13% 88.60% 91.75% 99.24% 97.17% 84.66% 96.05% 90.00% 99.21% 96.56%
SB 85.95% 81.80% 83.82% 98.09% 89.77% 66.10% 96.11% 78.33% 97.92% 90.30%
AF 94.13% 77.92% 85.26% 97.24% 92.86% 87.65% 83.75% 85.65% 97.04% 91.50%
ST 92.01% 85.21% 88.48% 98.62% 94.97% 90.07% 85.21% 87.57% 99.01% 94.69%
Average 91.14% 80.44% 85.30% 97.56% 91.68% 82.23% 89.37% 85.12% 97.93% 92.21%

Model, making it an unsuitable candidate for the fine-
tuning process. A good trainer should replicate the per-
formance of the Original Model as closely as possible.
We expanded the ResBlk layers to two and employed
distinct training strategies: one with KD and the other
without. The ensuing performance comparison is sum-
marized in the lower part of Table 3, both with the KD
strategy and without the KD strategy.
While both strategies produce effective trainers, achiev-
ing relatively high performance in the test set, there is
an observable difference. The µ-Trainer trained using
KD exhibits performance closer to the Original Model,
as both have higher precision than recall. In contrast, the
µ-Trainer trained without KD shows higher recall than
precision. This indicates that the KD-trained trainer be-
haves more similarly to the Original Model and is thus a
better candidate for the fine-tuning process.

6.2 Fine-tuning Results

The µ-Trainer trained with KD was employed as the pri-
mary model from this stage onward. As a baseline com-
parison, the Original Model was tested on the CPSC test
set to evaluate its performance without fine-tuning. Only
the four abnormalities common with TNMG were con-
sidered. The inference results are summarized in Table 4.

Table 4: Testing the Original Model on CPSC Test Set
(P: Precision, R: Recall)

Class P R F1 AUROC AUPRC

1dAVb 66.95% 86.81% 75.60% 96.46% 80.72%
RBBB 94.67% 67.51% 78.82% 89.65% 85.42%
LBBB 84.62% 75.86% 80.00% 97.27% 87.25%
AF 95.74% 83.33% 89.11% 96.39% 94.01%
Average 85.50% 78.38% 80.88% 94.94% 86.85%

As previously mentioned, the dataset’s characteristics
used for fine-tuning are crucial. In our experiment, we
fine-tuned the entire available CPSC dataset, which com-
prises 6000 data points used for fine-tuning. Addition-
ally, we created a smaller balanced dataset from the
CPSC containing 200 instances of each abnormality and

200 instances without any of the four abnormalities. The
results are presented in the upper part of Table 5.
While the fine-tuned model on the entire CPSC dataset
shows a larger average improvement overall, the model
fine-tuned on the balanced subset demonstrates a more
balanced improvement across various metrics. Notably,
an improvement is observed in almost every metric. It’s
worth mentioning that the balanced dataset comprises
only 1000 instances, which is one-sixth of the whole
dataset.
We then replicated this process on a Raspberry Pi 3
Model B Rev 1.2. The entire fine-tuning process was
completed, albeit with limited memory. The batch size
was reduced from 32 to 8 to ensure successful fine-tuning
on the device. Approximately 70-80% of the memory was
utilized during the fine-tuning process. The results for
fine-tuning the entire dataset and the balanced subset
are summarized in the lower part of Table 5.
The decrease in batch size impacts the performance of
both fine-tuned models trained on datasets of varying
sizes. However, the model trained on the balanced
dataset performs slightly better than the others. Al-
though we observe overall improvements in both fine-
tuned models, the model trained on the balanced set
performs slightly better. Notably, the 1dAVb class is
the most affected, possibly because the Original Model
exhibits the poorest performance among the four classes
we are evaluating. This highlights the model’s somewhat
limited capability for detecting the 1dAVb condition.

6.3 Fine-tuned Model

The fine-tuned models improved the fine-tuned dataset,
demonstrating their adaptability to data using the pro-
posed methodology. Subsequently, we evaluated the per-
formance of the fine-tuned model on the TNMG dataset,
which was the model’s original training dataset. This
assessment provides insights into the fine-tuned model’s
behavior following the fine-tuning process on the origi-
nal dataset. Table 6 presents a summary of the model’s
performance after undergoing fine-tuning with either the
complete CPSC dataset or a balanced CPSC subset on
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Table 5: Fine-Tuned Models Testing on CPSC Test Set (P: Precision, R: Recall)
Class P R F1 AUROC AUPRC P R F1 AUROC AUPRC

Whole-Dataset Fine-Tuned Balanced-Dataset Fine-Tuned
1dAVb 58.74% 92.31% 71.79% 96.57% 76.46% 66.13% 90.11% 76.28% 96.55% 80.51%
RBBB 92.93% 72.15% 81.24% 93.76% 90.75% 94.77% 68.78% 79.71% 90.58% 86.56%
LBBB 92.31% 82.76% 87.27% 99.58% 92.33% 84.62% 75.86% 80.00% 97.89% 87.88%
AF 96.90% 77.16% 85.91% 96.36% 94.36% 95.74% 83.33% 89.11% 96.42% 94.20%
Average 85.22% 81.09% 81.55% 96.57% 88.48% 85.31% 79.52% 81.27% 95.36% 87.29%

Whole-Dataset On-Device Fine-Tuned Balanced-Dataset On-Device Fine-Tuned
1dAVb 58.74% 92.31% 71.79% 96.50% 76.30% 58.74% 92.31% 71.79% 96.43% 75.80%
RBBB 94.89% 70.46% 80.87% 93.56% 90.50% 93.44% 72.15% 81.43% 93.81% 90.77%
LBBB 88.89% 82.76% 85.71% 99.53% 91.61% 88.89% 82.76% 85.71% 99.57% 92.62%
AF 97.62% 75.93% 85.42% 96.35% 94.39% 96.88% 76.54% 85.52% 96.23% 94.12%
Average 85.03% 80.36% 80.95% 96.48% 88.20% 84.49% 80.94% 81.11% 96.51% 88.33%

the Raspberry Pi 3. This evaluation was conducted using
the TNMG test set.

While both cases exhibit very high AUROC and AUPRC
performance, the recall of the fine-tuned models is rela-
tively low. However, when the threshold is reduced from
the original 50% to 20%, the performances for fine-tuning
with the full CPSC dataset and the balanced CPSC sub-
set are displayed in the lower part of Table 6. The recall
is now higher than previously observed while maintain-
ing a high precision reading. This indicates that after
the fine-tuning process, the models remain generalizable
to the original data used to train the Original Model, al-
though they are less confident as the probabilities they
predict are slightly lower.

Comparing the performance between the models trained
on the full CPSC dataset and the balanced CPSC sub-
set, the model fine-tuned on the CPSC balanced subset
slightly outperforms the former. Considering that the
amount of data in the balanced CPSC subset is only one-
sixth of the complete CPSC data used in fine-tuning, a
balanced dataset enhances the model’s generalizability.

6.4 Naive Continual Fine-tuning Process

To establish a scenario involving the reception of new
data streams and the application of our proposed con-
tinuous fine-tuning process to a limited dataset, we par-
titioned the CPSC dataset into two subsets, each com-
prising 3,000 data points. Each subset was subsequently
employed in one iteration to evaluate the effectiveness
of our proposed method. It is crucial to mention that
this process was not conducted on the edge, as this pre-
liminary study was focused on assessing the efficacy of
the proposed continual fine-tuning process. The compre-
hensive results of the iterative analysis are outlined in
Table 7.

As the number of iterations increases, it becomes evident
that the performance of the fine-tuned Updated Model
improves. This enhancement is notably prominent in
the AUROC and AUPRC scores, which assess the dis-
tinction between positive/negative and precision/recall.
While precision, recall, and F1 score can be adjusted
by threshold, AUROC and AUPRC demonstrate the
model’s growing confidence with each iteration.

7 Discussion

The Original Model used to demonstrate the case is a
multi-label model, showcasing that the fine-tuning pro-
cess can have varying impacts on the abnormalities we
aim to detect. It has been observed that the improve-
ment is stable and noticeable for specific abnormalities,
whereas for others, the improvement is comparatively
smaller. This observation may be linked to the Origi-
nal Model performing better on some abnormalities while
performing less effectively on others. In general, it has
been observed that when the Original Model excels in
a specific task, the fine-tuning process also yields more
favorable results.
While our proposed method has demonstrated improved
performance through fine-tuning, the extent of improve-
ment has been moderate rather than dramatic. This
can be attributed to the fine-tuning process primarily
focusing on the top and bottom layers of the model,
which have a limited number of weights. Specifically,
these layers comprise only 0.7% of the 6,425,638 total
weights in the Original Model and 1.6% in the µ-Trainer,
a scaled-down version of the Original Model. Increasing
the weights of the top or bottom layers within a model
has the potential to enhance performance, provided that
due regard is given to the computational power and mem-
ory constraints inherent to the edged device. The efficacy
of this strategy is closely intertwined with the model’s ar-
chitectural design and the computational capabilities of
the specific edged device in use.
The setup for this experiment is appropriate, especially
considering the use of a relatively less powerful device
like the Raspberry Pi 3, which can only handle on-device
training for limited weights. Fine-tuning the Original
Model on the device proved challenging despite attempt-
ing to freeze all layers except for the top and bottom
ones. However, optimizing the model by increasing the
weight density in the top and bottom layers in future it-
erations or real-world applications with more advanced
hardware should lead to more substantial performance
improvements. It’s essential to balance the number of
trainable weights and the edge device’s power consump-
tion to ensure efficient and practical training.
Our observations during the process have highlighted the
significant impact of the µ-Trainer on the overall fine-
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Table 6: On-Device Fine-Tuned Models Tested on TNMG Test Set (P: Precision, R: Recall)
Class P R F1 AUROC AUPRC P R F1 AUROC AUPRC

With Full CPSC Data With CPSC Balanced Subset
1dAVb 94.30% 29.40% 44.83% 89.52% 77.64% 93.24% 31.18% 46.73% 91.26% 79.38%
RBBB 98.26% 71.82% 82.99% 95.51% 93.56% 97.76% 75.75% 85.36% 96.38% 94.37%
LBBB 97.83% 52.63% 68.44% 93.55% 88.71% 97.99% 57.02% 72.09% 94.11% 89.45%
SB 96.25% 47.90% 63.97% 93.27% 86.81% 96.96% 49.61% 65.64% 94.08% 87.90%
AF 99.66% 41.11% 58.21% 91.39% 86.54% 99.70% 45.56% 62.54% 92.78% 88.24%
ST 98.41% 57.32% 72.44% 95.87% 91.93% 98.25% 60.55% 74.93% 96.74% 92.99%
Average 97.45% 50.03% 65.15% 93.19% 87.53% 97.32% 53.28% 67.88% 94.22% 88.72%

With Full CPSC Data (Threshold 20%) With CPSC Balanced Subset (Threshold 20%)
1dAVb 84.23% 63.00% 72.09% 89.52% 77.64% 84.21% 64.62% 73.13% 91.26% 79.38%
RBBB 93.69% 83.95% 88.55% 95.51% 93.56% 93.63% 84.87% 89.04% 96.38% 94.37%
LBBB 93.60% 74.85% 83.18% 93.55% 88.71% 93.89% 74.12% 82.84% 94.11% 89.45%
SB 92.93% 71.54% 80.84% 93.27% 86.81% 93.28% 73.41% 82.16% 94.08% 87.90%
AF 95.68% 64.58% 77.11% 91.39% 86.54% 96.50% 65.14% 77.78% 92.78% 88.24%
ST 94.07% 78.27% 85.45% 95.87% 91.93% 93.68% 79.97% 86.28% 96.74% 92.99%
Average 92.37% 72.70% 81.21% 93.19% 87.53% 92.53% 73.69% 81.87% 94.22% 88.72%

Table 7: Average Performance of Proposed Continual
Learning Process (P: Precision, R: Recall)

Iteration P R F1 AUROC AUPRC

Zero 85.50% 78.38% 80.88% 94.94% 86.85%
One 84.94% 79.16% 80.87% 95.90% 87.70%
Two 85.31% 79.95% 81.06% 96.56% 88.75%

tuning performance. We found that the closer the µ-
Trainer’s behavior aligns with the Original Model, the
more favorable the fine-tuning results tend to be. Con-
versely, deviations in behavior between the µ-Trainer and
the Original Model lead to a noticeable decrease in fine-
tuning performance. If the µ-Trainer exhibits a sub-
stantial performance disparity compared to the Original
Model, this method may not be viable. Consequently,
during the model design phase, it is imperative to ensure
that the performance of the µ-Trainer closely aligns with
that of the original model.
In addition to the µ-Trainer, we discovered that other
hyper-parameters, such as batch size, also play a cru-
cial role in determining the performance of our proposed
method. Due to limited RAM in the devices, we had
to use a batch size of 8 for on-device fine-tuning, which
unfortunately resulted in a decrease in the overall per-
formance of the proposed method.
It’s important to acknowledge that our proposed naive
continual learning process is still in its preliminary
stages. While we believe it holds promise for integra-
tion into a long-term fine-tuning personalization process,
we used only two (2) subsets in the iterative fine-tuning
process due to limited data availability. Despite demon-
strating favorable results, we acknowledge ample room
for further refinement and improvement of this method.

7.1 Privacy Protection

The proposed method, although preliminary, sheds light
on addressing privacy issues. This method eliminates
the need for data transmission from local devices to the
cloud, which is the conventional approach, thus alleviat-
ing significant privacy concerns. Additionally, it tackles

the challenges of FL, as previous research has indicated
potential data replication through the gradients shared
in the FL process [12] [13].
Moreover, FL needs to address the capacity constraints of
local training, particularly in scenarios involving devices
with comparatively lower computational capabilities. In
contrast, the proposed method simultaneously addresses
the local training capacity and privacy protection issues,
making it a promising solution in this domain.
Applying the proposed method, the model update pro-
cess is streamlined, avoiding iterative gradient updates
typical in FL. Instead, only segments of the trained
weights, generated after the fine-tuning process, are
shared beyond the device. This strategic approach effec-
tively mitigates data leakage risks, a contribution high-
lighted in various research papers [12] [13].

8 Limitations and Future Works

This study employs a multi-label model as its founda-
tional framework. It is important to note that the knowl-
edge distillation loss function, specifically in the context
of multi-label models, remains an area that has yet to
be explored. The choice of loss function significantly im-
pacts the characteristics of the µ-Trainer, subsequently
influencing the performance of the fine-tuning process.
Through further research and exploration into the intri-
cacies of the loss function, there is potential to enhance
the overall performance of the proposed method.
The architecture design of the model was adapted
from Ribeiro et al. [14]’s work rather than being specif-
ically designed for the proposed methodology. As men-
tioned previously, the weights in the top and bottom lay-
ers of the model constitute only a small fraction of the
total number of weights, thereby limiting the capacity
for fine-tuning. It is crucial to consider the design of
the architecture in conjunction with the device’s com-
putational power. A balanced arrangement would yield
optimal results.
The proposed Naive Continual Fine-tuning Process is
currently at its preliminary stage, serving as a vision
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for future development. Due to the limited amount of
streamed data utilized at this stage, there is a possibil-
ity that both the process and methodology may not be
optimized, leaving ample room for future research and
refinement.

9 Conclusion

This paper introduces a cutting-edge approach that
leverages a smaller trainer and advanced knowledge dis-
tillation techniques to fine-tune a larger model to detect
abnormalities. This model leverages a smaller trainer to
perform on-device fine-tuning using personalized data,
thereby facilitating efficient on-device inference. The re-
sults of fine-tuning the larger model indicate a notable
improvement, achieving an average AURPC of 96.51%
compared to the pre-fine-tuning result of 94.94%. The
impact of fine-tuning varies across different abnormali-
ties, indicating that the extent of improvement relies on
the Original Model’s performance in specific tasks. No-
tably, ensuring alignment between the behavior of the
µ-Trainer and the Original Model results in more fa-
vorable fine-tuning outcomes, underscoring the signifi-
cance of maintaining consistency in model behavior dur-
ing the fine-tuning process. While this method demon-
strates promising potential in enhancing model perfor-
mance through fine-tuning, further refinement and ex-
ploration is crucial to fully unlock its capabilities, es-
pecially in the proposed Continual Fine-tuning Process.
This research lays the groundwork for future advance-
ments in personalized model adaptation and more pre-
cise on-device inference and emphasizes the importance
of protecting user data privacy and reducing the cost of
transmitting data throughout these developments.

10 Availability of Code

You can access the code through this link:
https://github.com/NeuroSyd/microTrainer. Please
be aware that specific terms, conditions, or usage
restrictions may apply to the code.

11 Availability of Data

This research paper uses the public CPSC dataset but
acknowledges that the TNMG dataset is private and re-
quires permission from its owner for access.
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