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Abstract 

Although disease-causal genetic variants have been found within silencer sequences, we still lack a 
comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 
2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and 
developmental time points, using deep learning models.  

We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several 
diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% 
of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson’s-disease-hallmark 
genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than 
enhancers displaying an overall 2-fold enrichment in silencers versus enhancers. The disruption of 
apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be 
attributed to variants within candidate silencers. Our model permits a mechanistic explanation of 
causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated 
with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to 
individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson’s 
disease, rs2535629 in schizophrenia, and rs6207121 in Type 1 diabetes.  

In summary, our results indicate that advances in deep learning models for discovery of disease-causal 
variants within candidate silencers effectively 'double' the number of functionally characterized GWAS 
variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and 
therapeutics.  

 

Keywords: deep learning, disease-causal single-nucleotide polymorphisms (SNPs), dual functional 
regulatory elements, gene regulation, silencers.  

Introduction 

A common but often elusive goal of biological investigations is to uncover the genetic basis 
of disease phenotypes (Zhang and Lupski 2015; Claussnitzer et al. 2020).  This is challenging 
due to the inherent complexity of human genetics. Although genome-wide association studies 
(GWASs) offer valuable genetic insights into diseases and disorders, they struggle to pinpoint 
causative variants due to linkage disequilibrium among genetic variants. Notably, a significant 
majority of GWAS variants, exceeding 90%, occur within noncoding genomic regions (Watanabe 
et al. 2019). To accurately map disease-causing variants, it is vital to characterize the function of 
non-coding regions. Up to now, the investigations have primarily focused on well-characterized 
non-coding regulatory elements including enhancers, promoters, and insulators (Maurano et al. 
2012; Farh et al. 2015; Finucane et al. 2015; Fulco et al. 2019; Konrad et al. 2019). These studies 
consistently underscore the impact of regulatory elements on disease susceptibility.  

Evidence has also indicated pathological roles of silencers, however. For instance, a rare 
silencer variant disrupts binding of NR2F1 and affects the expression of GATA2 in neurons 
leading to hereditary congenital facial paresis type 1 (Tenney et al. 2023). Another variant 
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deactivates a silencer in breast cells, causing the overexpression of ESR1 and RMND1 in breast 
cancer (Dunning et al. 2016).  

Despite these and a few similar discoveries, silencers have been underexplored in genetic 
and genomic research, in general, primarily due to the difficulties in systematically profiling 
these elements across the whole genome (Della Rosa and Spivakov 2020). Recent advancements 
in massively parallel reporter assays (MPRAs) and computational analysis tools have allowed 
genome-wide mapping of silencers (Doni Jayavelu et al. 2020; Pang and Snyder 2020; Huang 
and Ovcharenko 2022; Hussain et al. 2023; Zhu et al. 2023), opening doors to in-depth 
investigations into the association of silencers with diseases and phenotypic traits in humans.  

Understanding the regulatory effects of non-coding variants is a key challenge in genetic 
research, essential to discovering molecular causes of diseases (Zhou et al. 2018; Li et al. 2023). 
Here, we apply a deep learning framework to a diverse collection of 97 biological samples 
(biosamples), building a deep learning model in each biosample to detect biosample-specific 
candidate silencers. Our results demonstrate that candidate silencers are enriched in disease-
associated regulatory single-nucleotide polymorphisms (SNPs), but their disease-association 
profiles differ from those of enhancers. We demonstrate how silencer modeling can be used to 
predict the regulatory impact of variants within candidate silencers and to identify disease-causal 
variants.   

 

Results 

Genome-wide silencer landscape in 97 cell types. 

We trained two-phase deep learning TREDNet models (Hudaiberdiev et al. 2023) to predict 
enhancers and silencers, building a multi-class classifier for each of the biosamples collected by 
the ENCODE project (see Methods). Albeit lower than the 0.96 enhancer AUROC, the accuracy 
of silencer prediction was on par with our prior models (0.84 area under receiver operating 
characteristic curve, AUROC) (Huang and Ovcharenko 2022), and was significantly better than 
AUROC = 0.77 of our prior SVM model (Huang et al. 2019). While the SVM model employs 
DNA sequences and gene expression profiles for silencer prediction, the TREDnet model is 
DNA sequence-based, and thus can be readily extended to additional biosamples. These 
AUROC values exhibit a positive correlation with GC content levels and a negative correlation 
with repeat density (Figure 1A). This partially explains lower classification performance on 
silencers than on enhancers since enhancer sequences (defined as DNase-seq and H3K27ac 
ChIP-seq peaks) generally feature higher GC content and lower repeat density than silencers 
(defined as DNase-seq and H3K27me3 ChIP-seq peaks that lack overlap with H3K27ac peaks, 
see Methods). With the trained TREDNet models, we identified enhancers and silencers in each 
biosample, and conservatively selected 97 biosamples with over 5000 candidate enhancer and 
silencers in them for further investigation (Table S1). These biosamples encompass a diverse 
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array of human cell types, including but not limited to 21 immune biosamples (19 blood cells, 
spleen and thymus), 17 digestive, metabolic and endocrine biosamples, and 6 biosamples from 
the central nervous system (Figure 1B and Table S1). Among them, 20 (20%) biosamples are 
from cancer cell lines.  

We identified a total of 2.8 million candidate silencers and 5.8 million enhancers 
(Supplementary Data 1), collectively spanning approximately 37.6% of the human genome. In 
cancer biosamples, 10% exhibit a higher count of silencers than enhancers, a proportion notably 
lower than the 17.9% of all examined biosamples (binomial test 𝑝 = 0.007, Figure S1). This 
finding is consistent with gene overexpression in cancer cells (Santarius et al. 2010), which 
might be due to silencer loss or deactivation in cancer. On average, 57.7% of candidate silencers 
and 42.9% of candidate enhancers are located within intergenic regions (binomial test 𝑝 <
10!"#, Figure S2). Nonetheless, silencers and enhancers exhibit comparable distances to their 
nearest transcriptional start site (TSS), with approximately half of them residing within 26 kb of 
their nearest TSSs (Figure 1C).    

Examining the evolutionary conservation, we noticed that an average of 8.7% of candidate 
silencer sequences and 10.6% of enhancer sequences overlap genomic regions conserved across 
30 primate species (Siepel et al. 2005), significantly exceeding the 5.7% expectation stemming 
from the whole human genome (Student’s t-test 𝑝 < 10!"#, Figure S3). This underscores the 
negative selective pressure imposed on  functional genomic regions to preserve their biological 
function (Siepel et al. 2005), but also reflects a rapid turnaround of regulatory elements in 
vertebrates (Villar et al. 2015). In 63.6% (15/22) of immune biosamples, candidate silencers are 
more conserved than enhancers, significantly higher than the 34% of all biosamples (binomial 
test 𝑝 = 3 × 10!$). This finding highlights the significance of candidate silencers in 
immunological context. For example, the loci of PCDHA/G genes, which is highly conserved in 
vertebrates (Yu et al. 2007) and plays an important role in epithelial barrier formation and repair, 
displays the enrichment in candidate silencers, but not enhancers, in immune biosamples (Figure 
S4). The trend is also evident in the highly conserved loci of HOXA and HOXD clusters (Figure 
S4), developmentally essential genes associated with embryonic development (Quinonez and 
Innis 2014).  

 

Functional evaluation of silencer predictions. 

To assess the impact of candidate silencers, we initially analyzed the expression of genes 
located near these elements across 66 biosamples with available gene expression profiles from 
the ENCODE project (see Supplementary Notes) since genes associated with active silencers are 
likely to be lowly expression. Across all examined biosamples, genes neighboring candidate 
silencers exhibit significantly lower expression than all assayed genes (𝑝 < 0.05, Figure 1D). 
Similarly, genes targeted by candidate silencers, as determined by Hi-C chromatin loops 
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(Salameh et al. 2020), consistently display notably low expression across all tested biosamples 
(𝑝 < 0.05, Figure S5). 

Furthermore, we directly evaluated the activity of candidate silencers by utilizing the 
experimental results from MPRA platforms designed to measure silencing or activating impact 
of genomic regions. In K562 and HepG2 biosamples, candidate silencers frequently exhibit 
negative scores reported by the Sharpr-MPRAs (Ernst et al. 2016). These scores are significantly 
lower than those observed in enhancers and all tested regions (Wilcoxon rank-sum test 𝑝 ≤
0.05, Figure 1E), supporting the active silencing function of candidate silencers. Similarly, in 
GM12878, significant negative ATAC-STARR-seq scores, which represent “silent” genomic 
sequences (Hansen and Hodges 2022), are enriched among candidate silencers (𝑝 = 4 × 10!"% 
vs all tested sequences, Figure 1E).  

Additionally, we compiled 7,701 K562 silencers from two independent MPRA studies based 
on ReSU (Pang and Snyder 2020) and STARR-seq (Doni Jayavelu et al. 2020). Of them, 541 
overlap with K562 predicted silencers, which represents a significant enrichment compared to 
the DNase-seq peaks randomly selected from alternative biosamples and H3K27me3 ChIP-seq 
peaks not predicted as silencers in K562 (binomial test 𝑝 < 10!"#, Figure S6A). Similarly, in 
HepG2, predicted silencers are significantly enriched with silencers detected by the ReSU 
MPRA (Pang and Snyder 2020) (𝑝 < 10!"#, Figure S6B).  

Moreover, we validated the TREDnet silencer model on an independent experimental dataset 
of MPRA silencers. After excluding MPRA silencers overlapping sequences used for training 
the TREDnet model, we had 6,999 K562 MPRA silencers remaining for validation. On this 
subset of MPRA silencers, the TREDnet model demonstrates a classification performance of 
AUROC = 0.74 and AUPRC = 0.30 with the 1:9 ratio of positive to control samples. It shows a 
marginal improvement over our prior CNN classifier (Huang and Ovcharenko 2022) and 
significantly outperforms our prior SVM model (Huang et al. 2019), and general H3K27me3 
signal profiles (Figure 1G). Furthermore, the TREDnet silencer model can effectively 
distinguish both H3K27me3 and non-H3K27me3 MPRA silencers from control sequences 
(Figure S7). These results reaffirm that the TREDnet silencer model can identify active silencers 
with respectable accuracy. 

To further investigate whether candidate silencers actively suppress gene expression as 
opposed to being genomic regions of repressed chromatin, we analyzed the abundance of 
transcription factor binding sites (TFBSs) and chromatin contacts, under the assumption that 
repressed chromatin regions host significantly fewer TFBSs and chromatin contacts than active 
enhancer and silencer regions. In each of tested biosample with ChIP-seq data for more than 50 
TFs available from the ENCODE project, candidate silencers contain, on average, 3.5 times as 
many TF ChIP-seq peaks as H3K27me3 ChIP-seq peaks lacking candidate silencers (Wilcoxon 
rank-sum test 𝑝 < 10!"#, Figure 1E). Additionally, the density of Hi-C chromatin contacts 
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within predicted silences is 1.5 times greater than the corresponding density within H3K27me3 
ChIP-seq peaks lacking candidate silencers (binomial test 𝑝 < 0.05, Figure S8).  

Overall, these results support that the TREDnet predicted silencers predominantly act as 
active silencers and not simply heterochromatic regions of the genome. Therefore, we refer to 
them as candidate silencers. 

 

Candidate silencers are associated with development.  

To evaluate biological functions associated with candidate silencers, we turned to their 
nearby genes. Genomic proximity to a specific class of genes, although not comprehensive 
enough to capture long-range chromatin interactions, are commonly used to examine biological 
functions of regulatory elements (McLean et al. 2010). We defined the locus of a gene as its gene 
body along with the entire intergenic areas between this gene and its nearest neighbors. On 
average, 6.3% of gene loci are enriched in candidate silencers with a significancy of 𝑝 < 10!& 
compared to the whole genome (referred to as “silencer-rich gene loci”). This percentage is 
substantially higher than the 4.7% of gene loci showing enhancer enrichment (Student’s t-test 
𝑝 = 0.0007, Figure 2A). Across biosamples, silencer-rich loci harbor 51.7% of all silencers, 
notably higher than the 25.8% of enhancers found in enhancer-rich loci (Student’s t-test 𝑝 =
2 × 10!'', Figure 2A), suggesting a pronounced trend of candidate silencer accumulation in 
specific gene loci.  

Among the gene loci displaying the highest frequency of candidate silencer enrichment 
across biosamples are PAX2, PAX7, EN2, HIF1AN, LHX5 (Figure 2B). All of them are known as 
essential for development. Gene loci significantly enriched in candidate silencers in over-9 
biosamples from different groups are denoted as multi-biosample silencer-rich gene loci. In total, 
there are 2,775 such gene loci (Figure 2C). These genes are associated with fundamental 
developmental processes and neurological system development (DAVID hypergeometric test 
𝑝 < 10!%, indicated by blue arrows, Figure 2D)(Sherman et al. 2022). Additionally, these gene 
loci are notably associated with immune system regulation (𝑝 = 0.002). For example, the loci of 
cell-differentiation regulators TCF3 and GATA2 show elevated densities of candidate silencers in 
90% and 54.6% of examined biosamples, respectively. The IRF4 locus, crucial for the immune 
system, displays a significant enrichment in candidate silencers in 71.4% of CNS cells.  

On the other hand, multi-biosample enhancer-rich gene loci are involved in housekeeping 
biological processes such as signal transduction, cell-cell adhesion, and protein phosphorylation 
(𝑝 < 10!(, Figure 2D). Furthermore, there are a total of 709 gene loci that are both multi-
biosample enhancer-rich and silencer-rich, thus termed as multi-biosample enhancer-silencer-rich 
(Figure 2C). These genes often take part in tissue-specific developmental processes (indicated by 
green arrows in Figure 2D). For example, the locus of GATA4, a key factor in heart, pancreatic 
and hepatic development, is enhancer-rich in cardiovascular biosamples but silencer-rich in 50% 
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of other biosamples (Figure 2E). The locus of WNT7B, encoding a signal protein crucial for 
tissue development, is silencer-rich in 79.4% of biosamples and enhancer-rich in 53.6% of them. 
In summary, candidate silencers are preferentially distributed in the proximity of the genes 
controlling fundamental and tissue-specific developmental processes, significantly associated 
with the regulation of these genes. These results suggest that the regulation of developmental 
genes is often tightly orchestrated with an array of enhancer and silencer elements establishing a 
complex multi-cellular regulatory profile. 

 

Silencer-to-enhancer transitions are a hallmark of cellular differentiations. 

Functional transitions between enhancers and silencers across biological contexts are 
pivotal in the precise and expeditious regulation of developmental processes (Erceg et al. 2017; 
Huang and Ovcharenko 2022). A substantial portion of candidate silencers and enhancers 
reported here have dual functions. Specifically, 55% of candidate silencers and 42% of 
enhancers are dual functional regulatory elements (DFREs), acting as enhancers in certain 
biosamples but as silencers in others (Figure S9). 

Moreover, 68% of candidate silencers of H1 human embryonic stem cells (H1-hESCs) are 
converted to enhancers in partially or fully differentiated biosamples examined in this study. 
These enhancers contain significantly more TFBSs than other enhancers in five out of six tested 
biosamples (𝑝 < 10!"#). This significance remains evident even when compared to the 
enhancers that are converted from H1-hESC poised enhancers (PEs, defined as H3K4me1 ChIP-
seq peaks carrying no H3K27ac modification signals in H1-hESCs). For example, in K562 cells, 
each hESC-silencer-converted enhancer harbors an average of 58 TF ChIP-seq peaks, 
significantly more than the 35 found in all K562 enhancers and the 42 in K562 hESC-PE-
converted enhancers (𝑝 < 10!"#, Figure 3A). Moreover, compared to other enhancers 
(including PE-converted enhancers), hESC-silencer-converted enhancers are enriched in TF 
ChIP-seq peaks of dual functional TFs like YY1 and chromatin organizers such as CTCF, 
RAD21, and ZNF143. On the other hand, these enhancers lack TF ChIP-seq peaks of cell-
specific transcriptional activators like CEBPB in HepG2 cells, ESR1 and NEUROD1 in MCF-7 
cells, BACH1 and EBF1 in K562 cells, IRF4 and BCL11A in GM12878 cells (Figure 3B). 
Furthermore, in 94% (65/69) of the biosamples for which CTCF ChIP-seq data are available in 
the ENCODE project (Table S2), hESC-silencer-converted enhancers show significantly higher 
densities of CTCF ChIP-seq peaks compared to all enhancers, including hESC-PE-converted 
ones (Figure 3C), with an average enrichment fold of 1.8. The pronounced enrichment in TF 
ChIP-seq peaks, particularly for CTCF, hints that hESC-silencer-converted enhancers frequently 
serve as anchors for chromatin loops, a crucial aspect in chromatin organization (Clyde 2023). 

To further verify this interpretation, we analyzed chromatin contacts of enhancers (as 
defined by Hi-C data, see Methods). In the biosamples where over 20% of enhancers have 
reported Hi-C contacts, hESC-silencer-converted enhancers display the highest density of Hi-C 
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contacts (𝑝 < 10!"#, Figure 3D). Importantly, they hold at-least-3 chromatin contacts more 
frequently than other enhancers (𝑝 < 10!"#). In K562 cells, 14% of hESC-silencer-converted 
enhancers have at-least-3 chromatin contacts, significantly higher than the 9.2% of all 
enhancers and the 10.1% of hESC-PE-converted enhancers (𝑝 < 10!"#, Figure 3D). These 
trends persist in biosamples where fewer than 20% of enhancers have Hi-C contacts, although 
statistical significance diminishes possibly due to limited detection of chromatin contacts 
(Figure S10). These results reaffirm that hESC-silencer-converted enhancers often serve as 
anchors for chromatin loops.  

To further assess the functional significance of hESC-silencer-converted enhancers, we 
utilized the single nucleotide polymorphisms (SNPs) annotated in GWASs. We downloaded 
GWAS SNPs documented in the National Human Genome Research Institute (NHGRI) catalog 
(McMahon et al. 2018) and in UK Biobank release 2 cohort (Bycroft et al. 2018).  After the 
inclusion of the SNPs in tight linkage disequilibrium (LD r' > 0.8) with GWAS SNPs, a total 
of 2.2 million GWAS SNPs were compiled, which are associated with 1,116 distinct traits 
(Figure S11, see Methods). HESC-silencer-converted enhancers exhibit a significant increase 
(𝑝 < 0.01) in the density of GWAS SNPs compared to all enhancers in 75% (69/92) of 
differentiated biosamples (Figure 3E). This increase remains significant even when compared to 
H1-hESC-PE converted enhancers (𝑝 < 10!"#). In 73% (67/92) of differentiated biosamples, 
GWAS SNP densities in hESC-silencer-converted enhancers are significantly higher than those 
in hESC-PE-converted enhancers. These findings support the functional importance of these 
enhancers, partially due to their role as anchors for chromatin loops. 

 

GWAS studies suggest a critical role of candidate silencers in neurological and autoimmune 
disorders.   

We further utilized GWAS SNPs to assess the phenotypic impact of all candidate silencers. 
On average, candidate enhancers and silencers in examined biosamples harbor 3.4 and 3.0 
NHGRI GWAS SNPs per 1kb, respectively. Both values are significantly higher than the 2.4 
whole genome GWAS SNPs density (Student’s t-test 𝑝 < 10!'#, Figure 4A).  

Similarly, candidate silencers exhibit significant enrichment in expression quantitative trait 
loci (eQTLs) obtained from the GTEx project (The GTEx Consortium 2015) compared to the 
whole genome across 28 out of 40 examined biosamples (Figure S12A, see Supplementary 
Notes). Additionally, candidate silencer eQTLs achieve significance levels akin to enhancer 
eQTLs across these biosamples (Figure S12B). Silencer eQTLs are, however, more tissue-
specific than enhancer eQTLs in 90% of examined biosamples (36/40; 𝑝 < 0.05, Figure S12C). 
Furthermore, we explored the distribution of GWAS SNPs deposited to the ClinVar archive 
(Landrum et al. 2020). Candidate silencers host 1.47 ClinVar SNPs per 1 kb. This density 
exceeds 1.29 ClinVar SNP per 1 kb within enhancers, with both densities significantly surpassing 
the expected 0.76 ClinVar SNP per 1 kb baseline from the whole genome (𝑝 < 10!&, Figure 
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S13A). We also examined the distribution of cancer somatic variants compiled in the ICGC 
database (Zhang et al. 2011). These cancer variants show significant enrichment within candidate 
silencers in the matched biosamples for seven out of eight examined cancers (Figure S13B). For 
example, the density of myeloid variants in K562 candidate silencers is 1.3 times that expected 
from the whole genome baseline. Taken together, these findings suggest an observable 
phenotypic impact of candidate silencers. 

Notably, GWAS SNPs associated with different traits have varying enrichment levels in 
candidate silencers and enhancers across biosamples (Table S3). For example, SNPs associated 
with Alzheimer’s disease are predominantly located in CNS and immune system enhancers (𝑝 <
10!"# versus the whole genome as marked by a solid symbol, Figure 4B). In contrast, SNPs 
associated with Parkinson’s disease (PD) are preferentially located in candidate silencers in five 
out of six CNS biosamples (𝑝 < 10!& versus the whole genome and enhancer counterparts) and 
within enhancers in immune biosamples (Figure 4B). SNPs associated with brain volume traits, 
such as intracranial, hippocampal, thalamus, and subiculum volume, are notably biased towards 
candidate silencers in five out of six CNS biosamples (𝑝 < 10!& versus the whole genome and 
enhancer counterparts, Figure 4B).  

To further dissect the genetic basis of PD, we evaluated the enrichment levels of associated 
SNPs within candidate silencers and enhancers in each gene locus (see Methods). In the locus of 
TLR9, a gene known for its involvement in the degeneration of dopamine neurons in PD 
(Maatouk et al. 2018), PD-associated SNPs mainly cluster in CNS enhancers (Figure 4C). In 
contrast, the TRIM31 locus, responsible for metal ion binding, harbors a total of 104 PD-
associated SNPs, a number significantly higher than the genome-wide average (𝑝 < 10!(#). Of 
these SNPs, 18 are located within SK-N-SH candidate silencers, which is notably higher than 8 
SNPs as expected in the TRIM31 locus. Interestingly, no PD-associated SNPs are found within 
the TRIM31 SK-N-SH candidate enhancer. This pronounced bias to CNS candidate silencers is 
also observed in the loci of MAL and MAPT, both associated with neurogenesis (Figure 4C). 
These findings consistently underscore the significant role of CNS candidate silencers in PD, 
particularly in relation to metal ion binding and neurogenesis, two factors closely linked to PD 
(Figure S14)(Marxreiter et al. 2013; Moons et al. 2020).   

We also analyzed the genetic mechanisms underlying differences in brain volume. The SNPs 
associated with brain volume are enriched within candidate enhancers in the loci of CTBP2 and 
ZRANB1 in CNS biosamples and KANSL1 in immune biosamples. These SNPs are enriched in 
candidate silencers in the locus of DMRAT2 in CNS biosamples (Figure S15). DMRTA2 is key in 
controlling the cell cycle during neuronal differentiation. Its dysregulation may lead to severe 
microcephaly (Young et al. 2017), suggesting the crucial contribution of CNS candidate silencers 
to brain volume measurement and, more broadly, the development of CNS.  

Similarly, across autoimmune disorders, candidate enhancers and silencers in immune and 
endocrine biosamples show varying enrichments for GWAS SNPs. For example, while enriched 
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within both candidate enhancers and silencers (𝑝 < 10!& vs the whole genome), SNPs 
associated with rheumatoid and system lupus erythematosus (SLE) exhibit a distinct predilection 
for immune enhancers but for endocrine candidate silencers (silencers vs enhancers: 𝑝 < 10!&, 
Figure S16). On the other hand, osteoarthritis-associated SNPs prefer candidate silencers over 
enhancers in immune system biosamples (silencers vs enhancers: 2.3 vs 2.0 of the average 
enrichment, binomial test 𝑝 = 10!'#). Takayasu’s arteritis (TAK) associated SNPs are 
preferentially situated within candidate silencers in immune system biosamples (silencers vs 
enhancers: 3.9 vs 2.4 of the average enrichment, 𝑝 = 10!"", Figure 4D). Especially, in the 
MICA locus, TAK-associated SNPs are clustered within candidate silencers, rather than 
enhancers, in immune system biosamples (Figure S17). Given that the upregulation of MIC 
family in blood vessels contributes to the stimulation of natural killer cells in TAK (Yoshifuji and 
Terao 2020), it is plausible that the deactivation of candidate silencers in immune system 
biosamples could underlie the etiology of TAK. 

Interestingly, SNPs associated with type 1 diabetes (T1D), a T-cell-mediated autoimmune 
disease that attacks pancreatic 𝛽 cells (Steck and Rewers 2011), are notably prevalent within 
both candidate silencers and enhancers across immune system and endocrine biosamples (Figure 
4D). However, these SNPs display varying preferences for candidate silencers and enhancers 
within individual gene loci (Figure 4E). Gene loci enriched with T1D-associated enhancer SNPs 
govern immune processes and/or the activity of receptors (Figure 4F). Instances include IRF4, 
CD5, CD6 and CTSH. In contrast, T1D-associated silencer SNPs congregate conspicuously 
within the loci of INS, IGF2, and several other genes responsive to or producing hormones, 
notably insulin. Overexpression of IGF2 renders pancreas islets susceptible to immune 
onslaught, thereby potentially serving as a key biomarker of T1D pathogenesis (Casellas et al. 
2015). Our finding proposes that silencer variants in IGF2 locus may contribute to T1D risk and 
identify a handful of specific silencer SNPs, which could be targeted in follow-up clinical and 
biochemical studies.  

In short, candidate silencers and enhances, thought governing distinct functions, jointly 
drive crucial biological progress in complex diseases, as exemplified here by PD, T1D and TAK. 
However, silencers’ contributions to these diseases are not identical to those of enhancers. 

 

Candidate silencers underly the genetic difference between bipolar disorder and 
schizophrenia.  

To demonstrate the application of candidate silencer (and enhancer) profiles in a disease 
genetic study, we investigated regulatory mechanisms of bipolar disorder (BPD) and 
schizophrenia (SCZ). These two neurodevelopmental disorders, with a genetic correlation of 
over 0.6 based on common SNPs (Lee et al. 2013), share substantial overlap in both genetics and 
symptomology. The identification of shared and distinct genetic components between SCZ and 
BPD constitutes a fundamental stride toward deciphering the mechanisms of these diseases and 
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formulating targeted therapeutic interventions (Ruderfer et al. 2018). To address this objective, 
we utilized candidate silencer and enhancer profiles in CNS, immune system and endocrine 
biosamples, given the notable involvement of endocrine and immune systems in these disorders 
(Kemp et al. 2010; Severance et al. 2020). SNPs associated with SCZ and/or BPD are enriched 
in candidate silencers and enhancers across endocrine and immune biosamples (Figure 5A). 
SCZ-associated SNPs are enriched in CNS candidate enhancers, while BPD-associated SNPs are 
preferentially distributed within CNS candidate silencers (𝑝 < 0.001 vs the whole genome, 
Figure. 5A).  

To further elucidate genetic factors contributing to SCZ and BPD, we analyzed the 
distribution of their associated SNPs in each gene locus. Both SCZ- and BPD-associated SNPs 
display enrichment within enhancers in the loci of genes responsible for housekeeping biological 
activities like intrinsic apoptosis and hyaluronan metabolic process (𝑝 < 0.01, Figure 5B). In 
contrast, these SNPs are commonly found within candidate silencers in the loci of CNS-specific 
genes, particularly those controlling the apoptosis of neuronal cells and CNS development. For 
example, the locus of KCNB1, a key gene in the voltage-gated potassium channel crucial for 
neuron development and apoptosis (Bortolami et al. 2023), harbors 38 SCZ-associated SNPs and 
21 BDP-associated SNPs. These numbers significantly exceed the expected by chance from the 
whole genome (𝑝 < 10!''). Among 38 SCZ-associated SNPs in the KCNB1 locus, 10 (21.1%) 
are located within astrocyte candidate silencers, a notable preference as compared to the mere 
1.2% of all SCZ-associated SNPs found in astrocyte candidate enhancers (binomial test 𝑝 =
10!""). Similarly, in the KCNB1 locus, 8 (38.1%) of the BDP-associated SNPs are located 
within astrocyte candidate silencers, significantly higher than the 2.9% observed for all BPD-
associated SNPs across the whole genome (binomial test 𝑝 = 10!)). The significant association 
of SCZ and BDP with neuron development and apoptosis, consistent with the previous findings 
(Benes 2004; Clifton et al. 2019), emphasizes the crucial role of silencer variants in the 
susceptibility to BPD and SCZ (Figure 5B).  

Interestingly, despite an insignificant enrichment in CNS candidate silencers on a genome-
wide level, SCZ-associated SNPs exhibit a distinct enrichment within candidate silencers in the 
loci of genes controlling the differentiation of GABAergic interneuron cells and hippocampus 
development (Figure 5C). Aberrant activity of GABAergic neurons has been reported as a key 
site of SCZ pathology (Jahangir et al. 2021). Our finding proposes that this anomaly is greatly 
attributable to the variants in CNS candidate silencers, thereby offering a lead for further 
biological examinations.  

On the other hand, BPD-associated SNPs are enriched within both candidate silencers and 
enhancers in the loci of genes regulating corticosterone secretion and long-term synaptic 
depression. These two biological processes have been observed to be dysregulated in BPD 
patients (Du et al. 2011; Faurholt-Jepsen et al. 2021). In summary, analyzing candidate silencer 
and enhancer profiles alongside GWAS results can unveil the biological mechanisms that 
differentiate diseases with similar origins, as demonstrated by the analysis of BPD and SCZ here.  
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Disease-associated silencer variants alter binding affinities of TFs.  

Our investigation next proceeded to the analysis of individual SNPs, aiming to identify 
disease-causal or trait-determining non-coding variants among GWAS SNPs (Zhou et al. 2018; 
Huang and Ovcharenko 2022). We quantified the impact of SNPs on gene regulation by 
comparing prediction scores from a trained TREDNet model between SNP alleles, denoted as 
∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (see Methods).  A positive ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 suggests a decrease in repressive activity 
due to a given SNP. SNPs with a significant ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 are marked as regulatory-activity-
alternating SNPs (raSNPs, see Methods). RaSNPs are more frequently found in TF ChIP-seq 
peaks than common SNPs across seven biosamples (binomial test 𝑝 < 10!"#, Figure 6A). To 
prevent possible bias of raSNPs towards specific TFs, all seven biosamples examined in this 
study include ChIP-seq peaks for more than 50 TFs (see Method). In HepG2, a candidate-
silencer raSNP coincides with an average of 2.1 TF ChIP-seq peaks, which is 1.22 times the 
average for all common SNPs within candidate silencers (𝑝 < 10!"#, Figure 6A). Similarly, in 
enhancers, TF ChIP-seq peak densities at raSNPs are 1.33 times those at all common SNPs (𝑝 <
10!"#).   

We then evaluated allele-specific TF-binding affinities of raSNPs. Allele-specific TF-
binding affinities of SNPs were measured in a multiplex protein-DNA binding assay, known as 
systematic evolution of ligands by exponential enrichment (SNP-SELEX), for 270 TFs in the 
HepG2 cell line (Yan et al. 2021). Significant SNP-SELEX scores, which indicate substantial 
difference in binding affinities between SNP alleles, frequently occur among raSNPs across all 
examined biosamples. The occurrence rates of significant SNP-SELEX scores at raSNPs are over 
1.26 times those at SNPs with insignificant-∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores, within either candidate 
silencers or enhancers (binomial test 𝑝 < 10!"#, Figure 6B, see Methods). These high 
occurrence frequencies, together with the enrichment of raSNPs in TF ChIP-seq peaks, highlight 
the significant possibility of raSNPs altering TF binding affinities.  

Importantly, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores positively correlate with SNP-SELEX scores of 
transcription repressors. For the repressors FOXP1 and SNAI1/2 (The Alliance of Genome 
Resources 2020), these positive correlations are significant (linear regression 𝑝 < 0.05) in over-
50 biosamples (Figures 6C and 6D). Of the raSNPs having significant SNP-SELEX scores for 
FOXP1, 69% show the directional concordance between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and SNP-SELEX scores 
(Figure S18). This concordance rate is over 65% for SNAI1/2. In contrast, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores 
negatively correlate with SNP-SELEX scores of transcription activators. For prominent 
activators like JUN, CREB5, ELF1/2, CEBPE, NFE2 and SPIB, these negative correlations 
remain significant in over-50 biosamples. On average, the directional discordance rates between 
∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and SNP-SELEX scores for these TFs is 67%.  As positive SNP-SELEX scores 
indicate a reduction in binding affinity from wild-type to mutant alleles, these substantial 
positive or negative correlations (and directional concordance or discordance rates) underscore 
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the effectiveness of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in capturing the impact of SNPs on binding affinity for 
both transcriptional repressors and activators. Additionally, bifunctional TFs like YY2 and 
PAX5, which act as both activators and repressors, rarely present a significant ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
SNP-SELEX correlation in examined biosamples (Figures 6C, 6D and S18).  

For example, the SNP rs11065189, associated with SCZ but not BPD, is situated within a 
candidate silencer in brain microvascular endothelial cells. The substitution from G to A results 
in a significant decrease in binding affinity of the transcriptional activators MAF, MAFG and 
NRL. These measurements align with ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 	−0.49,  the highest magnitude within its 
5kb vicinity (Figure S19). 

In summary, these three lines of TF-binding-based evidence consistently substantiate the 
functional potency of raSNPs and the accuracy of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in evaluating the 
influence of SNPs on TF-binding affinity. 

 

The role of silencer SNPs in PD, SCZ and other neurological diseases 

To directly evaluate the relationship between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores and raSNPs, we resorted 
to the outcomes of MPRA experiments that assess allele-specific impacts of SNPs on gene 
regulation. Although these MPRA platforms were not specifically tailored for silencer SNPs, 
they provide valuable insights. For example, in SuRE MPRA experiments conducted in K562 
cells (van Arensbergen et al. 2019), 19,237 SNPs were reported to significantly alter regulatory 
activity, known as reporter assay QLTs (raQTLs). These raQLTs are extremely enriched in K562 
enhancers, consistent with previous findings (van Arensbergen et al. 2019). Nevertheless, we 
also observed a significant enrichment of raQTLs in candidate silencers and K562 MPRA 
silencers compared to the whole genome and H3K27me3 ChIP-seq peaks not classified as 
silencers (binomial test 𝑝 < 10!"#), although these silencer enrichment levels are notably lower 
than that in enhancers (𝑝 < 10!"#, Figure S20A), as expected from the nature of the 
experimental data. This enrichment further supports the active state of K562 candidate silencers. 
In addition, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛s are positively correlated with raQLT scores, irrespective of whether 
these raQTLs are in silencers or enhancers (Figure S20B). Taken together, MPRA scores by 
which the difference in regulatory influence between SNP alleles are quantified, though not 
specifically designed for silencer SNPs, can be used to examine the performance of 
∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛s in prioritizing disease-risk SNPs within candidate silencers. 

To directly evaluate the regulatory impacts of raSNPs in candidate silencers in CNS 
biosamples, we utilized their MPRA scores on dementia GWAS SNPs (Cooper et al. 2022). 
Positive/negative MPRA scores directly indicate increased/decreased regulatory activation due to 
sequence variants. In neuronal stem cells, SNPs with significant MPRA scores have a plateau 
distribution of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores, unlike insignificant-MPRA-score SNPs (Figure 7A). More 
precisely, 52.4% and 42.3% of significant-MPRA-score enhancer and silencer SNPs were 
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labeled as a raSNP, significantly higher than the 12.8% of all insignificant-MPRA-score SNPs 
(𝑝 < 10!"#) and the 18.9% of insignificant-MPRA-score within enhancers and silencers (𝑝 <
10!&, Figure 7B).  

Remarkably, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in neuronal stem cells positively correlate to MPRA 
scores. This positive correlation remains significant regardless of MRPA scores and SNP 
locations (𝑝 = 0.04, 𝑟 = 0.03 among insignificant-MRPA-score SNPs; 𝑝 = 0.0001, 𝑟 = 0.58 
among significant-MPRA-score silencer and 𝑝 = 4 × 10!*, 𝑟 = 0.72 among significant-MPRA-
score enhancer SNPs, Figure 7A).  

Among significant-MPRA-score silencer SNPs, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores are directionally 
concordant to the corresponding MPRA scores in over two-thirds of instances (Figure 7B). This 
concordance rate is significantly higher than the 50% for insignificant-MPRA-score SNPs 
(binomial test 𝑝 = 0.04). The robust correlation between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores and MPRA scores 
is also evident in other CNS biosamples. The concordance rate is 67.5% among raSNPs (𝑝 =
10!$ vs 51.0% of insignificant-MPRA-score SNPs, Figure S21).  Altogether, these findings 
strongly support the high accuracy of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in gauging the regulatory effects of 
variants, at least in CNS biosamples. 

Focusing on specific SNPs, we started with the SNP rs62055708, which is associated with 
PD and many other neurological traits, including autism, bipolar disorder, brain volume 
measurement, and intelligence. It's a SNP located within candidate silencers in most CNS 
biosamples except the middle frontal area (Figure 7C). The C to A change at this SNP has 
∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 0.20	in neuronal stem cells, aligning with an MPRA-score of 0.42. Also, this 
SNP corresponds to reduced significance in binding motif mapping for transcriptional repressors 
SMARCC1 (the allele C vs A: 𝑝 = 6 × 10!% vs 0.0003) and BATF (𝑝 = 4 × 10!& vs 0.0004, 
Figure 7C, see Methods)(Schaniel et al. 2009; Li et al. 2012). Additionally, as predicted by SNP-
SELEX deltaSVM (Yan et al. 2021), the change from the allele C to A at this SNP gains a 
binding site for NFE2, a transcriptional activator as discussed above (Figure 6). Another PD-
associated SNP is rs75104593. Consistent MPRA-score = -1.28 and ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = −0.32 in 
neuronal stem cells suggest that the substitution at this SNP (from T to G) boosts the repressive 
effect, which could be supported by the increased significance of binding motif mapping for 
REST, a well-known repressor TF (Figure 7C). It is worth noting that both REST and NFE2 are 
widely recognized as PD-associated factors (Bento-Pereira and Dinkova-Kostova 2021; Brent et 
al. 2021), further strengthening the connection between these two raSNPs and PD.  

At a SCZ-associated rs2535629, a substitution from G to A has been experimentally 
confirmed to increase the binding affinity of CTCF in a ChIP‐Allele‐Specific‐qPCR assay (ChIP‐
AS‐qPCR) and diminish the suppressive impact in a dual‐luciferase reporter gene assay (Li et al. 
2022).  This SNP is a raSNP located within candidate silencers in four out of six examined CNS 
biosamples. The ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in CNS biosamples are significantly higher than in non-
CNS biosamples (Student’s t-test 𝑝 = 10!'", Figure 7D). TF-motif-mapping analysis also shows 
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increased binding affinity of FOXC2 due to the G to A change at this SNP (Figure 7E). FOXC2 
is a transcription activator contributing to gene overexpression in various cancers, like 
glioblastoma (Li et al. 2013). This finding provides an additional mechanistic clue to 
understanding the potential role of rs2535629 in the development of SCZ. The strong agreement 
of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 with MPRA scores and TF binding affinity prediction underscores the high 
accuracy of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in assessing the regulatory impact of genetic variants. 

 

T1D and other autoimmune diseases are linked to variants in candidate silencers. 

To assess ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in immune biosamples, we compared them with MPRA 
scores measured in lymphoblastoid cell lines from two independent studies, i.e., the multiplex 
MPRAs, denoted as mMPRA below (Tewhey et al. 2016) and the variant-based MPRAs, referred 
to as vMPRA (Abell et al. 2022).  

SNPs with significant mMPRA scores show a higher magnitude of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 than 
insignificant-mMPRA-score SNPs (Figures 8A and S22). Specifically, 37% and 36% of 
significant-mMPRA-score SNPs in candidate silencer and enhancer are raSNPs in immune 
biosamples, significantly surpassing the 19% of insignificant-mMPRA-score SNPs (𝑝 < 10!"#, 
Figure 8B). Notably, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in immune cells are significantly positively correlated 
with mMPRA scores across different SNP sets ( 𝑝 < 10!"# across insignificant-mMPRA-score 
and candidate silencer/enhancer significant-mMPRA-score SNPs).  

Furthermore, 72.3% of raSNPs in candidate silencers have a ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score 
directionally concordant to their mMPRA scores, significantly exceeding the 49.4% as expected 
from randomly shuffling  ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores, as well as the 51.4% of SNPs with insignificant 
MPRA scores (𝑝 < 0.01, Figure 8C). This concordance rate further increases to 78.9%	among 
the SNPs where mMPRA and vMPRA scores directionally align, although these increases are not 
significant most likely due to the shrinking size of the analyzed SNP set (Figure 8C). Similar 
trends are mirrored among enhancer SNPs. Additionally, ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores exhibit significant 
positive correlations with vMPRAs in immune biosamples (𝑝 < 0.0005, Figures 8D and S23). 
For example, 33% and 26% of significant-vMPRA-score SNPs in candidate silencers and 
enhancers are raSNPs in immune biosamples, significantly surpassing the 14% of insignificant-
vMPRA-score SNPs (𝑝 < 10"#, Figure 8E). These significant correlations and high concordance 
rates are in the line with the observations on dementia MPRAs (Figure 7), generalizing the high 
validity of ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in evaluating regulatory effects of variants across different 
biosample groups. 

For example, rs6207121, a SNP associated with T1D, exhibits significant scores in mMPRA 
and vMPRA. This SNP, with ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 	−0.51, is detected as a raSNP within a candidate 
silencer in CD4+ alpha-beta T cells, holding the highest magnitude within its 4kb vicinity. This 
∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score directionally aligns with the corresponding mMPRA and vMPRA scores 
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(Figure 8F). Moreover,  the analysis of binding motif mappings suggests that this variant 
potentially disrupts a binding site for NFKB1, a key TF known for dual repressive and activating 
functions in the immune system (Li and Verma 2002) and in the development of T1D (Konrad et 
al. 2019).  

Another example is the rs242561 SNP, which has been linked to a range of immune and 
neurological disorders, including T1D, BPD, and Parkinson’s disease. This SNP is predicted as a 
raSNP in both immune and CNS biosamples. The significantly negative ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in 
CNS biosamples correlate with the negative dementia MPRA score (Figure S24). Interestingly, 
this SNP is located within a DFRE, acting as a silencer in immune biosamples but an enhancer in 
CNS biosamples, likely by recruiting different TFs in immune cells and in neurons. 

 

Discussion. 

Here, we report 2.8 million candidate silencers in 97 human biosamples representing diverse 
origins, collectively spanning 19.4% of the human genome. More than half of candidate silencers 
(55%) are DFRE, acting as enhancers in alternative biosamples, which evidences the widespread 
presence of DFREs. Furthermore, the majority (67%) of hESC candidate silencers function as 
DFREs, which could still increase after additional human biosamples are explored. In 
differentiated cells, the hESC-silencer-converted enhancers exhibit a notable enrichment in 
TFBSs of CTCF, RAD21 and ZNF143, as well as in chromatin contacts, suggesting they 
frequently act as anchors for chromatin contacts.  

This study demonstrates the vital role of candidate silencers in complex diseases with a 
strong genetic basis. This new perspective goes beyond GWAS, uncovering how individual 
disease-associated genes are regulated during pathogenesis. For example, SCZ and BPD have 
been linked through GWAS to the dysregulation of neuronal differentiation and apoptosis. Our 
analysis shows that this dysregulation may primarily stem from variants within CNS candidate 
silencers. Moreover, the disruption of the GABAergic interneuron has been reported as a key 
cause in SCZ (Nakazawa et al. 2012). Our analysis further underpins that the variants within 
CNS candidate silencers could be responsible for this disruption. Similarly, in the gene loci of 
INS and IGF2, T1D-associated SNPs are greatly concentrated within candidate silencers, 
implying the pivotal roles that candidate silencers play in regulating these genes in the immune 
system. Silencer variants thereby greatly account for the dysregulation of these two genes in the 
context of T1D (Steck and Rewers 2011). Collectively, silencers represent fundamental 
components underlying the development of many complex diseases. The profiles of silencers 
(along with enhancers) can facilitate the unraveling of genetic basis of these diseases.  

It is important to note that this study is centered around silencers, with enhancers serving as 
a reference point. The goal is to underscore the significance of silencers in disease research, 
rather than to provide an exhaustive genetic portrait of diseases. Genetic components of diseases 
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that go beyond these elements are not within the scope of this study. For example, we do not 
delve into LILR genes, which host TAK-associated variants in their promoters (Yoshifuji and 
Terao 2020). Evidently, a comprehensive understanding of a polygenetic disease requires the 
exploration of diverse regulatory elements, along with protein-coding variants, which is the 
motivation of this study.   

We further extended the analysis to the level of individual genetic variants. High 
correlations with the experimental results from MPRA and SNP-SELEX studies validate the 
accuracy of  ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores in predicting the regulatory impact of SNPs across different 
biosamples. RaSNPs, the SNPs having a significant ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score, frequently hold 
significant MPRA scores and SNP-SELEX scores, confirming the substantial impact of these 
variants on disease susceptibility. Prioritizing disease-causal SNPs is the initial step to reveal 
molecular mechanisms underlining polygenetic diseases. Delineating the cascading effects of 
these SNPs, such as how they alter TF binding affinity, chromatin organization and gene 
expression, represents the subsequent challenge. It is noteworthy that, although we present 
experimental and computational results of TF binding affinities of raSNPs here, this issue will 
remain incompletely addressed until experimental profiling of TF binding expands to many 
more TFs and spans additional cell types across multiple developmental time points. For 
example, as demonstrated here, experimental results from SNP-SELEX assays are restricted to a 
small proportion of SNPs, possibly due to their cell specificity (Yan et al. 2021).   

Here, silencer identification primarily relies on H3K27me3 ChIP-seq peaks. While this 
histone mark is a well-characterized and widely-accepted proxy of repressive regulatory 
influence, our candidate silencer profiles might be incomplete due to the existence of non-
H3K27me3 silencers (Doni Jayavelu et al. 2020; Pang and Snyder 2020). The strong association 
of candidate silencers with developmental genes, particularly those active during embryonic 
stages, aligns with the established role of H3K27me3 in developmental processes (Ngan et al. 
2020). This association may also hint at a possible bias toward H3K27me3 among candidate 
silencers. Currently, the detection of non-H3K27me3 silencers are limited to few cell types 
(Pang and Snyder 2020; Hussain et al. 2023; Xiusheng et al. 2023) and/or confined to certain 
genomic regions (Grass et al. 2003; Mouri et al. 2023), which largely hampers the investigation 
on these silencers. Despite these constraints, our analysis underscores the significance of 
silencers in controlling key biological processes and highlights their profound influence in 
disease susceptibility.  

 

Methods 

Identification of candidate silencers  

We trained the TREDNet model, a two-phase deep learning model (Hudaiberdiev et al. 
2023) to predict enhancers and silencers. We downloaded DNase-seq peaks, H3K27ac and 
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H3K27me3 ChIP-seq peaks (“narrow peak”) for 111 biosamples from ENCODE project 
(https://www.encodeproject. org/, Table S1). Enhancer training sequences were defined as the 
DNase-seq peaks overlapping H3K27ac ChIP-seq peaks but not H3K27me3 peaks in the central 
400bp. Silencer training sequences were defined as the DNase-seq peaks overlapping 
H3K27me3 peaks but not H3K27ac peaks in the central 400bp as well as the H3K27me3 peaks 
not overlapping H3K27ac peaks. To accommodate this multi-label classification task, the output 
layer of TREDNet models consist of three nodes with the activation function of “softmax”, 
representing silencer, enhancer, and control samples, respectively. The cost function used here is 
“categorical cross entropy”. We held out chromosomes 7 and 8 for testing. All other autosomes 
were used for building the classification model (Hudaiberdiev et al. 2023). Consequently, testing 
sequences, having no overlap with training sequences, provide an unbiased computational 
evaluation on the performance of the TREDnet models. 

For silencer prediction, 1kb-long input sequences were evaluated by silencer prediction 
scores. The cutoff for labeling silencers (say 𝑡+) was set as a false positive rate (FPR) of 0.1 in 
test samples, with control samples to candidate silencers in the ratio of 9:1. DNase-seq peaks or 
H3K27me3 ChIP-seq peaks that have a silencer score greater than 𝑡+ were predicted as silencers. 
Similarly, the cutoff for labeling enhancers (say 𝑡,) was set as a false positive rate (FPR) of 0.1 
in test samples, again with control samples to candidate enhancers in the ratio of 9:1. DNase-seq 
peaks that have an enhancer score greater than 𝑡, were predicted as enhancer. The sequences 
marked as both enhancers and silencers were considered as “uncertain”, which account for less 
than 1% of silencers or enhancers in all tested biosamples and were excluded from further 
analysis. To this end, 97 biosamples have over-5000 candidate enhancers and over-5000 
candidate silencers, which were investigated in this study.  

Each candidate enhancer/silencer is 1kbp-long. A candidate silencer in a biosample was 
considered as a DFRE if it overlaps with an enhancer in another biosample by over-200 bp. 
Similarly, an enhancer was considered as a DFRE when it overlaps with a candidate silencer in 
another biosample by over-200 bp. 
 

GWAS SNP enrichment in individual gene loci 

We assess the significance of GWAS SNPs associated with a disease (𝑖) in a gene locus (𝑗), 
𝑝-.,  in comparison to the whole genome using the binomial test. The gene loci having a 𝑝-. <
10!* are regarded as associated with the disease 𝑖. Similarly, in a disease-associated locus (say 
𝑗), the enrichment of given GWAS SNPs within silencers, 𝑝-.+ , is assessed by using the binomial 
test. That is,  

𝑝-.+ = ∑ B𝑁𝑚E𝜋#
/(1 − 𝜋#)0!/0

/12 , (1) 

where 𝜋# is the ratio of the locus length to the whole genome. 𝑁 and 𝑘 are the total number of 
given GWAS SNPs within the candidate silencers and the number of given GWAS SNPs within 
the candidate silencers in the locus 𝑗. The enrichment of given GWAS SNPs in candidate 
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enhancer in the locus 𝑗 is evaluated by replacing 𝑁 and 𝑘 in Eq. (1) with the number of given 
GWAS SNPs within the enhancers in the whole genome and in the locus 𝑗, respectively.  
 

∆𝒓𝒆𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏  

To evaluate the regulatory impact of a variant with the wild type (wt) and mutant allele 
(mu), we input the 1kb-long sequences centering at this variant to a trained TREDNet model. We 
then obtained the silencer and enhancer prediction scores for all alleles. The false positive rates 
of silencer prediction scores (denoted as 𝐹𝑃𝑅+) are evaluated based on test samples with the size 
ratio of control samples to candidate silencers of 9:1. Similarly, the false positive rates 
corresponding to enhancer prediction scores (represented by 𝐹𝑃𝑅,) are evaluated based on test 
samples. The regulatory alteration between these alleles is then estimated as  

 ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = (log"# 𝐹𝑃𝑅/3+ − log"# 𝐹𝑃𝑅45+ ) − (log"# 𝐹𝑃𝑅45, − log"# 𝐹𝑃𝑅/3, ).    
A positive ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 indicates a decrease in the repressive impact due to the mutation.  

In a biosample, we evaluated the significance 𝑝 value of a ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score by 
comparing with ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores on all common SNPs documented in dbSNP as of 2017 
(Sherry et al. 2001). A ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score is regarded as significant if 𝑝 < 0.05 among all 
common SNPs. A SNP is marked as raSNP if the corresponding ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score is 
significant. When analyzing the correlation between between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and MPRA scores 
(Figures 7 and 8), SNPs are considered as a silencer SNP either when they are located within a 
candidate silencer or when they overlap with a H3K27me3 ChIP-seq peak and have  𝐹𝑃𝑅45+ <
0.05. Similarly, SNPs are considered as an enhancer SNP either when they are located within a 
candidate enhancer or when they overlap with a H3K27ac ChIP-seq peak and have 𝐹𝑃𝑅45, <
0.05. 

 

Data and tools 

We downloaded GWAS SNPs curated in the National Human Genome Research Institute 
(NHGRI) catalog (McMahon et al. 2018) and in UK Biobank release 2 cohort (Bycroft et al. 
2018).  All the GWAS SNPs associated with the same trait, according to their Experimental 
Factor Ontology ID (Malone et al. 2010), were merged into one SNP set. We extended trait-
associated SNP sets by including the SNPs in tight linkage disequilibrium (LD r' > 0.8) to 
GWAS SNPs based on EUR population in 1000 Genomes Project. To this end, we retrieved a 
total of 2.2 million GWAS SNPs, which are associated with 2,212 distinct traits. Among these 
traits, 1,166 traits are linked to more than 80 SNPs and thus used in our investigation.  

Hi-C chromatin contacts were downloaded from the study by Salameh et al. (Salameh et al. 
2020). Brain volume measurements include intracranial, hippocampal, thalamus and subiculum 
volume measurement. The sets of GWAS SNPs associated with these traits significantly overlap 
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among each other (Jaccard similarity > 0.65), and therefore were merged as brain-volume-
associated SNPs in this study. 

We evaluated the correlations between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	and SNP-SELEX scores for each TF in 
each tested biosample. In a biosample, TFs having at least 10 SNPs holding significant SNP-
SELEX and significant ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	scores were included to ensure a robust estimation on the 
correlation between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	and SNP-SELEX scores.  

TF ChIP-seq data used here were downloaded from the ENCODE project (Table S2).  TF 
binding motif were downloaded from the MEME Suite (https://meme-
suite.org/meme/db/motifs). Find Individual Motif Occurrence (FIMO), with the default setting, 
was used to find the mappings of  binding motifs in given sequences (Grant et al. 2011).  
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Figure 1. Profiling candidate silencers across 97 biosamples from diverse origins. (A) Classification 
performance (AUROCs) of TREDNet models for silencers and enhancers in analyzed biosamples. 
AUROCs exhibit correlation with GC contents and repeat densities of training sequence sets. Each dot 
represents a set of enhancers or silencers. (B) Distribution of 97 biosamples across groups. (C) Distance 
of candidate silencers and enhancers to their nearest TSSs. (D) Expression of genes proximal to candidate 
silencers and enhancers. Markers and their flanking lines represent the medians and standard deviations of 
gene expression levels. Blue and orange asterisks on the top represent the significantly low and high 
expression levels, respectively, compared to all genes (p < 0.05). (E) MPRA scores of candidate silencers 
and enhancers in three biosamples. (F) Performance of the TREDnet model on MPRA silencers. (G) 
Densities of TF ChIP-seq peaks within candidate silencers and enhancers across biosamples. ∗∗: p <
10!"# 
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Figure 2. Candidate silencers are significantly associated with development and immunity. (A) 
Fractions of silencer-rich or enhancer-rich gene loci (the left panel). Proportions of candidate 
silencers located within silencer-rich loci and enhancers located within enhancer-rich loci are 
shown in the right panel. (B) Numbers of multi-biosample silencer-rich and enhancer-rich gene 
loci. Notably, 709 gene loci are both multi-biosample silencer-rich and enhancer-rich. (C) 
Frequency of gene loci exhibiting silencer-rich (blue line) or enhancer-rich (the orange line) 
across biosamples. Top-frequency silencer-rich gene loci are listed, among which developmental 
loci are highlighted in pink.  (D) Heatmap illustrating biological processes significantly 
associated with different gene sets. SL and EN represents multi-biosample silencer-rich and 
enhancer-rich gene loci, respectively. ENSL represents the intersection of SL and EN sets. 
Biological processes in embryonic and central nervous system (CNS) development are indicated 
by blue arrows, while immunity regulation and tissue-specific development are by red and green 
arrows, respectively. (E) Enrichment of candidate silencers and enhancers in six gene loci. The 
dash lines represent the threshold (𝑝 = 1.9 × 10!%) for significant enrichment (see 
Supplementary Notes). The upper and lower whisker edges in these boxplots represent 
approximately 25% and 75% quartiles of the presented data. 
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Figure 3. hESC-silencer-converted enhancers anchor chromatin loops. (A) Enrichment of ChIP-
seq TFBSs in hESC-silencer-converted and hESC-PE-converted enhancers in comparison to all 
enhancers. The numbers in parentheses are the number of TFs examined in this study. (B) 
Enrichment of TFBSs for individual TFs. The blank cells indicate absence of TF ChIP-seq data. 
(C) Enrichment of CTCF ChIP-seq TFBSs across 69 biosamples. (D) Numbers of chromatin 
contacts per elements (the top panel) and the fractions of elements having >2 contacts (the 
bottom panel) in hESC-silencer-converted enhancers. Additional results are presented in Figure 
S2. (E) Enrichment of GWAS SNPs within hESC-silencer-converted and hESC-PE-converted 
enhancers in comparison to all enhancers across biosamples. ∗: 𝑝 < 0.01 and ∗∗: 𝑝 < 10!"#.  
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Figure 4. Candidate silencers exhibit the enrichment for GWAS SNPs. (A) Numbers of GWAS 
SNPs per 1kb in candidate silencers and enhancers across biosamples. The dash line represents 
the number of GWAS SNPs per 1kb in the whole genome. (B) Enrichments of SNPs associated 
with brain volume, PD and Alzheimer’s disease within candidate silencers and enhancers across 
biosamples. Asterisks indicate the significant difference between candidate silencers and 
enhancers. (C) Enrichments of PD-associated SNPs within candidate silencers and enhancers in 
individual gene loci. Only gene loci having significant enrichments are included here. (D) 
Enrichments of SNPs associated with TAK and T1D within candidate silencers and enhancers. In 
(B) and (D), enrichment folds are estimated in comparison to the whole genome. Significant 
enrichments are denoted by solid markers (𝑝 < 10!&). The results on other autoimmune diseases 
are presented in Figure S7. (E) Enrichment of T1D-associated SNPs within candidate silencers 
and enhancers in individual gene loci. In (C) and (E), gene loci are clustered based on the 
enrichment profiles of associated SNPs. SL/EN represent the gene loci where the associated 
SNPs are enriched exclusively in candidate silencers/enhancers, while ENSL denotes the gene 
loci where the associated SNPs are enriched in both candidate silencers and enhancers. (F) 
Functional analysis results for T1D-associated gene clusters defined in (E). ∗∗: 𝑝 < 10!& and ∗
: 𝑝 < 0.01. 
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Figure 5. Candidate silencers distinguish SCZ from BPD. (A) Enrichments of SNPs associated 
with BPD and SCZ within candidate silencers and enhancers across biosamples. Asterisks by the 
markers indicate the significant difference between candidate silencers and enhancers. (B) 
Heatmap depicting the clusters of gene loci associated with SCZ and/or BPD, based on the 
enrichment profiles of associated SNPs within candidate silencers and enhancers. Each column 
represents the enrichment of SCZ or BPD associated SNPs within candidate silencers or 
enhancers in a biosample. The biosamples presented here are the same as those in (A).  (C) 
Functional analysis of gene clusters defined in (B). ∗: 𝑝 < 0.001 and ∗∗: 𝑝 < 10!&. 
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Figure 6. ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	significantly correlates with SNP-SELEX scores. (A) Enrichments of 
raSNPs in TFBSs (as defined in TF ChIP-seq peaks, Table S2) in seven biosamples. (B) 
Enrichments of significant SNP-SELEX scores among raSNPs. (C) Correlations between 
∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	and SNP-SELEX scores for each TF across biosamples. (D) Frequency 
distribution of biosamples exhibiting significantly positive (above zero line) and negative (below 
zeros line) correlations between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	and SNP-SELEX scores for each TF. TF names 
are displayed along the bottom x-axis in (C) and the bottom x-axis in (D) combined. ∗∗: 𝑝 <
10!"#.  
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Figure 7. CNS raSNPs have strong regulatory impact. (A) Correlation between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
and dementia MPRA scores in neuronal stem cell. Top panel illustrates ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score 
distributions for different SNP groups. Bottom panel plot ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and MPRA scores of 
SNPs. SNP groups here are insignificant-MPRA SNPs, significant-MPRA silencer, and enhancer 
SNPs. The analysis results in other CNS biosamples are presented in Figure S10. (B) Fractions 
of raSNPs (the left panel) and directional concordance between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and MPRA scores 
(the right panel) across SNP groups as defined in panel (A). The numbers of all examined SNPs, 
raSNPs, and concordant raSNPs are listed in the bars accordingly. (C) Epigenetic profile of 
silencer SNPs associated with PD in MAPT locus. TF binding motif mapping results on example 
SNPs are also presented. In the track of “SNP”, black and red bars represent tag PD SNPs and 
their LD SNPs (r' > 0.8). (D) ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores of SCZ-associated SNP rs2533629 in CNS 
biosamples. (E) Analysis of TF binding motif mapping at rs2533629. ∗: 𝑝 < 0.05 and ∗∗: 𝑝 <
10!&. 
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Figure 8. Immune raSNPs within candidate silencers have strong regulatory impact.  (A) 
Correlations between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and mMPRA scores in SNP groups. Silencer-concordant 
represents the SNPs where significant mMPRA and vMPRA scores directionally align. (B) 
Fractions of raSNPs among insignificant-mMPRA, significant-mMPRA silencer and significant-
mMPRA enhancer SNPs. (C) Concordance rate between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and mMPRA score across 
SNP groups. “All” represents all significant-mMPRA SNPs in candidate silencers or enhancers. 
“Concordant” is as denoted in (A). Numbers alongside each marker indicate the count of SNPs 
showing concordant ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and mMPRA scores, as well as the total number of SNPs 
considered. The dashed line represents the expectation when randomly shuffling ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
scores. (D) Correlations between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and vMPRA scores. (E) Fractions of raSNPs 
among insignificant-vMPRA, significant-vMPRA silencer and significant-vMPRA enhancer 
SNPs. (F) ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, mMPRA, vMPRA scores on the T1D-associated rs62057121 and its 
neighboring SNPs. In the top panel, red/grey stars indicate significant/insignificant mMPRA or 
vMPRA scores, respectively. All significant scores are listed next to the corresponding markers. 
In addition, the TF binding motif analysis on this SNP is presented. ∗: 𝑝 < 0.05 and ∗∗: 𝑝 <
10!*  
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Supplementary Notes 

Gene expression profiles. 

We obtained the gene expression data from the ENCODE project 1 for 215 biosamples (Table S4).  

We used gene annotations from the GENCODE 2 to define the transcription start site for each gene. A 

candidate silencer or enhancer was associated with its nearest gene. Gene expression levels were 

normalized as the fold change to the average expressions across biosample.  That is, for a gene (say i) and 

its expression level in a biosample b (say, 𝑒!,#), its normalized expression level 𝑛𝑒!,#was calculated as 

𝑛𝑒!,# = log$%
&!,#

$
%
∑ &!,&⬚
&∈)**	#!,-)./*0-

	,		N	=	the number of biosamples.  

 

Locus-specific enrichment of silencers and enhancers. 

We used gene annotations from GENCODE 2. The locus of a gene encompasses the gene body along 

with its two flanking upstream and downstream intergenic regions. Using this annotation, there are 

26,550 distinct gene loci in the human genome. For a given gene locus (say, g) and a biosample, the 

count of candidate silencers located within this locus was tallied, and the silencer enrichment significance 

was determined using the binomial test, i.e.,  

𝑝(𝑋 > 𝑛) = ∑ /𝑁𝑖 2𝑝(
!31 − 𝑝(6

)*!)
!+,-$ , 			𝑝( =

.1
/

,  (1) 

where n and N are the numbers of silencers within the gene locus g and in the whole genome, 

respectively. 𝑙( and L denote the length of the locus g and the whole genome, respectively. Using 

Bonferroni multiple-testing correction, the silencer density in the locus g is regarded as significantly 

higher than expected in the whole genome when 𝑝(𝑋 > 𝑛) ≤ 0.05/𝐺. Here, G is the total number of 

gene loci in the whole genome. Similarly, the significancy of enhancer enrichment in a gene locus is 

assessed based on enhancer counts. 

 

eQTLs. 

We downloaded eQTL data from the GTEx project 3 for 17 distinct tissues, comprising 13 brain 

tissues, colon, lung, spleen, and whole blood. For each GTEx tissue, we checked the distribution of 

eQTLs within candidate silencers in the corresponding biosamples. For example, we gathered eQTLs 

from all brain GTEx tissues and examined their density within candidate silencers in each brain 

biosample. In the end, 40 biosamples were tested in this analysis.  
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Supplementary Figures 

Supplementary Figure 1 

 

 
Figure S1. Numbers of candidate silencers and enhancers across biosamples. Each dot represents a 

biosample. 
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Supplementary Figure 2 

 
Figure S2. Fractions of intronic candidate silencers and enhancers. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 18, 2024. ; https://doi.org/10.1101/2024.05.17.24307558doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307558


6 
 

Supplementary Figure 3 

 
Figure S3. Fractions of conserved candidate silencers or enhancers. DME represents “digestive and 

metabolic and endocrine” biosample categories. 
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Supplementary Figure 4 

 

 

 
 

Figure S4. Profiles of candidate silencer and enhancer across immune biosamples in (A) the loci of 

PCDHA/B genes, (B) the loci of HOXA genes, (C) the loci of HOXD genes. All these gene loci are 

enriched with candidate silencers in immune biosamples.   
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Supplementary Figure 5 

 
Figure S5. Expression of genes in contact with candidate silencers. The markers and their flanking lines 

represent the medians and standard deviations of gene expression levels. Blue and orange asterisks denote 

significantly low and high expression levels, respectively, compared to those of all assayed genes 

(p<0.05). 
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Supplementary Figure 6 

 

 
Figure S6. Significant overlap between candidate silencers and MPRA experimentally validated silencers 

in the biosamples (A) K562 and (B) HepG2.  ∗∗: 𝑝 < 10*$%. “nonSL H3K27me3” represents the 

H3K27me3 ChIP-seq peaks not overlapping with candidate silencers. 
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Supplementary Figure 7 

 

 
Figure S7. Classification performance of the TREDnet model on MPRA silencers with and without 

H3K27me3 ChIP-seq peaks. 
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Supplementary Figure 8 

 

 
Figure S8. Enrichment of chromatin contacts in candidate silencers, enhancers and H3K27me3 ChIP-seq 

peaks not overlapping with candidate silencers (represented as nonSL H3K27me3). ∗∗: 𝑝 < 10*$%. 
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Supplementary Figure 9 

 

 
Figure S9. Fractions of DFREs among candidate silencers and enhancers across biosamples.  
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Supplementary Figure 10 

 
 

 
Figure S10. Density of chromatin contacts across enhancer groups. (A) Numbers of chromatin 

contacts. (B) Fractions of elements having >2 contacts. ∗ 𝑝 < 10!" and ∗∗ 𝑝 < 10!#. 
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Supplementary Figure 11 

 

 
Figure S11. The distribution of GWAS traits investigated in this study.  
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Supplementary Figure 12 

 

 

Figure S12. Distribution of eQTLs. (A) Densities, (B) eQTL slopes, and (C) tissue-specificities of 
eQTLs within candidate silencers and enhancers. The asterisks in (A) represent the significant 
enrichment compared to the whole genome (p<0.05). The asterisks in (C) represent the significant 
tissue-specificity levels of candidate silencer eQTLs compared to those of enhancer eQTLs. For a 
given eQTL, a low number of tissues in which this eQTL was detected suggests its high tissue 
specificity.  
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Supplementary Figure 13 

 

 

Figure S13. Enrichment of ClinVar SNPs and cancer somatic variants in candidate silencers. (A) 

Densities of ClinVar SNPs in candidate silencers and enhancers across all tested biosamples. The dash 

line represents the density of ClinVar SNPs in the whole genome. ∗∗ 𝑝 < 10*0.  (B) Densities of 

cancer somatic variants within candidate silencers in matched biosamples. The blue and orange 

asterisks represent a significant enrichment within candidate silencers and enhancers compared to the 

whole genome (p<0.05), respectively. 
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Supplementary Figure 14 

 

 
Figure S14. Function analysis of PD-associated gene groups defined in Figure 4C.  
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Supplementary Figure 15 

 

 
Figure S15. Enrichments of brain-volume-associated SNPs within candidate silencers and 

enhancers across gene loci. Gene loci having significant enrichment of the examined SNPs 

within either candidate silencers or enhancers are included in the plot.  
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Supplementary Figure 16 

 

 
Figure S16. Enrichments of SNPs associated with autoimmune diseases. Enrichment folds are 

estimated in comparison to the whole genome. Significant enrichments are denoted by solid 

markers (𝑝 < 10!$). 
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Supplementary Figure 17 

 

 
Figure S17. Enrichments of TAK-associated SNPs within candidate silencers and enhancers in 

gene loci. Gene loci having significant enrichment of the examined SNPs within either silencers 

or enhancers are included in the plot.  
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Supplementary Figure 18 

 

 
Figure S18. Distribution of significant correlations between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and SNP-SELEX 

scores for each TF across biosamples. For each TF, the top panel presents the number of 

biosamples for which SNP-SELEX scores of this TF significant correlate with ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛. 

The middle panel presents the number of biosamples for which this TF was examined. The 

bottom panel presents the concordance rate between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and SNP-SELEX scores. 
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Supplementary Figure 19 

 

 
Figure S19.  ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and SNP-SELEX scores on the SCZ-associated rs11065189 and its 

neighboring SNPs. In the top panel, red/grey dots indicate significant/insignificant SNP-SELEX 

scores. TFs corresponding to the significant scores are listed.  In the bottom panel, blue/grey dots 

indicate significant/insignificant ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 scores. 
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Supplementary Figure 20 

 
Figure S20. Analyses based on raQTLs. (A) raQTLs are enriched in the predicted silencers and MPRA 

silencers as compared to the expected across the whole genome and within non-predicted-silencer 

H3K27me3 ChIP-seq peaks (labelled as nonSL H3K27me3 here). Asterisks and the number over the bars 

suggest the enrichment p value as compared to the whole genome. ∗∗: 𝑝 < 10*$%. (B) ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

scores significantly correlate with raQTL scores, regardless in predicted silencers or enhancers.   
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Supplementary Figure 21 

 

 
Figure S21. Correlations between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and dementia MPRA scores across CNS 

biosamples. (A) correlation coefficients between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and dementia MPRA scores. (B) 

significant p values these ocefficients. (C) concordance rates between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and 

dementia MPRA scores in three SNP categories: insignificant-∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 SNPs, significant-

∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 silencer, and enhancer SNPs.  
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Supplementary Figure 22 

 

 
Figure S22. ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score distributions for different SNP groups. SNP groups here are 

those having insignificant mMPRA scores, significant mMPRA scores in candidate silencers, 

and in candidate enhancers.  
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Supplementary Figure 23 

 

 
Figure S23. Correlation between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and vMPRA scores. (A) Distribution of 

∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 score across SNP groups.  SNP groups here are those having insignificant vMPRA 

scores, significant vMPRA scores in candidate silencers and enhancers. (B) Directional 

concordance between ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and vMPRA scores. “All” represents all significant-vPRA 

SNPs in candidate silencers or enhancers, while “concordant” represents the SNPs where 

significant mMPRA and vMPRA scores directionally align. The dash line represents the 

expectation after randomly shuffling ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛.  ∗∗ 𝑝 < 10!#, ∗ 𝑝 < 0.01 
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Supplementary Figure 24 

 

 
Figure S24. ∆𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	scores at rs242561. The biosamples where rs242561 is located within 

a candidate silencer or enhancer are included.  

 

Table S1. All files defining training samples for TREDnet models. 

Table S2. TFBS ChIP-seq files used in this study. 

Table S3. Enrichment of GWAS SNPs in candidate silencers and enhancers.  

Table S4. RNA-seq files used in this study. 

 

1 Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) 
data portal. Nucleic Acids Res 48, D882-d889 (2020). 
https://doi.org/10.1093/nar/gkz1062 

2 Frankish, A. et al. GENCODE 2021. Nucleic Acids Research 49, D916-D923 (2021). 
https://doi.org/10.1093/nar/gkaa1087 

3 The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: 
Multitissue gene regulation in humans. Science 348, 648-660 (2015). 
https://doi.org/10.1126/science.1262110 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 18, 2024. ; https://doi.org/10.1101/2024.05.17.24307558doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307558

