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Abstract  

The heritability of human diseases is extremely enriched in candidate regulatory elements (cRE) 

from disease-relevant cell types. Critical next steps are to infer which and how many cell types 

are truly causal for a disease (after accounting for co-regulation across cell types), and to 

understand how individual variants impact disease risk through single or multiple causal cell 

types. Here, we propose CT-FM and CT-FM-SNP, two methods that leverage cell-type-specific 

cREs to fine-map causal cell types for a trait and for its candidate causal variants, respectively. 

We applied CT-FM to 63 GWAS summary statistics (average N = 417K) using nearly one 

thousand cRE annotations, primarily coming from ENCODE4. CT-FM inferred 81 causal cell 

types with corresponding SNP-annotations explaining a high fraction of trait SNP-heritability 

(~2/3 of the SNP-heritability explained by existing cREs), identified 16 traits with multiple causal 

cell types, highlighted cell-disease relationships consistent with known biology, and uncovered 

previously unexplored cellular mechanisms in psychiatric and immune-related diseases. Finally, 

we applied CT-FM-SNP to 39 UK Biobank traits and predicted high confidence causal cell types 

for 2,798 candidate causal non-coding SNPs. Our results suggest that most SNPs impact a 

phenotype through a single cell type, and that pleiotropic SNPs target different cell types 

depending on the phenotype context. Altogether, CT-FM and CT-FM-SNP shed light on how 

genetic variants act collectively and individually at the cellular level to impact disease risk.  
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Introduction  

Understanding how genetic variants act collectively and individually at the cellular level to 

impact disease risk is critical to improve our understanding of disease biology 1–3. Previous 

studies have integrated genome-wide association studies (GWASs) with cell-type-specific (CTS) 

functional annotations to identify cell types presenting significant association with the disease or 

complex trait 4–10. However, most of these associations are not truly causal (we define here a 

causal cell type as a cell type where altered gene regulation impacts disease risk) but only ‘tag’ 

a disease causal cell type as a consequence of shared regulatory patterns (e.g., gene 

expression and regulatory elements) across cell types and tissues 11–15. This issue has hindered 

our ability to pinpoint precise cell types underlying the disease biology, and to determine the 

number of distinct cell types collectively targeted by disease variants. In addition, it is unclear 

how individual disease variants act at the cellular level (i.e., does it impact disease risk by acting 

on an individual causal cell type, or on multiple causal cell types simultaneously?), and if 

pleiotropic variants act on multiple traits through the same or different cell types 16. For example, 

it remains uncertain which brain cell types are targeted by variants impacting body mass index 

(BMI) and obesity, as well as the additional role of immune and adipose cell types 17,18; similarly, 

it is also unclear through which cell types variants in the FTO locus confer obesity risk 19. 

Altogether, these limitations hinder our understanding of how genetic variants act at the cellular 

level to confer disease risk, and on how to translate GWAS findings into discovery of actionable 

drug targets. 

 Methods accounting for gene co-regulation in expression quantitative trait loci (eQTLs) 

datasets have already been proposed to fine-map causal tissues of human diseases 14 and their 

risk variants 20. However, current eQTLs datasets have been generated on bulk tissues that do 

not capture cell-type-specific effects and often have limited overlap with GWAS results 21–24, 

limiting insights from these methods. Unlike eQTLs, candidate regulatory elements (cREs) are 

already available for thousands of cell types and conditions 25–29, and are extremely enriched in 

disease SNP-heritability (h2) when disease-relevant cell types have been assayed 6,28–31. 

However, we lack methods to fine-map causal cell types of human diseases and risk variants 

from CTS cREs, while accounting for shared cREs across cell types. 

 Here, we propose CT-FM and CT-FM-SNP, methods that fine-map causal cell types at 

genome-wide and single variant level from CTS SNP-annotations, respectively. Both methods 

jointly analyze GWAS summary statistics with a set of CTS SNP-annotations and output 

probabilities for each cell type to be causal for a trait (CT-FM) or a particular GWAS candidate 
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variant (CT-FM-SNP), as well as credible sets (CSs) reflecting the number of independent 

causal signals while accounting for uncertainty in cell type prioritization. Both methods were 

applied using 927 curated CTS SNP-annotations coming primarily from ENCODE4 (ref. 32) and 

single-cell ATAC-seq data from 30 tissues 29. We first validated and benchmarked CT-FM and 

CT-FM-SNP using simulations and GWAS of blood cell traits that biologically correspond to 

specific immune cell types. We applied CT-FM to a set of 63 independent GWASs (average N = 

417K), identified expected causal cell types, and highlighted previously unexplored cellular 

mechanisms involved in psychiatric and immune-related diseases. Finally, we applied CT-FM-

SNP to 6,975 candidate causal {non-coding SNP, trait} pairs identified via SNP-fine-mapping 

within 39 UK Biobank traits 33,34. Results suggest that most individual SNPs impact a phenotype 

through a single cell type, and that pleiotropic SNPs might target different cell types depending 

on the phenotype context. Overall, CT-FM and CT-FM-SNP can be leveraged to infer disease 

causal cell types and uncover new cellular mechanisms involved in complex traits. 
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Results 

Overview of methods 

We developed CT-FM, a method aiming to fine-map the causal cell types of a trait, and CT-FM-

SNP, a method aiming to fine-map the causal cell types of a trait-associated SNP. They take as 

input a GWAS summary statistics with a matching LD reference panel, a set of CTS SNP-

annotations, and (for CT-FM-SNP only) a list of trait’s candidate causal SNPs (Fig. 1).  

CT-FM aims to identify CTS SNP-annotations that are the most likely to explain the h2 

observed across a large set of CTS SNP-annotations. Formally, CT-FM models the vector of 

per-normalized-genotype effect sizes � as a mean 0 vector with variance Var(��) = 

�����������+ �����������, where B represents a set of background (non-CTS) SNP-annotations 

(including the coding, enhancer, and promoter from the baseline model 4,6), ����� is the indicator 

variable of variant j for SNP-annotation b, ��is the contribution of b to Var(��), and C represents 

the set of CTS SNP-annotations. Rather than assuming that all C SNP-annotations contribute to 

Var(��), CT-FM assumes that at most � SNP-annotations contribute positively to Var(��) (i.e., �� 

> 0). Specifically, we model the vector � of ���� as � 	  ∑��	

 �� as the sum of � single-effects 

�� 	 �� · �� where �� is a � � 1 binary vector indicating which CTS SNP-annotation is causal for 

the �th effect, and �� is a scalar quantifying the contribution of the causal �th effect to Var(��). We 

caution here that CT-FM specifically assumes that all disease-relevant cell types have 

corresponding SNP-annotations among C, while they might not have been assayed in practice 

(see Discussion). CT-FM applies the following procedure to infer � and the most likely causal 

cell types. First, for each CTS SNP-annotation �, it applies stratified LD score regression (S-

LDSC) 30,35,36 with the B background SNP-annotations to estimate their marginal effect �̃�. 

Second, it fine-maps SNP-annotations from the vector of marginal �̃ Z-scores using an 

extension of the Sum of Single Effects (SuSiE) model 37,38 on a co-regulation matrix defined as 

the correlation of the LD scores of the CTS SNP-annotations adjusted on the B background 

SNP-annotations. CT-FM outputs posterior inclusion probabilities (PIP) for every CTS SNP-

annotation, which correspond to probabilities of each cell type to be causal for the trait. It also 

regroups putative causal cell types within independent credible sets (CSs) allowing to estimate 

the number of independent causal signals while accounting for uncertainty in cell type 

prioritization. Here, CT-FM defined candidate causal cell type when a corresponding SNP-

annotation was found in a CS, and highly-confident causal cell type when a corresponding SNP-

annotation had a PIP ≥ 0.5; in instances where no highly-confident causal cell type was 
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detected but multiple CTS SNP-annotations from the same cell type were detected in the same 

CS (for example, several SNP-annotations corresponding to B cells stimulated in different 

context), we reported a combined PIP (cPIP) for the cell type (i.e., B cells). Finally, CT-FM 

defined the number of causal cell types � for a trait as the number of CSs detected. 

Because disease risk can be influenced by SNPs acting through different causal cell 

types, it is critical to infer which cell types are targeted by a particular causal SNP to understand 

how genetic variants act at the cellular level to confer disease risk. To infer the most likely 

causal cell types of a trait candidate causal SNP, CT-FM-SNP leverages both polygenic 

enrichment within overlapping SNP-annotations and co-regulation within cREs. Specifically, it 

applies the same workflow as CT-FM, but differs in that it restricts the fine-mapping step to 

marginal �̃ Z-scores of CTS SNP-annotations that overlap the candidate SNP. Similar to CT-FM, 

CT-FM-SNP defined candidate causal cell types for a trait candidate SNP when their 

corresponding SNP-annotations were found in a CS, and highly-confident causal cell types for a 

trait candidate SNP when their corresponding SNP-annotations presented a PIP ≥ 0.5. We note 

that while the inference of multiple CSs by CT-FM suggests that multiple cell types are causal 

for the disease (as it relies on polygenicity), the inference of multiple CSs by CT-FM-SNP 

suggests that the candidate SNP overlap cREs from multiple causal cell types but does not infer 

whether the candidate SNP impacts disease risk by disrupting gene regulation within a single or 

multiple cell types. 

We applied CT-FM and CT-FM-SNP with a total of 927 CTS SNP-annotations 

(capturing, on average, 1.1% of common SNPs) derived from cREs of human cell-types and 

human-derived cell lines (see Fig. 1 and Methods), classified into 9 biological groups for 

visualization (Supplementary Fig. 1). CTS SNP-annotations were candidate regulatory 

elements from ENCODE4 (ref. 32) (653), CATlas single-cell ATAC-seq data 29 (222) and the 

ABC method 27 (52) (Supplementary Table 1). CT-FM was successfully applied (i.e., detected 

at least one CS) on a set of 63 independent and well-powered GWASs prioritizing diseases over 

quantitative traits (average N = 417K; Supplementary Table 2), and CT-FM-SNP was applied 

to 6,975 {non-coding variant, trait} pairs obtained via SNP-fine-mapping on 39 UK Biobank traits 
33,34. We investigated the contribution of each CS to trait h2 by creating SNP-annotations where 

we merged its constituent SNP-annotations. 

Further details are provided in Methods. We have released open-source software 

implementing our framework (see Code availability) and have made all CTS SNP-annotations 

and GWAS summary statistics analyzed publicly available (see Data availability). 
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Validating and benchmarking CT-FM using simulations 

We performed extensive simulations to assess CT-FM power. We simulated GWAS summary 

statistics using h2 = 0.5, different sample sizes N, realistic LD patterns from the UK Biobank, 

and effect sizes depending on per-SNP h2 estimated by S-LDSC on a height GWAS 39. We 

considered one scenario with a single causal cell type (osteoblast), and one scenario with two 

causal cell types (osteoblast and fibroblast). We evaluated and benchmarked CT-FM by 

estimating the mean PIP of the causal SNP-annotation(s) across simulations, the proportion of 

causal SNP-annotations identified as a candidate causal cell type (candidate causal cell type 

sensitivity), and the proportion of SNP-annotations identified as a highly-confident causal cell 

type that are truly causal (highly-confident causal cell type precision). In preliminary analyses, 

we determined that these three metrics were optimized when restricting CT-FM fine-mapping 

step to GWAS summary statistics where at least one out of the CTS SNP-annotations has an S-

LDSC marginal �̃ Z-score > 4 (Supplementary Fig. 2); we thus decided to restrict all further CT-

FM and CT-FM-SNP analyses to summary statistics with at least one CTS SNP-annotation 

found in CS and presenting S-LDSC marginal �̃ Z-score > 4 (hereafter referred to as well-

powered GWAS). Further details are provided in Methods.  

CT-FM power and accuracy were fairly high for well-powered GWASs (Fig. 2 and 

Supplementary Table 3). Specifically, in simulations with N = 350K (same order of magnitude 

than our analyzed GWASs) and with one causal cell type, we estimated that the mean PIP of 

the true causal cell type was 0.77 ± 0.01, that the sensitivity to detect candidate causal cell type 

was 93 ± 1%, and that the precision of the highly-confident causal cell type inference was 88 ± 

1%. In simulations where the causal SNP-annotation did not have the highest PIP, its 

correlation with the SNP-annotation with the highest PIP had a median of 0.51 (mean = 0.56), 

demonstrating that when CT-FM fails to identify the causal cell type it still pinpoints a highly 

correlated cell type (Supplementary Fig. 3). In simulations with two causal cell types, we 

observed a decrease (but still fairly high values) for the mean PIP of the true causal cell types 

(0.54 ± 0.01) and the candidate causal cell type sensitivity (71 ± 1%), while the highly-confident 

causal cell type precision was similar (87 ± 1%). Finally, we observed that CT-FM power and 

accuracy was reduced for N = 100K, and that increasing sample size to N = 1M did not improve 

the results. 

Altogether, these results demonstrate that CT-FM is a powerful and precise method to 

infer the causal CTS SNP-annotations from well-powered GWAS.  
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Validating and benchmarking CT-FM and CT-FM-SNP on blood traits 

As proof of principle, we applied CT-FM and CT-FM-SNP to five blood cell traits that biologically 

correspond to specific immune cell types 5,40,41 (Fig. 3). 

We applied CT-FM to the five traits using GWAS summary statistics from the UK 

Biobank 39 (average N = 444K) and identified expected causal cell types (Fig. 3a and 

Supplementary Table 4). Specifically, CT-FM identified one CS per trait (4.4 CTS SNP-

annotations per trait on average), all highlighting a high-confidence causal cell type (PIP ≥ 0.5), 

such as T cells for lymphocyte count (PIP = 0.59 for CD8+ T cells) and monocytes for monocyte 

count (PIP = 0.71); overall, results were consistent with ref. 5. CT-FM greatly reduced the 

number of candidate causal cell types compared to the initial association signal inferred by S-

LDSC (Fig. 3b and Supplementary Table 5), highlighting the need and the benefit of cell type 

fine-mapping. Additional benchmarking analyses investigating the number of CSs, SuSiE 

parameters L and sample size n, the use of SuSiE-inf 42, and quality control on CSs are 

described in Supplementary Fig. 4, Supplementary Tables 4 and 6, and in Methods, 

respectively. 

We next applied CT-FM-SNP on 1,564 candidate causal {non-coding variant, trait} pairs 

of the 5 blood traits (obtained via SNP-fine-mapping in the UK Biobank 33,34 and by selecting 

SNPs with a SNP-PIP > 0.5). We identified at least one CS for nearly half of the candidate 

SNPs (49%, 764 out of 1,564; 835 CSs in total) and detected a high-confidence causal cell type 

for 90% of these CSs (754 CSs with PIP > 0.5 among the 835 CSs), highlighting a high success 

rate of CT-FM-SNP (Fig. 3c and Supplementary Table 7). Among the CT-FM-SNP CSs with a 

high-confidence causal cell type, 76% (575 out of 754) corresponded to candidate cell types 

previously identified by CT-FM, demonstrating high consistency of causal cell types inferred by 

CT-FM and CT-FM-SNP methods (Fig. 3d, Supplementary Table 8). For the platelet count 

trait, we identified 67 CSs with a high-confidence causal cell type inferred by CT-FM-SNP but 

not found in CT-FM CSs (Fig. 3d); approximately half of these high confidence causal cell types 

(52%, 35 out of 67) corresponded to the megakaryocyte cell type (Supplementary Table 9, see 

also Supplementary Fig. 4), indicating that in cases where CT-FM fails to detect a cell type (for 

example, if targeted by a limited number of causal variants) this cell type can be captured by 

CT-FM-SNP. Similar conclusions for the red blood cell (RBC) volume trait are discussed in 

Supplementary Table 9. Similar patterns were observed when restricting analyses to SNPs 

with SNP-PIP > 0.95 (282 SNPs in total), demonstrating that our conclusions are robust to the 

imperfect selection of candidate causal SNPs (Supplementary Fig. 5). 
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Altogether, our results demonstrate that CT-FM and CT-FM-SNP were able to capture 

known cellular mechanisms of five blood cell traits.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2024. ; https://doi.org/10.1101/2024.05.17.24307556doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307556
http://creativecommons.org/licenses/by-nc-nd/4.0/


Applying CT-FM to 63 GWASs 

We successfully applied CT-FM to a total of 63 independent well-powered GWASs (average N 

= 417K, see Methods) and reported our main findings in Fig. 4. CT-FM identified 81 CSs (each 

CS containing an average of 7.07 CTS SNP-annotations) and 59 high-confidence causal cell 

types (PIP > 0.5) (Fig. 4a and Supplementary Table 10); for the 22 CSs without a high 

confidence causal cell type, we were able to identify 8 cell types with a cPIP > 0.5 

(Supplementary Table 11). CT-FM identified an average of 1.29 CS and 9.09 candidate CTS 

SNP-annotations per trait, representing a ~20x decrease from candidate SNP-annotations 

identified by S-LDSC (false discovery rate (FDR) P < 0.05) (Fig. 4b, Supplementary Table 12). 

CT-FM identified high confidence causal cell types consistent with known biology, such as 

glutamatergic neurons for schizophrenia (SCZ) 43,44 (PIP = 0.98), B cells and/or T cells in 

multiple immune-related diseases, cardiomyocytes in atrial fibrillation 45 (PIP = 0.99), pancreatic 

cells for type 2 diabetes 46 (PIP = 0.51) and prostate epithelial cells for prostate cancer 47 (PIP = 

0.99) (Fig. 4c); new biological insights for individual psychiatric and immune-related diseases is 

provided in the next section. 

To evaluate the h2 captured by CTS SNP-annotations identified by CT-FM, we 

constructed 81 SNP-annotations representing the union of the CTS SNP-annotations within 

each CS (see Methods). These SNP-annotations captured on average 2.7% of common SNPs, 

had h2 enrichment of 14.1 ± 0.6x and explained a third (33.9 ± 1.5%) of trait h2 (results meta-

analyzed across the 81 SNP-annotations; Fig. 4d and Supplementary Table 13). After 

combining SNP-annotations for traits where CT-FM identified more than one CS (see below), 

we observed that 39.4 ± 1.9% of trait h2 was concentrated in CTS SNP-annotations, which 

represents around 2/3 of the h2 explained by SNPs in existing cREs (i.e., cREs from ENCODE4, 

ABC, CATLas, EpiMap 26 and DHS 28, as well as fine-mapped eQTLs from GTeX 48,49; 38.9 % of 

common SNPs explaining 60.6 ± 1.5% of trait h2) (Supplementary Table 14). Highest 

enrichments were observed for blood and immune SNP-annotations (21.3 ± 2.1x when meta-

analyzed across 8 immune-related diseases, and 25.0 ± 3.3x when meta-analyzed across 8 

blood-related traits), while low enrichments were observed for brain SNP-annotations tend to 

have lower enrichments (7.8 ± 0.9x when meta-analyzed across 6 psychiatric diseases); these 

results either highlight different functional architectures between immune- and brain-related 

traits, a higher informativeness of functional data in immune cell types that are available for a 

wide range of conditions (i.e., in vitro stimulations; 552 SNP-annotations analyzed in this study), 
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a lower informativeness of functional data in brain cell types (often collected in pre-natal or post-

mortem tissues), and/or higher confounding in GWAS results of brain-related traits 50.  

CT-FM identified multiple CSs with distinct causal cell types for 25% of the traits (16 out 

of 63), such as osteoblast (PIP = 0.99) and fibroblast (PIP = 0.89) in height 51, and radial glial 

cells (PIP = 0.91) and liver hepatocytes (PIP = 0.99) in body mass index (BMI) 52. It also 

highlighted multiple CSs for psychiatric diseases (bipolar disorder 53 and SCZ 54) and immune-

related diseases (multiple sclerosis 55, inflammatory bowel disease 56 and rheumatoid arthritis 57) 

(see next section). We validated that each CS corresponds to one independent causal signal by 

performing S-LDSC analyses where we jointly analyze SNP-annotations corresponding to each 

CS conditionally to each other (Supplementary Table 15).  

We next investigated whether traits with independent causal cell types tend to have 

causal variants acting jointly on multiple cell types. To test this hypothesis, we focused on the 

16 traits where CT-FM identified multiple CSs and investigated whether the h2 explained by 

SNPs within multiple CSs was higher than expected. Specifically, for each trait, we ran S-LDSC 

with a model containing one SNP-annotation for each of the identified CSs, and one interaction 

SNP-annotation that exclusively contained SNPs overlapping multiple CSs (see Methods). The 

16 interaction SNP-annotations captured on average 1.1% of common SNPs, were expected to 

have a h2 enrichment of 16.7 ± 1.4x under a model with no interaction, and had an observed h2 

enrichment of 15.3 ± 1.4x with the interaction (P = 0.12 for interaction) (Supplementary Table 

16). Overall, these results suggest that, even if SNPs falling within cREs of two causal cell types 

have a higher probability to be causal, it is more likely that these SNPs will impact disease risk 

through one of these cell types than through both cell types.  

Finally, we evaluated the relevance of the three sources of cREs used in this study. Out 

of the 59 high-confidence causal cell types, 36 were coming from ENCODE4, and 23 from 

CATlas. Next, we replicated CT-FM analyses by leveraging CTS SNP-annotations from each 

sources independently. We identified 66, 57 and 19 CSs and 47, 52 and 19 high-confidence 

causal cell types for ENCODE4, CATlas and ABC sources respectively, which were consistent 

with main CT-FM results (Supplementary Fig. 6 and Supplementary Table 17). These results 

demonstrate the benefits of leveraging CTS SNP-annotations from different sources. 

Overall, CT-FM allowed us to refine the number of candidate causal cell types per trait 

(~20x decrease compared to S-LDSC), identified highly-confident causal cell types 

corresponding to known and novel cellular mechanisms, and confirmed the large fraction of h2 

explained by relevant CTS SNP-annotations (39.4 ± 1.9% of trait h2). Finally, for 16 traits with 
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multiple independent causal cell types, we did not find evidence that genetic variants impact 

disease risk or complex trait variability by jointly targeting multiple cell types.  
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CT-FM refines cellular mechanisms of psychiatric and immune-related diseases 

We focused on CT-FM results on 6 independent psychiatric diseases and 8 independent 

immune-related diseases (Fig. 4c). We note that among the 927 SNP-annotations analyzed by 

CT-FM, 71 corresponded to brain cell types, and 552 to immune/blood cell types, and that the 

major histocompatibility complex (MHC) locus was removed from all analyses. 

 Within psychiatric diseases, CT-FM detected 3 CSs for SCZ 54 (highest number in this 

study), significantly decreasing the initial association signal of S-LDSC (487 associated SNP-

annotations with FDR P < 0.05; Fig. 4f and Supplementary Table 18), and providing new 

insights into underlying SCZ cellular mechanisms. Two CSs corresponded to fetal and adult 

excitatory neurons (PIP = 0.99 and 0.98, respectively; both SNP-annotations came from single-

cell ATAC-seq data 29). While the role of excitatory/glutamatergic excitatory neurons in SCZ has 

been previously highlighted using gene expression datasets 5,6, detecting two independent CSs 

within fetal and adult samples would suggest either that different gene regulation mechanisms in 

excitatory neurons impacting SCZ risk at early- and late-life stages (as suggested in ref. 58), 

either that both fetal and post-mortem adult brain samples are needed to characterize gene 

regulation in brain living samples 59. The two corresponding SNP-annotations (1.05% and 

1.26% of common SNPs, respectively) were highly enriched in SCZ h2 (12.8 ± 1.4x and 12.7 ± 

1.4x, respectively), and remained highly enriched when keeping SNPs specific to their CS and 

not present in other CSs (8.9 ± 2.3x and 10.9 ± 1.6x, respectively), confirming the needs of both 

fetal and post-mortem adult brain samples to dissect SCZ risk variants (Supplementary Table 

19). The third CS corresponded to an ENCODE4 annotation of liver hepatocytes derived from 

H9 cell line (PIP = 0.99). While epidemiological studies have reported a risk of developing liver-

mediated diseases among patients with SCZ 60,61, few genetic studies have discussed the 

impact of risk variants through hepatocytes and liver gene regulation. To further confirm this 

result, we created a hepatocyte SNP-annotation where we removed SNPs overlapping the 

SNP-annotations of the two excitatory neuron CSs; this SNP-annotation contained 0.80% of 

common variants, and had an enrichment of 6.82 ± 1.22x in SCZ h2, demonstrating the 

independent action of variants within hepatocyte regulatory elements in SCZ risk. We also 

replicated a significant effect of the hepatocyte SNP-annotation (conditioned to the two 

excitatory neuron CSs SNP-annotations) in an independent East-Asian GWAS (one-sided P = 

5.7 x 10-3) (Supplementary Table 20). These results could summarize the link between SCZ 

and the level of C-reactive protein (a protein synthesized by the liver in response to 

inflammation) 62,63. Indeed, a recent C-reactive protein GWAS study highlighted an enrichment 
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of associated variants in liver SNP-annotations and supported a causal association with SCZ 63. 

In addition, we observed that the significant enrichment of SCZ h2 in immune-related SNP-

annotations was not significant after conditioning on the hepatocyte SNP-annotation 

(Supplementary Fig. 7), suggesting that the link between immunity and SCZ risk is mediated 

by hepatocytes. However, we note that these findings could also reflect a selection bias in 

patients with SCZ (for example by selecting only patients that do not respond to existing drugs 

through different genetics of gene regulation in the liver) or . Altogether, our results show that 

SCZ risk variants are independently enriched within SNP-annotations from fetal and post-

mortem excitatory neurons and from liver hepatocytes, suggesting different cellular causal 

mechanisms. 

CT-FM also highlighted adult glutamatergic neurons (PIP = 0.99) and liver hepatocytes 

(PIP = 0.86) for bipolar disorder 53, which has a high genetic correlation 64 with SCZ (rg = 0.71 

+/- 0.02). Interestingly, the fetal glutamatergic neuron SNP-annotation was selected by CT-FM 

for SCZ but not for bipolar disorder, consistent with recent reports 65,66. For other psychiatric 

diseases, CT-FM identified excitatory neurons (either from fetal and/or adult samples) for 

insomnia 67 (cPIP = 0.47), depression 68 (PIP = 0.45), and attention-deficit/hyperactivity disorder 
69 (PIP = 0.58), consistent with published literature 5,6, and inhibitory neurons for anorexia 

nervosa 70 (PIP = 0.64), which has been previously discussed but remains unelucidated 71,72. 

 When applied to 8 immune-related diseases, CT-FM was able to recapitulate known 

findings, such as the role of CD4+ T cells in asthma 73 (cPIP = 0.61), celiac disease 74 (cPIP = 

0.55), and type 1 diabetes 75 (PIP = 0.70), the role of B cells in lupus 76 (cPIP = 0.42) and 

primary biliary cirrhosis 77 (cPIP = 0.66), the role of both CD4+ T cells and B cells in rheumatoid 

arthritis 57 (cPIP = 0.50 and PIP = 0.95, respectively), and the role of both CD4+ T cells and 

macrophages in multiple sclerosis 55 (PIP = 0.90 and 0.99, respectively). Interestingly, CT-FM 

was able to identify two CSs for multiple sclerosis, while previous approaches highlighted 

enrichments in a variety of immune cell types but were unable to distinguish between them 5,6. 

Similarly, for rheumatoid arthritis, previous works have mainly characterized heritability 

enrichment within CD4+ T cells 78–80, while CT-FM was able to also detect a role of variants in 

regions active in B cells. Indeed, B cells play critical roles in rheumatoid arthritis pathogenesis 

by secreting physiologically important proteins such as rheumatoid factors, anti-citrullinated 

protein antibodies and pro-inflammatory cytokines 81. CT-FM results on an alternative 

rheumatoid arthritis GWAS dataset 79 are discussed in Supplementary Fig 8.  
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Finally, CT-FM identified two CSs for inflammatory bowel disease 56 (IBD): the first CS 

corresponded to monocyte-derived cells (max PIP = 0.63 for macrophages), the second CS 

corresponded to various types of T cells (cPIP = 0.29 and 0.44 for CD4+ and CD8+ T cells, 

respectively). Interestingly, when performing additional analyses on Crohn’s disease (CD) and 

ulcerative colitis (UC) 56 (two main subtypes of IBD), CT-FM identified one of these CS for each 

subtype: monocyte-derived cell types for CD (max PIP = 0.98 for macrophages), and T cells for 

UC (PIP = 0.59 and 0.10 for CD4+ and CD8+ T cells, respectively) (Fig. 4c). Our findings are 

consistent with several previous reports implicating macrophages and T cells in both CD and 

UC 82,83. Interestingly, drastically elevated levels of monocytes were observed in patients with 

CD but not UC, suggesting that monocytes may play a more important role in the etiology of CD 
84,85; several studies report elevated/decreased levels of various T cell subsets and their 

effects in IBD patients compared with healthy controls, with differences more pronounced in UC 

rather than CD patients 86,87.  

Altogether, CT-FM identified multiple causal cell types for psychiatric and immune-

related diseases. For SCZ, it identifies distinct roles of fetal and adult excitatory neurons, 

suggesting different gene regulation mechanisms in excitatory neurons impacting SCZ risk at 

early- and late-life stages 58, and hepatocytes, consistent with the role of C-reactive protein in 

SCZ risk 62,63. For IBD, CT-FM identified two CSs, each corresponding to the CS identified by 

CT-FM for UC and CD, consistent with a model where diseases are biologically heterogeneous, 

and where different disease subtypes are impacted by genetic risk variants through different cell 

types. 
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Applying CT-FM-SNP to 39 UK Biobank complex traits  

We successfully applied CT-FM to 39 UK Biobank traits (53 CSs; Supplementary Table 21), 

and CT-FM-SNP to 6,975 candidate causal {non-coding SNP, trait} pairs (5,819 unique SNPs) 

of these traits identified via SNP-fine-mapping 33,34. CT-FM-SNP was able to assign at least one 

CS to nearly half (3,154/6,975; ~46%) of the pairs (3,840 CSs in total), detecting a high 

confidence causal cell types for most of them (2,798/3,154; 89%) (Fig. 5A and Supplementary 

Table 22). We identified expected high confidence causal cell types for a high number of {non-

coding SNP, trait} pairs, such as CD4+ T cells for eczema candidate SNPs (24 SNPs with PIP > 

0.5 for CD4+ T cells among 40 analyzed, average PIP = 0.90), erythroblasts for mean 

corpuscular hemoglobin candidate SNPs 88 (98/198, average PIP = 0.94) and osteoblasts for 

bone density candidate SNPs 89,90 (76/241, average PIP = 0.94) (Fig. 5B). While high 

confidence causal cell types detected by CT-FM-SNP were consistent with CT-FM results, CT-

FM-SNP identified trait-relevant cell types for a smaller fraction of variants, such as vascular 

smooth muscle cells (VSMCs) for systolic blood pressure (7/70, average PIP = 0.71) and bone 

marrow stromal cells (BMSCs) for height (25/417, average PIP = 0.77).  

To further predict causal {non-coding SNP, cell type, gene, trait} quadruplets, we 

leveraged predictions from both CT-FM-SNP and SNP-gene links from our cS2G strategy 91 and 

predicted 2,751 causal quadruplets (Supplementary Table 23). To validate these predictions, 

we performed gene ontology enrichment analyses of genes assigned to the same cell types 

across the 39 traits 92 (Fig. 5c and Supplementary Table 24). We identified expected 

enrichments, such as enrichment of bone- and osteoblast-related processes for genes linked to 

SNPs targeting the osteoblast cell type (minimum FDR P = 1.8 x 10-10), enrichment of 

immune- and T-cell related processes for genes linked to SNPs targeting T cells (minimum 

FDR P = 2.4 x 10-16), and enrichment of epithelial-related processes for genes linked to 

SNPs targeting epithelial cells (minimum FDR P = 6.1 x 10-7). These results underline the 

capacity of CT-FM-SNP and cS2G to perform {non-coding SNP, cell type, gene, trait} 

quadruplet predictions consistent with known biological mechanisms. 

We report quadruplets consistent with known biology or highlighting new biology in 

Table 1. Specifically, for the type 2 diabetes candidate causal variant rs571342427, we inferred 

pancreatic islet cells and pancreatic beta cells as two high confidence cell types, and the insulin 

gene (INS) 93,94 as a target gene. For the bone density candidate causal variant rs10130587, we 

inferred osteoblasts as a high confidence cell type, and the bone morphogenetic protein 4 gene 

(BMP4; a gene previously implicated in body stature 95,96, involved in bone formation and 
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stimulation of osteoblast differentiation 97–99) as a target gene. Finally, for the neuroticism 

candidate causal variant rs191480627, we inferred hepatocyte cell type as a high confidence 

cell type, and AGPAT3 as a target gene. These results are consistent with our previous findings 

suggesting the link between hepatocytes and C-reactive protein in other psychiatric disorders 

(see above), and with the role of the hepatic AGPAT3 gene in regulating levels of 

polyunsaturated fatty acids (PUFAs) 100, as low levels of PUFA have been previously linked to 

the pathogenic mechanisms underlying psychiatric disorders with limited literature support 101,102 

and to the regulation of C-reactive protein levels 103–105. Additional details of quadruplets 

highlighted in Table 1 are provided in the Supplementary Note. 

CT-FM-SNP identified 668/3,154 SNPs with at least two CSs. In practice, it is very 

challenging to infer if a regulatory SNP overlapping cRE from diverse cell types impacts disease 

risk by acting on only one of these cell types, or by acting jointly on multiple cell types. Here, we 

leveraged CT-FM-SNP results to tackle this question. First, we validated that CT-FM-SNP does 

not overestimate the number of SNPs assigned to at least two CSs by comparing its results with 

h2 results estimated by S-LDSC. We focused on 7 UK Biobank traits for which CT-FM identified 

two CSs and CT-FM-SNP identified at least one CS for at least 50 SNPs; CT-FM-SNP identified 

736 SNPs assigned to one or two cell types previously identified by CT-FM (Supplementary 

Fig. 9). On average, 37 ± 5% of these SNPs were assigned by CT-FM-SNP to both CT-FM CSs 

(285 SNPs in total), which was consistent with the fraction of h2 explained by SNPs in the 

intersection of CT-FM CSs by the h2 explained by SNPs in the union of CT-FM CSs 

(Supplementary Fig. 10, Supplementary Table 25 and Supplementary Table 26). Second, 

for the same set of traits, we observed that the number of SNPs assigned to both CT-FM CSs 

(285) was smaller than what is expected under a model where SNPs in both CT-FM CSs impact 

disease risk through a single cell type (395, more information in Supplementary Table 27 

caption). This result suggests that, among SNPs where CT-FM-SNP identified two CSs, it is 

extremely likely that most of them impact disease risk through a single cell type.  

Next, we investigated whether a SNP impacting multiple traits (i.e., pleiotropic SNP), 

tends to target the same or different cell types. We analyzed 104 candidate causal SNPs for 

which CT-FM-SNP identified a candidate causal cell type in at least two genetically uncorrelated 

UK Biobank traits (Supplementary Table 28). We found that approximately half of these 

pleiotropic SNPs (46/104; 44%) shared at least 1 candidate cell type across different traits (Fig. 

5c). Shared {non-coding SNP, cell type} pairs across traits included SNPs acting on 

hematopoietic multipotent progenitors (HMP) in blood/immune traits and SNPs acting on 
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osteoblasts and bone marrow stromal cells in height and bone density traits (Fig. 5d). Strikingly, 

more than half of the pleiotropic SNPs (58/104; 56%) were assigned to different cell types by 

CT-FM-SNP (Fig. 5e). For example, the pleiotropic SNP rs1887428 was assigned to HMP and 

erythroblast cell types for mean corpuscular hemoglobin, but to megakaryocytes for mean 

platelet volume; this result is consistent with the known role of its candidate target gene JAK2 

on the regulation of both erythroid progenitors 106 and megakaryocyte morphology 107. The 

pleiotropic SNP rs3918226 was assigned to fibroblasts, endothelial and CD4+ T cells for height, 

diastolic blood pressure and eczema, respectively; this result is consistent with the known role 

of its candidate target gene NOS3 (ref. 91), which is produced in endothelial cells and plays a 

key role in regulating blood pressure 108,109, but was also shown to regulate CD4+ T cell 

production 110,111 and collagen synthesis in fibroblasts 112. Finally, the pleiotropic SNP 

rs75475627 was assigned to osteoblasts and bone marrow stromal cells for bone density trait, 

and to macrophages for monocyte count trait; this result is consistent with the known role of its 

candidate target gene SPTBN1, which is involved in osteoblast differentiation and function 
113,114, but was also shown to regulate monocyte differentiation into macrophages 115.  

Altogether, CT-FM-SNP results shed light on how variants individually impact disease 

risk. We predicted 2,751 {non-coding SNP, cell type, gene, trait} quadruplets, representing one 

of the largest catalogs of this type to date. Finally, while we observed that most individual SNPs 

impact a phenotype through a single cell type, pleiotropic SNPs might target different cell types 

depending on the phenotype context.     
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Discussion 

We developed CT-FM and CT-FM-SNP, two methods that leverage CTS cRE annotations to 

fine-map causal cell types for a trait and for its candidate causal variants, respectively. These 

methods were validated using simulations and application to five blood cell traits that biologically 

correspond to specific immune cell types. By applying CT-FM to 63 GWASs, we identified 81 

CSs with corresponding SNP-annotations explaining a high fraction of trait h2 (39.4 ± 1.9%, 

which corresponds to ~2/3 of the h2 explained by existing cREs), identified 16 traits with multiple 

causal cell types, and identified cell-disease relationships consistent with known biology and 

highlighted previously unexplored cellular mechanisms involved in psychiatric and immune-

related diseases. Notably, for SCZ, we identified three credible sets corresponding to fetal and 

adult excitatory neurons and hepatocytes. For IBD, we identified two credible sets 

corresponding to macrophages and T cells; interestingly, each of these cell types were inferred 

as causal for CD and UC, respectively, suggesting disease heterogeneity for diseases with 

multiple causal cell types. By applying CT-FM-SNP to 39 UK Biobank traits, we suggest that 

most individual SNPs impact a phenotype through a single cell type (as also suggested by h2 

analyses), and that pleiotropic SNPs might target different cell types depending on the 

phenotype context. 

Compared to existing methods, CT-FM and CT-FM-SNP propose several conceptual 

advances. First, it fine-maps cell types of diseases and risk variants from cREs rather than gene 

expression QTLs datasets 14,20, allowing to capture more disease h2. Indeed, the h2 explained by 

the cREs identified by CT-FM is nearly four times higher than the h2 explained by fine-mapped 

eQTLs 22 or mediated by gene expression 23 from all GTeX tissues. Second, employing 

statistical fine-mapping on S-LDSC results of cRE SNP-annotations allows disentangling shared 

regulatory patterns across cell types, greatly reducing the number of resulting candidate SNP-

annotations (~20x decrease). For example, CT-FM was able to identify two CSs for multiple 

sclerosis, while previous approaches highlighted enrichments in a variety of immune cell types 

but were unable to distinguish between them 5,6. Third, CSs identified by CT-FM allow 

distinguishing between co-regulated and conditionally independent causal cell types. In SCZ, 

we were able to identify two independent causal signals in brain and excluded immune cell 

types which co-regulated with hepatocytes. Finally, CT-FM-SNP is (to our knowledge) the first 

method prioritizing causal cell type of individual variants by leveraging both polygenic 

enrichment and co-regulation within cREs.   
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Our findings have several implications for downstream analyses. First, it highlights the 

benefits of leveraging cREs to infer causal cell types of diseases and risk variants. Their 

advantages include a high fraction of h2 explained, cost effective experiments targeting multiple 

cell types and conditions (ENCODE4 provides candidate cis-regulatory elements for 1,680 cell 

types and cell lines; single-cell ATAC-seq technologies are now allow to infer cREs specific to a 

cell state 80), and high potential for linking rare variants to cell types. Second, our application of 

CT-FM on 63 GWASs uncovered previously unexplored cellular mechanisms in psychiatric and 

immune-related diseases. Specifically, identifying hepatocytes as a causal cell type for SCZ was 

consistent with the link between SCZ risk variants and C-reactive protein reported in ref. 63; 

identifying genetic variants impacting SCZ risk through hepatocytes could lead to new candidate 

disease genes and drug targets. Third, our results are consistent with a model where diseases 

are biologically heterogeneous, and where different disease subtypes are impacted by genetic 

risk variants through different cell types. For example, CT-FM identified two CSs for IBD, each 

corresponding to the CSs identified for CD and UC (macrophages and T cells, respectively). 

Identifying multiple causal cell types for a trait could thus allow constructing CTS polygenic risk 

scores to build distinct profiles of patients 116. However, we underline that these results do not 

indicate a disease-specific action of different cell types but rather their more pronounced role in 

different subtypes which involves a complex interplay between different causal cell types. 

Finally, CT-FM-SNP provides insights into functions of disease candidate variants and may also 

be helpful for choosing the relevant cell type for in vitro experiments.  

We note several limitations of our work, related to CT-FM and CT-FM-SNP power to 

perform causal inferences. First, CT-FM and CT-FM-SNP specifically assume that all disease-

relevant cell types have corresponding SNP-annotations, while they might not have been 

assayed in practice. This is consistent with the observation that cREs are available for a wide 

range of immune cell types and conditions (i.e., in vitro stimulations; 552 SNP-annotations 

analyzed in this study) and presented the largest h2 enrichments (21.3 ± 2.1x when meta-

analyzed across 8 immune-related diseases vs. 7.8 ± 0.9x when meta-analyzed across 6 

psychiatric diseases). Generating cRE catalogs in diverse cell types and conditions should fill 

the gap between the total trait h2, and the h2 explained by SNP-annotations from putative causal 

cell types. Nevertheless, CT-FM and CT-FM-SNP can still indicate the “best proxy” for the truly 

causal cell type. Second, as highlighted in simulations, power to detect disease causal cell 

types depends on GWAS sample size and trait h2, which product needs to be large. While CT-

FM has been successful at detecting at least one CS on 63 GWASs and at least two CSs for 16 

traits, it still might have missed some causal cell types due to lack of statistical power. However, 
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we detected similar causal cell types with a height GWAS performed in the UK Biobank (N = 

460K) than with a height GWAS with a significantly larger sample size (N = 1.6M; ref. 51), 

suggesting that there should not be many causal cell types for a complex trait. In addition, we 

highlighted that CT-FM-SNP can detect relevant cell types that have not been highlighted by 

CT-FM. Third, another limitation related to sample size is that we were unable to analyze GWAS 

of non-European ancestries, which have significantly lower sample size than GWAS of 

European ancestry 117. Specifically, we extended our CT-FM approach to analyze 31 GWASs of 

East-Asian ancestry 118, and identified only five traits well-powered GWAS (i.e., at least 1 S-

LDSC marginal �̃ Z-score > 4) (Supplementary Table 29). However, despite sample size 

differences of these traits between East-Asian and European GWASs (average N = 111K vs N 

= 795K), CT-FM results were consistent across ancestries (Supplementary Table 30), 

confirming similar CTS genetic architectures across these two ancestries 79. Fourth, CT-FM 

power is also reduced when cell types highly co-regulate with each other. Credible sets inferred 

by SuSiE account for uncertainty in causal cell type selection but are unable to distinguish how 

many causal signals are contained within a CS. For example, in many immune-related 

diseases, we identified CS related to T cells and containing both CD4+ and CD8+ T cell SNP-

annotations, without being able to dissociate the cases where only one or both of them are 

causal. Improved cRE definition, such as dynamic regulatory elements defining precise cell 

types or cell states 80, should improve CT-FM ability to identify precise causal cell types or cell 

states. Finally, CT-FM-SNP relies on a list of candidate SNPs identified via SNP-fine-mapping, 

whose power is still limited 33.  

Despite these limitations, our results demonstrate the advantage of CT-FM and CT-FM-

SNP to infer independent causal cell types from GWASs, providing novel insights into the 

complex cell biology underlying the genetic architecture of human diseases and complex traits. 
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Methods 

CT-FM method 

CT-FM is a method that fine-maps the causal cell types of a trait. It takes as inputs GWAS 

summary statistics with a matching LD reference panel, and a set of CTS SNP-annotations (Fig. 

1). Below we describe its model and parameters estimation. 

 We assume the infinitesimal linear model � � �� � �, where � is a vector of quantitative 

phenotypes, � is a matrix of standardized genotypes, � is the vector of per-normalized-

genotype effect size, and � is a mean 0 vector of residuals. We model the variance of the causal 

effect size �� of each variant j as an extension of S-LDSC baseline model 4,6. Specifically, we 

model  

Var(��) = 	���
���
��+ 	���
���
��, 

where B represents a set of background SNP-annotations from the baseline model (i.e., coding, 

enhancer, promoter, …), 
���
 is the indicator variable of variant j for SNP-annotation b, ��is the 

contribution of b to Var(��), and C represents the whole set of CTS SNP-annotations. Rather 

than assuming that all C SNP-annotations contribute to Var(��), we assume that at most � SNP-

annotations contribute positively to Var(��) (i.e., �� > 0). Specifically, we model the vector � of 

���� as � � ∑ ��
�
�	
  as the sum of � single-effects �� � �� · �� where �� is a � � 1 binary vector 

indicating which CTS SNP-annotation is causal for the �th effect, and �� is a scalar quantifying 

the contribution of the causal �th effect to Var(��). We caution that CT-FM specifically assumes 

that all disease-relevant cell types have corresponding SNP-annotations among C, while they 

might not have been assayed in practice (see Discussion). 

 In practice, we obtain marginal effects �̃� by applying S-LDSC on GWAS �2 summary 

statistics from the following model:  

����
�� � �	��������, �
 � ��̃����, �
 � �� � 1 

where � is the GWAS sample size, � is a term measuring the contribution of confounding 

biases 119 and ���, �
 � 	�
�� 
!��
�  is the LD score of SNP j with respect to the value of SNP-

annotation 
� and !��
�  is the correlation between SNPs j and k. We can then model the vector �̃ 

of �̃��� as �̃ ~ ��#�, #
, where � is the sum of single effects from above, and # is the � � � co-

regulation matrix defined as the residual correlation matrix of LD scores 
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 # � $�

$� % $�


$��$�

$�
�
$�


$�  

where $� and $� are the SNP x & and SNP x � SNP-annotation matrices of the LD scores of 

the baseline model SNP-annotations and CTS SNP-annotations, respectively. After estimating 

the marginal effects �̃� and their corresponding Z-scores using the S-LDSC framework 30,35,36, 

and computing the co-regulation matrix, we can estimate the number of single effects � ' � and 

corresponding �� and �� values from the SuSiE-RSS function from the SuSiE-R package 38. In 

practice SuSiE-RSS will estimate the PIP of each SNP-annotation � by modeling �� as 

()�*+�1, ,�
, where ,� is the probability of each CTS SNP-annotation to explain a single �th 

effect, and by defining -.-� as  

-.-� � -��� / 0 |�̃, $�
 � 1 % ∏ �1 % ,�,�
�
�	
   

We set SuSiE parameters L to 10 (default) and n to 1,190,321 matching the number of SNPs 

used by S-LDSC. Of note, varying these parameters did not change the results (identical PIP 

values and CSs). 

We next compute 3-CSs for each �, where 3 represents the desired probability that the 

set contains causal CTS SNP-annotations (0.95 in this study). To infer a CS for each �, we 

decreasingly sort ,� and take a greedy approach to include CTS SNP-annotations until their 

cumulative sum exceeds 3.  

CT-FM then applies several steps to refine the CS inferences. First, to remove any 

potential false positive CSs, it removes CSs in which no CTS SNP-annotations present a high 

S-LDSC association signal (S-LDSC Z-score > 4), criteria similar to our definition of a ‘well-

powered’ GWAS. Second, we introduce several modifications to the default SuSiE-RSS 

approach to detect potentially missed CSs (i.e., false negatives). By default, SuSiE applies the 

“purity” approach which removes CSs whose minimum pairwise correlation # between its 

components is less than a given threshold (0.5 by default). However, this pruning method may 

falsely remove CSs containing two causal signals exhibiting equal effect size but presenting low 

pairwise correlation #. To remedy this, we heuristically introduce a new criterion "divergence" 

measuring the Kullback–Leibler (KL)-divergence between the distribution of ,� values and the 

null distribution for each �. We keep the CSs whose either purity is greater than 0.3 (threshold 

corresponding to the average absolute pairwise correlation between two CTS SNP-annotations 

in our dataset) or the KL divergence is greater than 3. The KL divergence of a CS significantly 

correlated with the maximum S-LDSC Z-score observed in a CS (r2 = 0.79, Supplementary 

Fig. 11), and the threshold of 3 was empirically defined as it optimizes the selection of well-
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powered CSs (defined as CSs containing at least one CTS SNP-annotation with a S-LDSC Z-

score > 4). Third, in very rare cases, SuSiE-RSS can output two CSs both containing a 

“duplicate” CTS SNP-annotation (i.e., present in both CS1 and CS2). To address these 

particular cases, we remove the CSs containing such duplicates if the sum of their PIP values 

exceeds 0.1. In practice, only 2 of the 135 analyzed CSs contained duplicate CTS SNP-

annotations (1/53 for 39 UK Biobank traits and 1/82 for 63 GWASs analyzed in this study), with 

only 1 case where we removed the CS as the sum of the corresponding PIP values exceeded 

0.1 (second GWAS dataset of Rheumatoid arthritis, see Supplementary Fig. 8). Finally, for 

CSs where no highly-confident (PIP > 0.5) causal cell type was detected but multiple CTS SNP-

annotations correspond to the same cell type, we calculate a combined PIP (cPIP) defined as 

�-.-�
,� � 1 % 4 �1 % ,�,�
�

�
� � �

 

where �*, � is the cell type in a credible set �, and ,�,�
� are the , values of the CTS SNP-

annotations cts present in the credible set � and corresponding to the cell type �* (8 cases of 

cPIP > 0.5 calculated across 63 GWASs, Supplementary Table 10). 

 

CT-FM-SNP method 

While CT-FM was designed to infer causal cell types underlying the overall GWAS signal, CT-

FM-SNP is a method that fine-maps the causal cell types targeted by a particular causal SNP. It 

takes as inputs GWAS summary statistics with a matching LD reference panel, a set of CTS 

SNP-annotations, and a list of candidate causal SNPs of the trait, and outputs CSs and PIPs for 

those SNPs (Fig. 1). Briefly, for each analyzed SNP, we restrict CT-FM model to the subset of 

cRE annotations overlapping the SNP and perform the same inference and filtering of CSs as 

described above. We additionally retain the results of SNPs that present a high confidence 

causal signal (PIP > 0.5) for a well-powered CTS SNP-annotation (S-LDSC Z-score > 4) even if 

they were not identified in a CS (67 such SNPs in total among 3,154 analyzed, Supplementary 

Table 19). We note that while the inference of multiple CSs by CT-FM suggests that multiple 

cell types are causal for the disease (as it relies on polygenicity), the inference of multiple CSs 

by CT-FM-SNP suggests that the candidate SNP overlap cREs from multiple causal cell types, 

but does not infer whether the candidate SNP impacts disease risk by disrupting gene 

regulation within a single or multiple cell types. 
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Selection of 927 CTS annotations for CT-FM and CT-FM-SNP 

Our dataset of 927 CTS SNP-annotations (1.1% of common SNPs on average) was derived 

from three catalogs of cREs: ENCODE4, CATlas and ABC (average genome coverage = 32.5 

Mb). For ENCODE4, we manually curated the dataset of 1,680 cell-type-specific cREs by 

primarily excluding cREs corresponding to tissues and cancer cell lines. For each resulting cRE 

file, we excluded marks corresponding to “low DNase'' and “Unclassified” state. ENCODE4 data 

was converted from hg38 to hg19 using the liftOver tool from UCSC 120. For ABC, we retrieved a 

dataset of gene-enhancer predictions for 131 tissues/cell types and excluded all tissue-level 

annotations. CATlas data (epigenomic annotations of 222 cell types) was retrieved and 

converted to hg19 (liftOver) without any additional filtering. The resulting bed files were 

homogenized (sortBed function of bedtools 121) and checked for errors (bedops --ec --merge 

function of BEDOPS 122). For each dataset, we additionally create one baseline annotation 

corresponding to the union of all candidate regulatory regions across all cell types (see CT-FM 

analyses in the Methods section). 

 

Simulations 

To assess CT-FM power under realistic scenarios, we simulated GWAS summary statistics for 

the 1,187,349 HapMap 3 SNPs used by S-LDSC. We considered one scenario with a single 

causal cell type (the osteoblast SNP-annotation identified in CT-FM first CS), and one scenario 

with two causal cell types (the osteoblast and fibroblast SNP-annotations identified by CT-FM 

CSs). First, we used S-LDSC regression coefficients estimated on height GWAS using the 

baseline model SNP-annotations and the osteoblast SNP-annotation for the first scenario, and 

using the baseline model SNP-annotations, the osteoblast SNP-annotation, and the fibroblast 

SNP-annotation for the second scenario. Then we computed expected per-SNP h2 for every 

SNPs using the corresponding annotations. Second, we randomly selected 10,000 causal SNPs 

(same order of magnitude as the number of causal SNPs per GWAS in ref. 33), and simulated 

effect sizes proportional to the per-SNP h2 computed above while setting h2 to 0.5. Because 

expected per-SNP h2 can be negative, we initially set these values to 0, and rescaled positive 

per-SNP h2 so that expected h2 enrichment of each annotation in the model was similar to the 

ones observed on the height GWAS. Third, we simulated a vector of GWAS Z-scores using a 

multivariate normal distribution (mvrnorm R function), an LD matrix estimated on 337,491 

unrelated British-ancestry individuals from UK Biobank release 3 (ref. 33), and a GWAS sample 

size of 100K, 350K (main simulation), and 1M. 500 simulations were performed for each 
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scenario and sample size (4,500 simulations in total). Fourth, we ran CT-FM using 200 CTS 

SNP-annotations with varying degrees of residual correlation # with the osteoblast SNP-

annotation in the first simulation scenario, and added 200 CTS SNP-annotations with varying 

degrees of residual correlation # with the fibroblast SNP-annotation in the second simulation 

scenario. Specifically, for the osteoblast cell type, we selected 40 CTS SNP-annotations 

presenting a weak correlation with the causal SNP-annotation (# between -0.11 and 0.10), 80 

CTS SNP-annotations presenting a low-to-moderate correlation with the causal SNP-annotation 

(# between 0.10 and 0.32), 40 CTS SNP-annotations presenting a moderate-to-high correlation 

with the causal SNP-annotation (# between 0.32 and 0.45) and 40 CTS SNP-annotations 

presenting a high correlation with the causal SNP-annotation (# between 0.45 and 0.81). Similar 

selection was performed for additional 200 CTS SNP-annotations with varying degrees of 

correlation with the causal fibroblast CTS SNP-annotation (minimum #  = -0.11; maximum # = 

0.78; mean # = 0.12) (Supplementary Table 31). 

 

CT-FM analyses 

We successfully ran CT-FM on GWAS summary statistics of five blood traits from the UK 

Biobank 39, 63 independent GWAS summary statistics, and CD and UC summary statistics 56 

(see Supplementary Table 9 and 20). All GWASs were performed on individuals of European 

ancestry. S-LDSC Z-scores were obtained by running S-LDSC with the with the baseline v1.2 

SNP-annotations; to make sure that our analyses capture CTS information we added six SNP-

annotations corresponding to the union of all CTS ENCODE4, CATlas, ABC, EpiMap 26, and 

DHS 28 cREs, as well as GTeX fine-mapped eQTLs (SuSiE PIP > 0.05 in at least one tissue) 
48,49. We used Europeans from the 1000 Genomes Project as the reference panel 123. 

 To benchmark CT-FM, we first let vary SuSiE parameters l and n (default values set to 

L=10; and n=1,190,321 matching the number of SNPs used in S-LDSC model) on the 5 blood 

traits, and observed identical results (i.e., same CSs and PIP values for each trait). Second, we 

compared CT-FM results on the five blood traits while keeping all CTS SNP-annotations 

(including the ones with negative �, which were artificially set to 0) and while restricting the CTS 

SNP-annotations to those presenting a positive S-LDSC � (default approach of CT-FM). We 

observed no significant differences on the resulting CT-FM PIP values (correlation = 0.99) and 

CT-FM credible sets (22/22 CTS SNP-annotations identified in CS by both methods) 

(Supplementary Fig. 12). Third, we ran SuSiE-inf 42 instead of SuSiE-RSS and observed a 
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lower number of CSs (3 with SuSiE-inf vs. 5 with SuSiE-RSS) and a lower number causal cell 

types with PIP ≥ 0.5 (3 with SuSiE-inf vs. 5 with SuSiE-RSS), arguing in favor of using SuSiE-

RSS for cell-type fine-mapping. In particular, SuSiE-inf (and not SuSiE-RSS) failed to detect 

monocytes as the top causal cell type for the monocyte count trait (Supplementary Table 5). 

Finally, we applied a recommended fine-mapping diagnostic procedure 38,124 and observed a 

high concordance between expected and observed Z-scores across traits (mean r2 = 0.95 

across the 63 GWASs, Supplementary Fig. 13), guaranteeing reliable fine-mapping results by 

CT-FM. 

 

S-LDSC analyses 

To evaluate the h2 captured by CTS SNP-annotations identified by CT-FM, we constructed 81 

SNP-annotations representing the union of the CTS SNP-annotations within each CS, and 

estimated the h2 they explained using S-LDSC with baseline-LD model v2.2 and the six 

additional functional SNP-annotations; we note that we followed the recommendation to use 

baseline model SNP-annotations for identifying critical cell types, and the baseline-LD model 

SNP-annotations for estimating h2 enrichment 125. To evaluate the h2 captured by SNPs in 

existing cREs we merged the six additional functional SNP-annotations to a single annotation. 

Meta-analyses were performed using random-effects with the R package rmeta. 

To investigate whether traits with independent causal cell types tend to have causal 

variants acting jointly on multiple cell types, we ran S-LDSC with the baseline model SNP-

annotations, the six additional functional SNP-annotations, one SNP-annotation corresponding 

to each CS and one interaction SNP-annotation corresponding to the intersection of the multiple 

CSs. We meta-analyzed standardized effects �* of the interaction SNP-annotation, which is 

defined as �* = � x M x sd / h2, where M is the number of common SNPs in the reference 

panel, sd is the standard deviation of the SNP-annotation, and h2 is the estimate of SNP-

heritability from S-LDSC). We compared the h2 enrichment of the interaction SNP-annotation 

under a model with no interaction (i.e., obtained from the � estimated by S-LDSC with the 

baseline-LD model, the six additional functional SNP-annotations, and one SNP-annotation 

corresponding to each CS) and with interaction (i.e., estimated directly from S-LDSC by adding 

the interaction SNP-annotation to the previous model).   
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CT-FM-SNP analyses 

We ran CT-FM on the 49 UK Biobank traits analyzed in ref. 33 and identified at least one CS for 

39 traits. We next leveraged functionally-informed SNP-fine-mapping results from PolyFun for 

these 39 traits 33, and identified 6,975 candidate causal {non-coding SNP, trait} pairs (5,819 

unique SNPs); we note that no CTS SNP-annotations were included in PolyFun functional 

priors. We applied CT-FM-SNP to all of these pairs. To link non-coding SNP to their target 

genes, we leveraged predictions from our cS2G strategy 91 and retained one gene per SNP-trait 

pair by taking the gene with the highest cS2G score as defined in ref. 91. GO enrichment 

analyses were performed using the GOseq R package 92 for cell types presenting at least 50 

SNP-Cell-type pairs identified in this study. For the analyses presented in Fig. 5c, we regrouped 

cell types corresponding to T cells (such as CD4+ and CD8+ T cells) and cell types 

corresponding to epithelial cells (such as epithelial fibroblasts, choroid plexus epithelial cells and 

mammary epithelial cells). We retained all GO terms corresponding to the Biological Process 

category, containing between 10 and 1,000 genes, and containing at least 5 genes from the 

tested gene set. All FDR significant enrichments (FDR P < 0.05) are reported in 

Supplementary Table 24. For heritability analyses presented in Supplementary Fig. 9, we 

selected 7 UK Biobank traits with two identified CT-FM CSs and at least 50 SNPs successfully 

analyzed by CT-FM-SNP. For presentation purposes of CT-FM-SNP results on BMI, we 

leveraged the 2 CSs inferred by CT-FM on the BMI GWAS summary statistics of ref. 52 (used in 

Applying CT-FM to 63 GWASs section) rather than the 3 CSs inferred by CT-FM on UK Biobank 

BMI summary statistics (Supplementary Table 21). For analyses related to pleiotropic SNPs, 

genetically uncorrelated UK Biobank traits were defined by prioritizing UK Biobank traits with the 

highest SNP-heritability Z-score, and by removing traits with a squared genetic correlation 64 > 

0.05.  
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Data availability 

S-LDSC reference files and GWAS summary statistics used in this study are available at 

https://zenodo.org/records/10515792. S-LDSC CTS SNP-annotations used in this study are 

available at https://zenodo.org/records/11194201. 

 

Code availability  

CT-FM/CT-FM-SNP softwares and the code to replicate our analyses are available at 

https://github.com/ArtemKimUSC/CTFM. 
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Figures  

 

Figure 1. Overview of the CT-FM framework. CT-FM and CT-FM-SNP are two methods that 
fine-map the causal cell types of a trait and its candidate causal SNPs, respectively. They take 
as inputs a set of cell-type-specific (CTS) SNP-annotations, GWAS summary statistics with a 
matching LD reference panel, and (for CT-FM-SNP only) a list of trait’s candidate causal SNPs. 
First, CT-FM estimates the significance of the marginal effect on SNP-heritability of each CTS 
SNP-annotation by applying stratified LD score regression (S-LDSC) 30,35,36. Then, CT-FM fine-
maps the causal cell types and outputs posterior inclusion probability (PIP) and credible sets 
(CSs) by leveraging S-LDSC Z-scores and a co-regulation matrix of CTS SNP-annotations. In 
our toy example, CT-FM reduces the number of SNP-annotations significantly associated with 
the trait to two CSs (triangle and diamond), each corresponding to a distinct biological group (A 
and C). CT-FM-SNP leverages the same workflow as CT-FM, in the difference that it restricts 
the fine-mapping step to CTS SNP-annotations that overlap the candidate SNP. In our toy 
example, CT-FM-SNP fine-maps the causal cell types of 3 GWAS candidate SNPs, and assigns 
the first candidate SNP to cell types from the biological group A, the second candidate SNP to a 
cell type of the biological group C, and the third candidate SNP to cell types of the biological 
groups A and C. The dashed horizontal line represents the S-LDSC significance threshold. LD: 
linkage disequilibrium; PIP: posterior inclusion probabilities. 
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Figure 2. Simulations to assess CT-FM power and accuracy. We report the mean PIP of the 
causal SNP-annotation(s), the proportion of causal SNP-annotations identified as a candidate 
causal cell type (candidate causal cell type sensitivity), and the proportion of SNP-annotations 
identified as a highly-confident causal cell type that are truly causal (highly-confident causal cell 
type precision). Simulations with one causal cell type (green) and two causal cell types (blue), 
and with different GWAS sample size N. For each scenario, we performed 500 simulations, and 
applied CT-FM in simulations where S-LDSC maximum Z-score was > 4. Error bars represent 
95% confidence intervals. Numerical results are reported in Supplementary Table 3. 
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Figure 3. Benchmarking CT-FM and CT-FM-SNP on five blood cell traits. (a) We report cell 
types identified by CT-FM as causal for each trait. CT-FM PIP value for each cell type (dot size), 
the corresponding biological group (dot color) and CT-FM credible set (shape) are shown for 
each trait (rows) and cell type (columns). Numerical results are reported in Supplementary 
Table 4. (b) We report cell types identified by CT-FM as significantly associated with each trait. 
S-LDSC Z-scores (dot size) and the corresponding biological group (dot color) of CTS SNP-
annotations are shown for each trait (rows) and cell type (columns). Only CTS SNP-annotations 
presenting S-LDSC Z-score > 4 are shown. Numerical results are reported in Supplementary 
Table 5. (c) We report the proportion of candidate causal SNPs that were linked to at least one 
causal cell type by CT-FM-SNP. CT-FM-SNP results for all candidate variants are reported in 
Supplementary Table 7. (d) We report the proportion of high confidence {non-coding SNP, cell 
type, trait} triplets inferred by CT-FM-SNP where the cell type is consistent with CT-FM results. 
We highlight triplets where the causal CTS SNP-annotation was also found in CT-FM CSs 
(green), triplets where the causal CTS SNP-annotation was not found in CT-FM CSs, but 
corresponds to the same cell type (blue), and triplets where the causal CTS SNP-annotation 
was not found in CT-FM CSs (grey). Numerical results are reported in Supplementary Table 8. 
RBC: red blood cell; CMPs: common myeloid progenitor cells; HMPs: hematopoietic multipotent 
progenitors; NK: natural killer.  
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Figure 4. Application of CT-FM to 63 GWAS summary statistics. (a) We report the number 
of credible sets (CSs) per trait, the number of highly-confident causal cell types (PIP > 0.5) per 
trait, and the number of CTS SNP-annotations per CS. Causal cell types with PIP < 0.5 but cPIP 
> 0.5 were not reported. Numerical results are reported in Supplementary Table 10. (b) We 
report the distribution of candidate causal CTS SNP-annotations inferred by CT-FM and S-
LDSC. The median value of confident scores is displayed as a band inside each box; boxes 
denote values in the second and third quartiles; the length of each whisker is 1.5 times the 
interquartile range, defined as the width of each box. Numerical results are reported in 
Supplementary Table 12. (c) We report notable candidate causal cell types (columns) inferred 
by CT-FM for different complex traits (rows). For each {cell type, trait} pair, CT-FM PIP values 
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(dot size), different CSs (dot shape) and the corresponding biological group (dot color) are 
indicated. CT-FM results for all GWASs are reported in Supplementary Tables 10-11. (d) We 
report the proportion of SNP-heritability explained by CT-FM CSs. Proportion for lupus (1.03 ± 
0.23) and celiac (1.18 ± 0.31) diseases were rounded to 1 for visualization purposes; we note 
that values greater than 1 are outside the biologically plausible 0–1 range, but allowing point 
estimates outside the biologically plausible 0–1 range is necessary to ensure unbiasedness. 
Numerical results are reported in Supplementary Table 13. (e) We report S-LDSC and CT-FM 
results for Schizophrenia 54. For each CTS SNP-annotation, we report S-LDSC Z-score on the y 
axis (only SNP-annotations with Z-score > 0 were presented), and CT-FM CS through different 
shapes (square for fetal excitatory neurons, asterisk for adult glutamatergic neurons, and 
triangle for hepatocytes; SNP-annotations not in CS are represented with open circle). The 
dashed horizontal line represents the S-LDSC FDR significance threshold. S-LDSC results for 
the 927 CTS SNP-annotations are reported in Supplementary Table 18. ADHD: attention-
deficit / hyperactivity disorder; BMI: body mass index. 
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Figure 5. Application of CT-FM-SNP to fine-mapped SNPs of 39 UK Biobank traits. (a) We
report the proportion of candidate causal SNPs that were linked to at least one causal cell type
by CT-FM-SNP for 9 representative traits. CT-FM-SNP results for all candidate variants of the
39 traits are reported in Supplementary Table 22. (b) We report the proportion of SNPs with
CT-FM-SNP high-confidence causal cell type in different cell types for 9 representative traits.
Cell types identified within CT-FM CSs were represented by green dots, cell types not identified
by CT-FM were represented by grey dots. (c) We report the enrichment of biologically relevant
processes (x axis) for genes linked to SNPs assigned to osteoblasts, epithelial and CD4+ T
cells by CT-FM-SNP. For each process and cell type, we report the FDR corrected enrichment
p-value (y axis). Only biologically relevant gene ontology processes with FDR P < 0.01 are
shown. Full gene ontology enrichment results are available in Supplementary Table 24. (d) We
report CT-FM-SNP results for 107 pleiotropic SNPs identified across 18 genetically uncorrelated
UK Biobank traits. The proportion of pleiotropic SNPs assigned to different candidate cell types
is represented with a red bar, while the proportion of SNPs sharing at least 1 candidate causal
cell type across traits is represented with a blue bar. CT-FM-SNP results for the 107 pleiotropic
SNPs are reported in Supplementary Table 27. (e,f) We report three examples where
pleiotropic SNPs were assigned to the same cell type (e), and three examples where pleiotropic
SNPs were assigned to different cell types (f). MCH: mean corpuscular hemoglobin; BMI: body
mass index; BP: blood pressure; VSMCs: vascular smooth muscle cells; BMSC: bone marrow
stromal cells; HLSRC: high light scatter reticulocyte count; HbA1c: hemoglobin A1c; MPV: mean
platelet volume.   
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Tables 

Trait SNP CT-FM-SNP PIP Cell type Gene (cS2G) 

Asthma  rs479844 0.99  CD4+ T cells OVOL1 

Bone density  rs10130587 0.88  Osteoblasts BMP4 

Chronotype  rs13081924 0.92  Fetal Excitatory Neurons WNT7A 

Lymphocyte count  rs35592432 0.57  CD8+ T cells FOXP1 

Neuroticism 
rs191480627 0.99 Hepatocytes AGPAT3 

 rs34272688 0.61  Fetal Excitatory Neurons ATAD2B 

Platelet count 
 rs117672662 

0.98  Megakaryocytes 
ACTN1 

Platelet volume 1  Megakaryocytes 

Platelet volume  rs998908 1  Megakaryocytes CD9 

Type 2 diabetes  rs571342427 
0.68  Pancreatic beta cells 

INS 
0.94  Fetal pancreatic islet cells 

 

Table 1. Notable {non-coding SNP, cell type, gene, trait} quadruplets. Results for 

rs571342427, rs10130587 and rs191480627 are discussed in the main text. Results for other 

candidate SNPs are discussed in the Supplementary Note. 
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