Abstract
We present a novel explainable artificial intelligence (XAI) method to assess the associations between the temporal patterns in the patient trajectories recorded in longitudinal clinical data and the adverse outcome risks, through explanations for a type of deep neural network model called Hybrid Value-Aware Transformer (HVAT) model. The HVAT models can learn jointly from longitudinal and non-longitudinal clinical data, and in particular can leverage the time-varying numerical values associated with the clinical codes or concepts within the longitudinal data for outcome prediction. The key component of the XAI method is the definitions of two derived variables, the temporal mean and the temporal slope, which are defined for the clinical concepts with associated time-varying numerical values. The two variables represent the overall level and the rate of change over time, respectively, in the trajectory formed by the values associated with the clinical concept. Two operations on the original values are designed for changing the values of the two derived variables separately. The effects of the two variables on the outcome risks learned by the HVAT model are calculated in terms of impact scores and impacts. Interpretations of the impact scores and impacts as being similar to those of odds ratios are also provided. We applied the XAI method to the study of cardiorespiratory fitness (CRF) as a risk factor of Alzheimer’s disease and related dementias (ADRD). Using a retrospective case-control study design, we found that each one-unit increase in the overall CRF level is associated with a 5% reduction in ADRD risk, while each one-unit increase in the changing rate of CRF over time is associated with a 1% reduction. A closer investigation revealed that the association between the changing rate of CRF level and the ADRD risk is nonlinear, or more specifically, approximately piecewise linear along the axis of the changing rate on two pieces: the piece of negative changing rates and the piece of positive changing rates.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by grants NIH/NIA RF1AG069121 and NIH/NIA 1R01AG073474-01A1
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Washington DC VA gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Population-level aggregated data in this study are available upon reasonable request to the authors