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Abstract 

 

Methamphetamine Use Disorder (MUD) is associated with substantially reduced quality of life. 

Yet, decisions to use persist, due in part to avoidance of anticipated withdrawal states. However, the 

specific cognitive mechanisms underlying this decision process, and possible modulatory effects of 

aversive states, remain unclear. Here, 56 individuals with MUD and 58 healthy comparisons (HCs) 

performed a decision task, both with and without an aversive interoceptive state induction. Computational 

modeling measured the tendency to test beliefs about uncertain outcomes (directed exploration) and the 

ability to update beliefs in response to outcomes (learning rates). Compared to HCs, those with MUD 

exhibited less directed exploration and slower learning rates, but these differences were not affected by 

aversive state induction. These results suggest novel, state-independent computational mechanisms 

whereby individuals with MUD may have difficulties in testing beliefs about the tolerability of abstinence 

and in adjusting behavior in response to consequences of continued use.   
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Introduction 

Methamphetamine Use Disorder (MUD) is characterized by biological, cognitive, and behavioral 

changes that can be detrimental at both the individual and societal level. Though outcomes vary widely, 

common psychological consequences include psychosis, suicidality, hostility, anxiety, depression, and 

psychomotor dysfunction1,2. Despite its growing prevalence in the United States and worldwide3, 

cognitive mechanisms governing the onset, maintenance, and recurrence of MUD remain unclear.  

One means by which MUD may be maintained depends on the expected negative outcomes of 

abstinence and associated withdrawal states, which can motivate avoidance when combined with negative 

reinforcement processes4. In particular, methamphetamine use may attenuate symptoms of depression or 

somatic anxiety that are brought on or exacerbated by withdrawal. Deficits in interoceptive processing 

may further contribute to maladaptive behavior, as previous work has shown that individuals with MUD 

exhibit attenuated neural responses (e.g., Insula, Anterior Cingulate Cortex) to aversive somatic states5. 

Countering withdrawal avoidance instead requires that individuals “test out” abstinence as a means of 

learning whether they are capable of enduring its short-term consequences to improve longer-term quality 

of life. In computational neuroscience, the abstract structure of this decision problem is captured by so-

called “explore-exploit” decision tasks6,7. In these tasks, one can either exploit current (limited) 

knowledge to maximize short-term reward, or one can first test the outcomes of different options 

(explore) to make better informed choices in the long-term. Importantly, there are different exploratory 

strategies, which depend on distinct computational processes, and some may be more clinically relevant 

than others8-10. Directed exploration (DE), for example, requires keeping track of one’s relative 

uncertainty about different action outcomes, and then choosing the action for which one has the greatest 

uncertainty (i.e., as this leads to the most information gain). In contrast, so-called random exploration 

(RE) requires keeping track of one’s total uncertainty across action options, where greater total 

uncertainty should increase the chance of selecting options that do not currently appear most rewarding 

(i.e., as one might learn that past experiences were misleading). In the example of withdrawal avoidance 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.17.24307491doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307491
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

   

 

mentioned above, DE may be more relevant, as the individual must recognize that they have greater 

uncertainty about the outcomes of abstinence than about those of continued use. Given previous work 

showing a positive relationship between DE and cognitive reflectiveness10, individuals with 

methamphetamine use disorder (iMUDs) might also be less likely to implement DE, as less reflective 

tendencies associated with impulsivity have been observed in this population and positively relate to 

severity of use11.  

Several studies support this in suggesting that iMUDs display lower levels of exploration and 

altered belief-updating. One study showed that participants with Amphetamine Use Disorder engaged in 

less information-seeking than healthy controls in a decision-making task that had no cost associated with 

exploration12. This difference may be partly attributable to effects of the drug itself, given that chronic 

amphetamine use has been shown to deplete intracellular dopamine13, and that lower tonic dopamine 

levels have been linked to lower exploratory behavior in individuals with substance use disorders14. 

Furthermore, a longitudinal study of iMUDs found that participants who decreased methamphetamine use 

over a period of six weeks showed higher levels of DE by the end of that period15, supporting the idea that 

methamphetamine use may affect exploratory behavior. In addition to lower levels of exploration, iMUDs 

have been shown to engage in maladaptive belief-updating, which is often operationalized in terms of 

altered learning rates within computational models16-21. This overall pattern of altered sensitivity to, and 

learning from, choice outcomes may help explain continued use and high relapse rates despite reduced 

quality of life22.  

Thus, it appears plausible that methamphetamine use is linked to reduced exploration, and that 

this might in turn deter abstinence. However, while methamphetamine use is motivated by avoidance of 

the aversive interoceptive states associated with abstinence4, the effect of these states on decision-making 

itself remains unclear. In this study, we therefore had two main aims. First, we aimed to test whether, 

compared to healthy comparisons (HCs), iMUDs would show reduced DE and altered learning, as 

suggested by the literature reviewed above. Second, we sought to test how an aversive interoceptive state 
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(i.e., a somatic anxiety induction) may affect these mechanisms. To do so, we fit a computational model 

with both exploration and learning rate parameters to choice behavior on an established explore-exploit 

decision task in iMUDs and HCs – both with and without a breathing-based aversive interoceptive state 

induction. We then tested for both group differences and effects of induced somatic anxiety. As a 

supplementary aim, we also sought to replicate exploratory results demonstrating a relationship between 

DE and cognitive reflectiveness, and extend this to iMUDs10. 

Results 

To acquire a comprehensive clinical phenotype for iMUDs, participants completed several 

cognitive and clinical scales (see Methods). Compared to HCs, iMUDs showed elevated symptoms of 

anxiety and depression, higher impulsivity, reduced cognitive performance (working memory), and lower 

cognitive reflectiveness (see Table 1). 

 

Table 1. Descriptive Characteristics of HCs and iMUDs. 

Questionnaire HC   

(N=58)

  

iMUD 

(N=56)  

Statistical 

Test 

p Cohen's d (w 

for Sex) 

Sex 42 F, 

16 M 

20 F, 

36 M  
𝜒2(1)=14.02 <.001  0.35 

Age 35.41 

(13.08) 

36.75 

(7.27) 

t(89.8)=–0.68 .500 –0.13 

List Sorting Working 

Memory Test (Working 

Memory) 1 

52.43 

(8.01) 

45.70 

(10.70) 

t(96.2)=3.70 <.001 0.71 

Patient Health Question-

naire (PHQ-9) 

1.66 

(2.27) 

4.30 

(4.00) 

t(86.3)=–4.32 <.001 –0.81 

State-Trait Anxiety In-

ventory Trait (STAI-

Trait) 

29.17 

(7.40) 

39.07 

(9.49) 

t(104.0)=–6.20 <.001 –1.16 

Urgency-Premeditation-

Perseverance-Sensation 

Seeking-Positive Ur-

116.78 

(17.68) 

145.05 

(20.52) 

t(108.4)=–7.87 <.001 –1.48 
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Note: Data were only available for a subset of participants for measures that were added part-way into the 

study. 1HCs = 57, iMUDs = 55, 2HCs = 58, iMUDs = 55, 3iMUDs = 47, 4iMUDs = 39.   

 

The Aversive State Induction Successfully Increased Anxiety During Task Performance Across All 

Participants 

Participants completed the Horizon Task8 twice, where one of the runs included a breathing 

resistance to induce state anxiety. This task requires participants to repeatedly choose between two 

options to maximize points when given either equal or unequal information about previous reward 

outcomes from each option (i.e., either two outcomes per side, or one vs. three; based on four initial 

forced choices). A greater propensity to choose the more uncertain option on subsequent free choices 

reflects an information bonus, while the propensity to choose the less rewarding option reflects decision 

noise. These propensities are moderated by both learning rates from forced-choice outcomes and expected 

number of future choices (one vs. six; H1 vs. H6 conditions). Namely, information bonus and decision 

noise should increase from H1 to H6 – where this increase reflects DE and RE, respectively – as 

exploration could guide future choice in H6 only (see Methods).  

In a linear mixed-effects model (LME) predicting self-reported anxiety based on group, resistance 

condition (baseline, task run without resistance, task run with resistance), and their interaction, all effects 

were significant (ps<.001; see Supplemental Table S3 for full model results), indicating the breathing 

gency (UPPS-P) Impul-

sive Behavior Scale To-

tal  

Cognitive Reflective-

ness Test-7 (CRT) 

Number Correct 2 

3.33 

(2.18) 

0.84 

(1.18) 

t(88.8)=7.60 <.001 1.42 

Drug Abuse Screening 

Test (DAST) 3 

-- 4.27 

(4.01) 

-- -- -- 

Methamphetamine 

Withdrawal Question-

naire (MAWQ) Total 

-- 7.79 

(7.30) 

-- -- -- 

Desire for Speed Ques-

tionnaire (DSQ; as-

sessed at baseline) 4 

-- 92.87 

(33.98) 

-- -- -- 
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resistance successfully induced anxiety during the task and this effect was magnified for iMUDs (see 

Figure 1). 

 

 

 

Figure 1. A) The silicon mask used during both runs of the Horizon Task. B) An example resistor 

attached to the mask via a plastic tube (not depicted), causing participants to experience resistance during 

inhalation. A resistance of 40 cmH20/L/sec was used for one of the runs of the Horizon Task to induce 

somatic anxiety. The other run was completed without breathing resistance. C) Participants’ self-reported 

anxiety scores at baseline, during the task run without breathing resistance, and during the task run with 

breathing resistance. D) Horizon Task: Participants first observed outcomes of four forced choices before 

they were allowed to make either one or six free choices between options to maximize the total number of 

points received. Games with one or six free choices are referred to as Horizon 1 (H1) and Horizon 6 (H6) 

games, respectively. The forced choices in each game were either equally informative (two forced choices 

for each slot machine) or unequally informative (three forced choices for one slot machine and one for the 

other). 
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Individuals with MUD Show Lower Task Performance than Healthy Comparisons  

As an initial assessment of task performance, we tested an LME predicting first free-choice 

accuracy (i.e., choice of the option with the higher average reward value) based on relevant task and 

experimental conditions. Details are provided in Supplemental Materials. In brief, accuracy was higher 

in H1 than H6 games (as expected), and iMUDs showed lower accuracy than HCs overall. Further, the 

change in accuracy between H1 and H6 games was less in iMUDs than HCs, consistent with less 

exploration in iMUDs. 

 To confirm expected improvements in accuracy over time, and potential modulation of this effect 

by group or anxiety induction, we tested a subsequent LME predicting accuracy on the six free choices of 

H6 games based on group, information condition, choice number (1-6), breathing resistance, and the 

three-way interactions of choice number, group, and breathing resistance, as well as between choice 

number, group and information condition (including respective two-way interactions). We observed that 

accuracy was again higher in HCs (estimated marginal mean [EMM]=.81) than iMUDs (EMM=.69), 

higher in the equal (EMM=.77) than unequal (EMM=.73) information condition, and increased as a 

function of choice number (see Table 2). There was also an interaction between group and resistance such 

that breathing resistance increased accuracy for HCs (Resistance–No resistance=.008) but decreased 

accuracy for iMUDs (Resistance–No Resistance=–.007; see Figure 2). All effects remained significant 

controlling for working memory in a subset of participants for which these scores were available 

(ps<.032).  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.17.24307491doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307491
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

   

 

Table 2. LME Results Predicting Accuracy across H6 Free Choice Trials 

 

Outcome 

Variable 

Predictor Statistical Test p 𝜂𝑝
2 b [95% CI] 

Accuracy 

  

Choice Number F(1,2612.0)=124.04 <.001 0.04 0.012 [0.010, 0.014] 

Group F(1,109.0)=29.35 .001 0.21 –0.063 [-0.086, -0.040] 

Information Condi-

tion 

F(1,2612.0)=114.67 <.001 0.04 –0.020 [-0.024, -0.016] 

Resistance F(1,2612.0)=0.02 .899 0.00 0.000 [-0.004, 0.004] 

Choice Number x 

Group 

F(1,2612.0)=1.76 .184 0.00 -0.001 [-0.004 ,0.001] 

Choice Number x In-

formation Condition 

F(1,2612.0)=0.13 .717 0.00 0.000 [-0.002, 0.003] 

Group x Information 

Condition 

F(1,2612.0)=1.24 .265 0.00 -0.002 [-0.006, 0.002] 

Group x Resistance F(1,2612.0)=4.15 .042 0.00 -0.004 [-0.007, 0.000] 

Choice Number x 

Resistance 

F(1,2612.0)=1.31 .252 0.00 0.001 [-0.001 ,0.003] 

Choice Number x 

Group x Information 

Condition 

F(1,2612.0)=0.00 .953 0.00 0.000 [-0.002, 0.002] 

Choice Number x 

Group x Resistance 

F(1,2612.0)=0.46 .496 0.00 -0.001 [-0.003, 0.001] 
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Figure 2. H1 and H6 accuracy for each choice by group, resistance, and information condition. Error bars 

show 95% confidence intervals for accuracy at each choice number. As expected, accuracy was lower in 

H6 than H1 games for first free choice and improved with further choices in H6 games. The change in 

first free choice accuracy between H1 and H6 games was also greater in HCs than iMUDs, consistent 

with greater exploration in HCs. 

 

Individuals with MUD Show Less Directed Exploration, Random Exploration, and Slower Learning 

Rates than Healthy Comparisons 

Inter-correlations between model parameter estimates across participants were low (rs<.36; see 

Supplemental Figure S1). In our primary model-based analyses, LMEs were used to predict model 

parameter values based on group, resistance level, and their interaction (see Table 3). Result showed 

higher values in HCs for DE (EMMs: HCs=6.05; iMUDs=4.54), RE (EMMs: HCs=1.65; iMUDs=0.99), 
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α0 (initial learning rate), and α∞ (asymptotic learning rate; i.e., the value to which a participant’s learning 

rate would theoretically converge if the game were played indefinitely; EMMs: HCs=0.30; iMUDs=0.22). 

However, the group difference in RE was no longer significant after two potential outliers were removed 

using a Grubb’s test (F(1,110.0)=1.83, CI=[-0.506, 0.095], p=.179, 𝜂𝑝
2=0.02, b=-0.205). Because α0 

values showed a bimodal distribution across participants (see Figure 3), we instead performed a k-means 

clustering analysis and divided participants into those with high and low values, and then used cluster 

membership as a categorical outcome variable in logistic mixed regressions in place of LMEs. In these 

regressions predicting α0, we observed a significant group difference (proportion in high-value cluster: 

HCs=.67; iMUDs=.32). There was no main effect of breathing resistance or interaction with group for any 

parameter. When working memory was included as an additional covariate in the subset of participants 

with available data, all effects of group remained significant (ps<.032), except in relation to DE, which 

increased slightly above the threshold for significance (F(1,103.0)=3.32, p=.071, 𝜂𝑝
2=0.03, b=–0.634, 

CI=[-1.324, 0.056]; see Supplemental Table S7). However, the effect of working memory was not a 

significant predictor of any model parameter (ps>.195). 

To better interpret these group differences, effects on parameters in H1 and H6 were then 

examined separately. In an LME predicting the information bonus parameter by horizon, group, and their 

interaction, the interaction was significant (F(1,340.0)=13.09, p<.001, 𝜂𝑝
2=0.04, b=-0.389, CI=[-0.601, -

0.178]), reflecting the group difference in DE (see Figure 3). Post-hoc contrasts showed that HCs had 

higher information bonus values than iMUDs in H6 (HCs–iMUDs=1.67, t(139)=2.67, p=.0085), but not 

in H1 (HCs–iMUDs=.117, t(139)=0.19, p=.852). Notably, this interaction remained significant when 

accounting for working memory (F(1,325.0)=11.16, p<.001, 𝜂𝑝
2=0.03, b=-0.366, CI=[-0.581, -0.150]), 

supporting an independent group difference in DE. 

In an analogous LME predicting decision noise by horizon, group, and their interaction, the 

interaction was also significant, as expected (F(1,340.0)=4.08, p=.044, 𝜂𝑝
2=0.01, b=-0.124, CI=[-0.245,-

0.003]). Post-hoc contrasts here instead suggested group differences in RE were driven by greater 
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decision noise in iMUDs than HCs in H1 (HC–iMUD=–.433, t(234)= –2.07, p=.039), with no difference 

in H6 (HC–iMUD=.063, t(234)=0.30, p=.762; see Figure 3). Effects remained unchanged when 

accounting for working memory (F(1,325.0)=4.53, p=.034, 𝜂𝑝
2=0.01, b=–0.135, CI=[-0.260, -0.010]). 

Follow-up LMEs were run predicting model parameters based on substance use symptoms in 

iMUDs (i.e., DAST, DSQ, MAWQ; tested separately). In all models, we observed no significant main 

effects. However, there were two notable interactions between substance use symptoms and resistance 

condition, suggesting that the relationship between substance use symptoms and model parameters (i.e., 

DE and α∞) was negative for the task run without resistance but positive for the task run with resistance 

(see Supplemental Tables S8 and S10). However, as these results were not hypothesized and somewhat 

difficult to interpret, we simply note them here for the interested reader and for purposes of future 

hypothesis generation.  

LMEs testing potential parameter differences within iMUDs based on comorbid psychopathology 

(present/absent), continuous measures of psychopathology (PHQ-9, UPPS-P Total, and STAI-Trait 

Scores; tested separately), medication status (medicated/unmedicated), time since last methamphetamine 

use, and time since starting treatment did not show any significant effects (ps >.184). 
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Table 3. Results Testing Effects of Group and Resistance on Primary Computational Measures.  

Outcome 

Variable 

Predictor Statistical Test p ηp
2 b [95% CI] 

DE 

  

Group F(1,109.0)=5.72 .019 0.05 –0.757 [–1.385, –0.129] 

Resistance F(1,112.0)=0.01 .911 0.00 0.013 [–0.282, 0.308] 

Group x 

Resistance 

F(1,112.0)=2.45 .121 0.02 –0.233 [–0.528, 0.062] 

RE Group F(1,109.0)=4.20 .043 0.04 –0.329 [–0.648, –0.011] 

Resistance F(1,112.0)=0.22 .643 0.00 –0.053 [–0.275, 0.169] 

Group x 

Resistance 

F(1,112.0)=0.26  .612 0.00 –0.057 [–0.279, 0.165] 

Initial 

Learning 

Rate 

Group χ2(1)=14.02 .001  -- –1.624 

Resistance χ2(1)=14.02 .473  -- –0.138 

Group x 

Resistance 
χ2(1)=14.02 .140  -- 0.290 

Asymp-

totic 

Learning 

Rate 

Group F(1,118.5)=9.68  .002 0.07 –0.04 [–0.064, –0.015] 

Resistance F(1,111.7)=0.08  .784 0.00 0.002 [–0.011, 0.015] 

Group x 

Resistance 

F(1,111.9)=1.94  .167 0.02 0.009 [–0.004, 0.022] 
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Figure 3. Bar plots showing model parameter values from the Horizon Task by group and resistance 

condition. *p<.05, **p<.01, ***p<.001. Error bars indicate the standard error for each estimate.  
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Greater Exploration and Faster Learning Rates each Improved Performance 

To evaluate the theoretical significance of observed group differences, we tested whether some 

values for each model parameter might be considered more optimal than others with respect to task 

performance after the first free choice in H6. In brief, LMEs revealed higher values of 𝛼0, and of 𝛼∞ 

predicted greater accuracy throughout the task, and higher values of DE and RE predicted steeper 

improvement in accuracy over time (ps<.039; see Methods and Supplemental Tables S11 and S12).  

Directed Exploration and Learning Rates were Predicted by Cognitive Reflectiveness 

As a secondary aim, we sought to replicate and extend our prior results linking exploration to 

cognitive reflection10. To do so, we tested LMEs predicting model parameters based on Cognitive 

Reflection Test (CRT) scores, accounting for potential effects of group and resistance. Across all 

participants, CRT score significantly predicted DE (F(1,107.0)=3.96, p=.049, 𝜂𝑝
2=0.04, b=0.343, 

CI=[0.001, 0.685]) and 𝛼0  (𝜒2(1)=7.03, p=.008, b=0.554), but not 𝛼∞ (F(1,109.6)=0.10, p=.753, 

𝜂𝑝
2=0.00, b=0.002, CI=[-0.011, 0.015]) or RE (F(1,107.0)=0.07, p=.792, 𝜂𝑝

2=0.00, b=0.024, CI=[-0.153, 

0.200]). When additionally controlling for working memory, CRT remained a significant predictor of 𝛼0 

(𝜒2(1)=7.33, p=.007, b=0.491) and was just over threshold for DE (F(1,101.0)=3.83, CI=[-0.005, 0.698], 

p=.053, 𝜂𝑝
2=0.037, b=0.347). 

For analogous models restricted to the iMUD sample, CRT score did not significantly predict DE, 

RE, or 𝛼∞ (ps>.177), and was just over threshold for 𝛼0 (F(1,51.0)=3.62, p=.063, 𝜂𝑝
2=0.07, b=0.065). 

There were also no observed effects of resistance (ps>.193). Note that, unlike in the full sample, in 

iMUDs alone the distribution of 𝛼0 values was sufficiently normal to use an LME in place of logistic 

regression.  

Discussion 

In the present study, we compared how treatment-seeking (currently abstinent) individuals with 

Methamphetamine Use Disorder (iMUDs) and healthy comparisons (HCs) differed in information-
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seeking and learning under uncertainty, both with and without a somatic anxiety induction. This allowed 

us to distinguish the causal effect of state anxiety from potential effects of other factors linked to 

psychopathology. As expected, we found that HCs outperformed iMUDs on the task. Computational 

modeling revealed that iMUDs had lower values of directed exploration (DE), random exploration (RE), 

initial learning rate (𝛼0), and asymptotic learning rate (𝛼∞; controlling for 𝛼0), while these parameters 

themselves were only weakly correlated.   

The differences observed in DE and RE support previous research finding that individuals with 

substance use problems exhibit reduced exploration23,24. Importantly, however, unlike several previous 

studies, the Horizon Task allowed us to distinguish directed from random strategies, where measures of 

DE and RE in this task are also sensitive to beneficial vs. suboptimal engagement in exploratory behavior 

(i.e., with vs. without future choices that could benefit from information gain). Here, DE differences in 

iMUDs appeared to reflect an attenuated ability to increase exploration when it was beneficial (i.e., in 

games with longer horizon), whereas differences in RE were instead attributable to less reward sensitive 

choices when this was not beneficial (i.e., in games with shorter horizon). However, group differences in 

RE were no longer significant after potential outliers were removed; these results should therefore be 

treated with caution. Nevertheless, these findings offer insights into more specific cognitive mechanisms 

that might contribute to maladaptive choice and potentially withdrawal avoidance.  

It is also noteworthy that iMUDs showed lower initial learning rates and asymptotic learning rates 

than HCs, suggesting that they updated their beliefs less after observing each new outcome. This could be 

taken to suggest a greater expectation that mean reward values will remain stable, or, relatedly, the belief 

that each observed outcome is less informative (i.e., more noisy, less trustworthy) regarding the true value 

of the generative mean25. In real-world contexts, lower learning rates could prevent individuals from 

changing their behavior, despite experiencing harmful consequences. However, it remains to be shown 

whether such results generalize to learning in daily life. 
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Contrary to our hypothesis, somatic anxiety did not affect any computational measure. Here, it is 

notable that, while previous research has shown negative correlations between anxiety and DE9,10, to our 

knowledge this is the first study to causally manipulate somatic state anxiety and differentiate its 

influence from trait factors. While this could indicate that state anxiety does not account for differences in 

information-seeking, it is possible that the resistance level, which was chosen to maintain tolerability, did 

not induce sufficiently high anxiety. Self-reported anxiety was higher for the task run with resistance 

(Mean=3.05) than without resistance (Mean=1.46), and this effect was greater for iMUDs than HCs, but 

anxiety scores were still well below the maximum score of 10. Future work might therefore aim to induce 

higher levels of somatic anxiety in a feasible manner and reassess its potential effects. 

In line with our secondary aim, results also successfully replicated prior findings10 linking 

cognitive reflectiveness to DE, and also showed a novel association with initial learning rates. Given the 

positive relationship between model parameters and task choice accuracy, this suggests reflectiveness 

may facilitate sensitivity to uncertainty and promote adaptive information-seeking in uncertain 

environments. Notably, however, these relationships were not observed in iMUDs alone. This could be 

due to insufficient sample size, the lower values and restricted range of reflectiveness scores in iMUDs, or 

perhaps a mechanism whereby substance use decouples these variables. Future work should examine 

whether improving reflectiveness could promote more adaptive information seeking and learning, and 

whether this might be clinically beneficial. This possibility is supported by previous work showing that 

cognitive reflectiveness can be improved with training26,27. 

It is important to consider limitations of the present study when interpreting these results. First, 

our sample size was only moderate and unable to reliably detect small effect sizes. We also could not de-

termine whether observed group differences represent a preexisting vulnerability factor or a consequence 

of methamphetamine use. No relationships were found with length of abstinence, days since starting treat-

ment, or medication status, perhaps suggesting that group differences were better explained by pre-exist-
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ing factors or were insensitive to recovery; but longer recovery times will need to be examined. The pres-

ence of other comorbid affective and substance use disorders also did not appear to account for any re-

sults. 

With these limitations in mind, we found that individuals with methamphetamine use disorder ex-

hibited lower levels of exploration and reduced learning rates when making decisions under uncertainty. 

Contrary to expectation, we did not observe an effect of aversive interoceptive state induction (and result-

ing increases in somatic anxiety) on model parameters or other behavioral metrics, suggesting trait factors 

may be of more central importance. Overall, these results highlight directed exploration and learning rates 

as possible mechanisms of maladaptive choice in individuals with Methamphetamine Use Disorder and 

could point to novel treatment targets that could be tested in future work.  

 

 

Methods 

Participants 

Participants included 56 inpatient treatment-seeking iMUDs and 58 HCs. Individuals with MUD 

were currently abstinent (mean time since methamphetamine use=50.04 days, mean time since starting 

treatment=34.47 days) and recruited from two recovery homes in the Tulsa, Oklahoma area: (1) GRAND 

and (2) Women in Recovery (WiR). All iMUDs met criteria for a DSM-5 diagnosis of Current 

Amphetamine Use Disorder due to use of Methamphetamine, which was assessed by clinical interview 

(Mini International Neuropsychiatric Interview 728). Due to high rates of comorbidity, iMUDs were not 

excluded based on the presence of other substance use disorders or depression/anxiety disorders (for a list 

of comorbid disorders in the MUD sample, see Supplemental Table S1). However, individuals with 

bipolar disorder, personality disorders, eating disorders, schizophrenia, or obsessive-compulsive disorder 

were excluded. Current use of psychotropic medications was permitted for iMUDs, as these are frequently 

utilized by providers in acute substance use treatment. HCs did not have any history of psychiatric illness 

and were not on any psychotropic medication.  
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Protocol 

After providing informed consent to participate in a larger study protocol, participants completed 

a drug test and breathalyzer assessment to confirm eligibility for the study. Next, iMUDs completed the 

Desire for Speed (Methamphetamine) Questionnaire (DSQ)29 to assess baseline craving levels.  

Following completion of these questionnaires, participants were fit with a silicon mask (see 

Figure 1), which would later be used for anxiety induction during performance of the Horizon Task 

(described below). This breathing-based anxiety induction apparatus has been used safely and effectively 

in several previous studies30-33. Here, filters are used to add inspiratory resistance (i.e., requiring more 

effort to breathe in, but no added effort to breathe out), which creates a sensation of air hunger and 

elevates somatic anxiety. This initial fitting period was part of a sensitivity protocol designed to confirm 

sufficient comfort with the mask and allow us to assess how anxiety changed as a function of resistance 

level. During the preliminary sensitivity protocol, participants breathed through the mask while being 

exposed to six levels of resistance (0, 10, 20, 40, 60, and 80 cmH2O/L/sec) in ascending order for one 

minute each, with a short break in between each. After each exposure, they were instructed: “Please rate 

how much anxiety you felt while breathing from 0 to 10” (where 0 indicates no anxiety and 10 indicates 

maximum possible anxiety). We refer to this as self-reported anxiety scores. After completing this 

protocol, participants removed the mask. iMUDs then completed the DSQ a second time to assess 

whether craving levels had changed due to anxiety induction.  

After this sensitivity protocol, participants completed neuropsychological testing and additional 

self-report questionnaires as part of the larger study protocol. This ensured participants were able to return 

to baseline arousal state before performing the Horizon Task. Participants were then re-fit with the mask 

before task performance and indicated their baseline level of anxiety (using both the self-report item 

mentioned above and the STAI State scale34). Next, they completed two runs of the Horizon Task, where 

one of the runs included a breathing resistance of 40 cmH2O/L/sec (counterbalanced order across 
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participants). After each run, they again completed the STAI State scale and indicated their self-reported 

anxiety during task performance. 

 Horizon Task 

As in previous studies10, the Horizon Task here consisted of 80 games in which participants chose 

between two slot machines with different (unknown) average payout values (see Figure 1 for a depiction 

of the task). For one of the slot machines, results were sampled from a Gaussian distribution with a mean 

of either 40 or 60 and a fixed standard deviation of 8. For the other slot machine, the distribution was 

shifted 4, 8, 12, 20, or 30 points in either direction from the first slot machine. 

Participants first observed outcomes of four forced choices before they were allowed to make 

either one or six free choices between options to maximize the total number of points received. Games 

with one or six free choices are referred to as Horizon 1 (H1) and Horizon 6 (H6) games, respectively. 

The forced choices in each game were either equally informative (two forced choices for each slot 

machine) or unequally informative (three forced choices for one slot machine and one for the other). The 

different information conditions, decision horizons, and mean slot machine values were all 

counterbalanced throughout the task.  

To minimize potential influences on individual differences in behavior, the observed outcome for 

each choice was sampled from the underlying Gaussian distributions but fixed across participants and task 

runs. Thus, two participants who chose the same option on a specific trial always observed the same 

result. However, after preliminary checking of data in the first five participants (all HCs), unexpected 

behavior in certain games led us to realize that forced choice outcomes in a few cases were not 

representative of the underlying distributions, which generated concerns given the number of trials per 

task condition (i.e., with respect to generative mean differences). To minimize this issue, forced choice 

results in these cases were re-sampled until they more closely aligned with the true differences between 

underlying distributions. Any potential effects of task version on behavior were accounted for in 

subsequent analyses. 
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Computational Model 

An established computational model was fit to task behavior (i.e., predicting the first free choice 

across games), as described in detail by Zajkowski, et al. 35. In brief, the probability of choosing the right 

option was calculated using a logistic choice function (equation 1) that included the difference in 

expected reward values between options, ∆𝑅, the information difference between options, ∆𝐼, a potential 

bias toward the right vs. left choice, 𝐵, and decision noise 𝜎 . 

 

(1)         𝑝(𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑖𝑔ℎ𝑡)  =  
1

1 + exp (
∆𝑅  + 𝐴∆𝐼 + 𝐵

𝜎 )
 

 

The information difference (∆𝐼) was equal to +1 when one outcome was shown for the right option, –1 

when three outcomes were shown for that option, and 0 when two outcomes were shown for each option. 

This was then scaled by a free parameter referred to as the information bonus (depicted above as 𝐴). The 

expected reward value difference (∆𝑅) was calculated using a Rescorla-Wagner update equation (2), 

where the learning rate 𝛼 varied as a function of uncertainty (i.e., in relation to the number of previous 

observations).  

(2)         𝑅𝑡+1
𝑖 = 𝑅𝑡

𝑖 + 𝛼(𝑟𝑖 − 𝑅𝑡
𝑖) 

 

The initial learning rate 𝛼0 was a free parameter fit to participant data. For each subsequent choice, the 

learning rate updated with the following equation (3):  

(3)         
1

𝛼𝑡
𝑖

=
1

𝛼𝑡−1
𝑖 + 𝛼𝑑

+ 1 

 Where 𝛼𝑑 is derived from the following equation (4): 

(4)         𝛼𝑑 =
(𝛼∞)2

1 − 𝛼∞
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Here, the 𝛼∞ term is also a free parameter fit to the data. This is the asymptotic learning rate, as it is the 

value to which the learning rate would theoretically converge if the game were played indefinitely (i.e., 

due to evolving levels of uncertainty after seeing an increasing number of outcomes). As evident in the 

equations above, a lower value of 𝛼∞ (bound between 0 and 1) would lead to lower values of 𝛼𝑑, causing 

the learning rate to decrease more rapidly between trials. Values for these learning rates could be seen to 

reflect implicit beliefs about the stability of mean rewards within a game and how quickly an individual 

changes their level of confidence in this expectation. 

To get parameter estimates for each participant, a hierarchical Bayesian model36 with 12 free 

parameters in total was fit using a Markov Chain Monte Carlo (MCMC) method implemented with 

MATJAGS37. The spatial bias (𝐵) and decision noise (𝜎) were fit separately for the four combinations of 

horizon (H1 or H6) and information condition (equal or unequal); the information bonus (𝐴) was fit 

separately for the two horizon conditions (i.e., this can only be fit for unequal information games); the 

initial learning rate and asymptotic learning rate were fit across all games together. In the fitting 

procedure, group-level hyperparameters define prior distributions from which individual parameters were 

sampled (see Supplemental Table S2 for the complete specification of these prior distributions). Note 

that, to avoid potential issues arising from the known covariance between information bonus and starting 

expected values for each game (i.e., prior to the first force choice), we fixed the initial expected values to 

50.  

Measures 

Participants completed the following measures to assess relevant clinical symptoms as well as 

trait and state psychological characteristics. 

Symptom Severity 

 To measure MUD severity, we used the Drug Abuse Screening Test (DAST), the 

Methamphetamine Withdrawal Questionnaire (MAWQ), and the Desires for Speed (Methamphetamine) 

Questionnaire (DSQ). DAST measures overall drug abuse severity and interference with life 
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functioning38; MAWQ measures withdrawal symptoms39; and DSQ measures current craving levels29. 

These measures were only gathered in iMUDs. 

To measure comorbid symptom dimensions associated with MUD, we used questionnaires 

measuring depression, anxiety, and impulsivity. Overall depressive symptoms were measured using the 

Patient Health Questionnaire (PHQ-9)40. State and trait anxiety was measured with the State-Trait Anxiety 

Inventory (STAI-State/Trait)34,41. Impulsivity was measured with the Urgency-Premeditation-

Perseverance-Sensation Seeking-Positive Urgency (UPPS-P) Impulsive Behavior Scale Total Score42,43. 

Cognitive Reflectiveness 

 The Cognitive Reflection Test  [CRT-744] measures the tendency to “stop and think” before 

immediately trusting one’s intuition. The test asks seven short questions designed such that there is an 

immediately intuitive, but incorrect, answer, and a correct answer that, while not logically difficult, 

requires the individual to devote effortful cognitive resources instead of immediately choosing the 

intuitively appealing response. An example item is “If it takes 5 machines 5 minutes to make 5 widgets, 

how long would it take 100 machines to make 100 widgets?” (intuitive incorrect answer: 100 minutes; 

correct answer: 5 minutes).  

Working Memory 

 The List Sorting Working Memory Test from the NIH Toolbox Cognition Battery45 was used to 

assess working memory. In our analyses, we used participants’ t-scores adjusted for age and sex.  

Statistical Analyses 

Between-subject statistical analyses were carried out in R (version 4.2.1) with R Studio. K-means 

clustering was performed for α0 using the kmeans function of the stats package46. Linear mixed-effect 

models (LMEs) and logistic mixed regressions were run using the lmer function and the glmer function of 

the lme4 package47. Potential outliers were identified using an iterative Grubb’s method (threshold: p<.01) 

using the grubbs.test function from the outliers package48. Effect sizes were calculated with the F_to_eta2 
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function of the effectsize package49. All continuous predictors were mean-centered using the gscale 

function of the jtools package50. Unless otherwise stated, categorical variables were sum-coded as factors, 

including group (HCs=–1, iMUDs=1), breathing resistance (absent=–1, present=1), information 

condition (equal=–1, unequal=1), horizon (H1=–1, H6=1), sex (male=–1, female=1), and task version 

(main version=–1, initial version in first 5 participants=1). 

 The variables age and sex were included in all models as potential covariates to ensure they did 

not explain observed effects. As a small number of participants also completed a slightly different version 

of the task (i.e., with a different sequence of reward values sampled from the underlying generative 

means; described above), task version was also included in all models as a potential covariate. After 

controlling for age, sex, and task version, a follow-up model was run that additionally included working 

memory capacity, given that general cognitive ability has previously been shown to positively correlate 

with performance in the Horizon Task10. As working memory data was missing for a subset of participants 

(N=4), its potential explanatory power was only assessed in the subset of participants with available data 

in these follow-up analyses (as this would otherwise effectively remove data from these four participants 

from all analyses). When necessary, significant effects were further interpreted using post-hoc contrasts of 

estimated marginal trends (EMTs) or estimated marginal means (EMMs) using the emmeans package51.   

Protocol Validation  

To test whether administration of the moderate breathing resistance level (40 cmH2O/L/sec) used 

during task performance also successfully increased anxiety, an LME was run predicting self-reported 

anxiety during the task, with resistance condition (baseline, task run with resistance, task run without 

resistance), group, and their interaction as predictors. Identical LMEs were also run using STAI state 

scores as the outcome variable in place of self-reported anxiety to confirm consistency (see 

Supplemental Table S4 for the results of this model).   

To confirm efficacy of the aversive state induction, we performed another LME to test if 

administration of the breathing resistance successfully induced anxiety within the pre-task exposure 
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protocol. This model specifically assessed whether self-reported anxiety level was predicted by breathing 

resistance level (0, 10, 20, 40, 60, and 80 cmH2O/L/sec), group, and/or their interaction (see 

Supplemental Table S5 for the results of this model).  

 

Model-Based Analysis  

Model-based measures included: directed exploration (DE), random exploration (RE), initial 

learning rate (α0), and asymptotic learning rate (α∞). DE was calculated by subtracting the information 

bonus parameter fit to H1 trials from that fit to H6 trials. This allowed us to measure the degree to which 

participants became more information-seeking as decision horizon increased (i.e., when information 

became goal-relevant). Note that this only applied to trials in which unequal information was given. RE 

was calculated by subtracting the decision noise parameter fit to H1 trials from that fit to H6 trials, 

allowing us to measure the degree to which participants became less value sensitive in their initial choice 

as decision horizon increased (i.e., which can also serve as an information-seeking strategy). Analyses of 

RE were here restricted to trials where equal information was given, such that directed information-

seeking could not account for any apparent changes in value sensitivity. For analyses with α∞ as an 

outcome variable, we also included α0 as a covariate, given that those with the highest initial learning rate 

tended to experience the greatest decrease in learning rate over time (somewhat analogous to regression to 

the mean).  

To examine potential effects of group and breathing resistance on each of these model parameters, 

separate LMEs (and logistic mixed regression for α0) were run predicting each parameter value from 

group, resistance condition, and the interaction of those variables. If extreme values of model parameters 

were identified (testing within each resistance condition separately), analyses were repeated with those 

data removed, and any discrepancies between results with/without outliers were reported.  

To assess whether observed differences in DE and RE were better explained by differences in H1 

or H6, separate models were also run with information bonus or decision noise as the outcome variable, 
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respectively, including horizon as an additional predictor. Note that the strength of the interaction between 

horizon and group can here also be seen as a test of group differences in DE or RE. 

To examine the relationship between model parameters and substance use symptoms, separate 

LMEs were run predicting each parameter value based on a drug-related measure, accounting for the 

effect of breathing resistance (see Supplemental Tables S8-S10 for additional details and model results). 

Here, we were additionally interested in examining if the relationship between parameter values and drug-

related symptoms differed between resistance conditions, so the interaction between these variables was 

also included in the models.  

To determine if group differences in model parameters were attributable to comorbid 

psychopathology in iMUDs, follow-up analyses were run in this sample predicting each parameter value 

based on the presence of each comorbid affective or substance use disorder (present/absent), accounting 

for any effect of breathing resistance. Analogous models were also run that included continuous measures 

of psychopathology (i.e., PHQ-9, STAI-Trait, and UPPS-P) as predictors. To determine if medication 

status (medicated/unmedicated), time since last use of methamphetamine, and/or time since starting 

treatment might influence model parameters, similar LMEs were run with those variables (separately).  

Model-Free and Model-Based Behavioral Analyses  

To evaluate the effect of experimental condition on task performance, LMEs tested if free-choice 

accuracy differed by group, information condition, and/or horizon, and whether these effects might be 

moderated by breathing resistance and information condition. We additionally tested if these variables 

predicted accuracy across the free choices of the H6 condition. To examine how model parameters 

influenced subsequent task performance in H6 trials (i.e., to interpret whether some values might be 

considered more optimal than others), we also examined if accuracy was predicted by each of the model 

parameters, free choice number (2-6; i.e., excluding the first free choice to which these parameters were 

directly fit), resistance, and/or group, and whether a given model parameter moderated the improvement 

in accuracy as choice number increased (see Supplemental Table S11 and S12 for full model results). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.17.24307491doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307491
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

   

 

Model Parameters Predicting Cognitive Reflectiveness 

We also sought to replicate prior results10, and extend them to iMUDs, linking model-based 

Horizon Task metrics (and DE in particular) to cognitive reflectiveness (i.e., CRT scores). We therefore 

tested if model parameters could be predicted by the number of correct answers on this measure 

(accounting for effects of resistance). Group was included as a covariate to ensure that observed effects 

were not explained by group differences in cognitive reflectiveness or parameter values (see Table 1 and 

Figure 1). These analyses were repeated with data restricted to the iMUDs sample to determine if any 

observed relationships were specific to the iMUD population. 
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