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 40 

Abstract 41 

Sleep is essential to maintaining health and wellbeing of individuals, influencing a variety of outcomes 42 

from mental health to cardiometabolic disease. This study aims to assess the relationships between 43 

various sleep phenotypes and blood metabolites. Utilizing data from the Hispanic Community Health 44 

Study/Study of Latinos, we performed association analyses between 40 sleep phenotypes, grouped in 45 

several domains (i.e., sleep disordered breathing (SDB), sleep duration, timing, insomnia symptoms, and 46 

heart rate during sleep), and 768 metabolites measured via untargeted metabolomics profiling. Network 47 

analysis was employed to visualize and interpret the associations between sleep phenotypes and 48 

metabolites.  The patterns of statistically significant associations between sleep phenotypes and 49 

metabolites differed by superpathways, and highlighted subpathways of interest for future studies. For 50 

example, some xenobiotic metabolites were associated with sleep duration and heart rate phenotypes 51 

(e.g. 1H-indole-7-acetic acid, 4-allylphenol sulfate), while ketone bodies and fatty acid metabolism 52 

metabolites were associated with sleep timing measures (e.g. 3-hydroxybutyrate (BHBA), 3-53 

hydroxyhexanoylcarnitine (1)). Heart rate phenotypes had the overall largest number of detected 54 

metabolite associations. Many of these associations were shared with both SDB and with sleep timing 55 

phenotypes, while SDB phenotypes shared relatively few metabolite associations with sleep duration 56 

measures. A number of metabolites were associated with multiple sleep phenotypes, from a few 57 

domains. The amino acids vanillylmandelate (VMA) and 1-carboxyethylisoleucine were associated with 58 

the greatest number of sleep phenotypes, from all domains other than insomnia. This atlas of sleep-59 

metabolite associations will facilitate hypothesis generation and further study of the metabolic 60 

underpinnings of sleep health.  61 
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 62 

Introduction 63 

Sleep plays an important role in the health and wellbeing of individuals. Insufficient quality, timing, and 64 

duration of sleep have a major public health impact, and are associated with daytime sleepiness,  poor 65 

mental health, impaired cognitive function, and increased risk of cardiovascular morbidity and mortality 66 

(1–3). Sleep is increasingly recognized as a crucial factor in cardiovascular health, evident by the addition 67 

of sleep duration to the “life’s essential 8” metric developed by the American Heart Association(4). In 68 

addition to sleep duration, measures of suboptimal sleep, such sleep disturbances and quality (or 69 

insomnia symptoms), irregularity of sleep timing, sleep fragmentation, and sleep disordered breathing 70 

(SDB), are also associated with poor health outcomes (5). In fact, there is growing recognition of the 71 

importance in measuring and characterizing multi-dimensional sleep health— a framework that 72 

concurrently considers these varied aspects of sleep (6–8).  73 

 74 

Despite the strong epidemiological evidence observed in many cohort and clinical studies for the 75 

connection between suboptimal sleep health and increased risks for poor health outcomes, the biology 76 

and physiology behind these links are not fully understood. While many sleep behaviors and outcomes 77 

share  some underlying genetic and physiological pathways (9–11), or have, potentially bidirectional, 78 

causal relationships (12), there may also be distinct mechanisms that underlie specific sleep 79 

disturbances or sleep subtypes (13–15). Untangling these shared and distinct mechanisms underlying 80 

sleep phenotypes has the potential to inform sleep health intervention efforts.  81 

 82 
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Biological sampling to measure molecular markers of health, such as in metabolomics, can be used to 83 

investigate the mechanisms and pathways underpinning sleep phenotypes. Metabolites are small 84 

molecules produced in the formation and/or breakdown of endogenous or exogenous substances and 85 

are oriented at the closest layer to phenotypes compared to other underlying biochemical layers (e.g., 86 

genome, transcriptome and proteome). The increasing availability of large datasets with untargeted 87 

metabolomics profiling has unveiled metabolic outcomes and correlates of numerous health 88 

phenotypes, including sleep measures (16–31). A large-scale study of metabolites in relation to sleep 89 

phenotypes may shed light on how underlying biological processes may converge and differ among 90 

common sleep phenotypes, the complex interplay between sleep and the metabolic environment, and, 91 

ultimately, potential interactions among sleep disorders and progression of cardiometabolic and other 92 

health conditions. Here, we study the associations between a range of sleep phenotypes and the 93 

metabolic environment in a large population-based study using a high-dimensional set of measured 94 

metabolites. We create an “atlas” – a resource for the sleep research community that will facilitate 95 

hypotheses formulation and accelerate studies on sleep and its association with other health outcomes.  96 

 97 

Our study has taken a comprehensive approach, covering key sleep phenotypes including sleep 98 

disordered breathing (SDB), sleep duration, sleep timing, insomnia symptoms, and heart rate (HR) 99 

during sleep.  Each category of sleep phenotypes provides a different perspective on sleep, while 100 

together may highlight some shared biological processes within this complex physiological 101 

phenomenon. We also conducted network analysis to better understand the interconnectedness 102 

between multiple sleep phenotypes and metabolites –representing significant associations as links in a 103 

bipartite network allows for simultaneous visualization of many associations, enabling researchers to 104 

perceive connectivity patterns that might otherwise be obscured when looking at the individual 105 

relationships. By reporting a large number of associations between metabolites and sleep phenotypes, 106 
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this resource may provide researchers with a starting point for more targeted inquiries into the 107 

metabolic environment changes induced by sleep disorders, and facilitate hypothesis generation for 108 

future metabolomic sleep research. This may ultimately contribute to our understanding of the 109 

pathogenesis of sleep disorders and pave the way for developing more effective diagnostic and 110 

therapeutic strategies. 111 

 112 

Methods 113 

The Hispanic Community Health Study/Study of Latinos 114 

The Hispanic Community Health Study / Study of Latinos (HCHS/SOL) is a prospective community-based 115 

cohort study of 16,415 Hispanic/Latino individuals aged 18–74 years at the baseline examination (2008-116 

2011). Study participants were selected using a multi-stage stratified random sampling from four 117 

geographic regions: Bronx NY, Chicago IL, Miami FL, and San Diego CA (32,33). Description of major 118 

ancillary studies and findings in the context of cardiovascular health is provided in a prior publication 119 

(34). Fasting blood samples were collected at the baseline examination, and within the subsequent 120 

week, 14,440 of these participants underwent an evaluation for SDB using a validated Type 3 home 121 

sleep apnea test (ARES Unicorder 5.2; B-Alert, Carlsbad, CA) that measured nasal airflow, position, 122 

snoring, heart rate and oxyhemoglobin saturation with measures of SDB scored by a central reading 123 

center as detailed previously (35). All sleep phenotypes used and their definitions are provided in 124 

Supplementary Note 1.  125 

 126 
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Metabolomics profiling 127 

From those who attended the HCHS/SOL baseline assessment and also underwent genotyping (12,803 128 

of the study individuals (36)), 4,002 individuals were selected at random for metabolomics profiling of 129 

fasting serum samples collected at baseline (metabolomics batch 1, processed in 2017). In 2021, 130 

additional 2,368 serum samples from 2,330 participants, also collected at baseline, were profiled in a 131 

second metabolomics batch 2. Serum samples were stored at -70ºC at the HCHS/SOL Core Laboratory at 132 

the University of Minnesota until analysis by Metabolon, Inc. (Durham, NC) in 2017 (batch 1) and 2021 133 

(batch 2). Serum samples were then extracted and prepared using Metabolon’s standard solvent 134 

extraction method. Extracts were split into a five fractions to use in four liquid chromatography-mass 135 

spectrometry (LC-MS)-based metabolomic quantification platforms  (two reverse phase methods with 136 

positive ion mode electrospray ionization (EI), one reverse phase method with negative ion mode EI, and 137 

one hydrophilic interaction liquid chromatography with negative ion mode EI), with the fifth fraction 138 

reserved for backup. Instrument variability was assessed by calculating the median relative standard 139 

deviation (SD) for the internal standards added to each sample prior to injection into the mass 140 

spectrometers. Overall process variability was determined by calculating the median relative SD for all 141 

endogenous metabolites (i.e., non-instrument standards) present in 100% of the technical replicate 142 

samples.   143 

 144 

Metabolomic data pre-processing 145 

Preprocessing of the metabolomic data is described in Supplementary Figure S1. First, we removed 146 

batch 2 individuals who overlapped with batch 1 and replicate samples from the same individuals, 147 

resulting in 2,178 remaining batch 2 observations. We then computed percentages of missing values of 148 

each metabolite in each batch separately. We excluded metabolites with missing values in more than 149 
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75% of the individuals in either batch. For xenobiotic metabolites (metabolite annotation was provide by 150 

Metabolon), we assumed that missing values were due to concentrations below the minimum detection 151 

limits, thus imputed the missing values for each metabolite with half of the lowest non-missing value of 152 

that metabolite across the sample within the batch. For non-xenobiotic metabolites, we applied multiple 153 

imputation using the futuremice function from the R mice package (version 3.15.0) that implements 154 

fully conditional imputation in a computationally efficient manner (using parallelization). Each variable 155 

in the imputation dataset is imputed (if it has missing values) using a model that predicts potential 156 

values based on other variables in the dataset. The dataset was imputed 5 times to generate 5 157 

completed datasets. Differences between the computed datasets are due to randomness (e.g. random 158 

residuals added to the predicted values of a variable).  We imputed metabolites, separately in each 159 

batch, together with a set of covariates that are strongly linked to the metabolic environment: age, sex, 160 

BMI, waist-to-hip ratio, fasting insulin, fasting glucose, type 2 diabetes status (American Diabetes 161 

Association definition: fasting glucose >=126 mg/dL, or post-OGTT glucose >=200 mg/dL or A1C>=6.5%, 162 

or self-report of diabetes), estimated glomerular filtration rate, and lipid measures –  total cholesterol, 163 

triglycerides, high- and low-density lipoprotein measures. We then rank normalized the 768 metabolite 164 

measures passing quality control in each batch separately and each imputed dataset separately, and 165 

finally, aggregated data from the two batches, such that the “first” imputed batch 1 dataset was 166 

aggregated with the “first” imputed batch 2 dataset, and so on. Supplementary Note 2 describes the 167 

analysis we performed to inform the metabolite imputation strategy.  168 

 169 

Sleep phenotypes and modeling approach 170 

We used 40 sleep phenotypes from 5 domains, described in detail in Supplementary Note 1. In brief, 171 

these included: self-reported sleep duration (sleep duration during weekdays and weekend days, 172 
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average sleep duration during, short and long sleep during weekdays), heart rate during sleep 173 

(minimum, maximum, average, and standard deviation of HR), insomnia (the women health initiative 174 

insomnia rating scale (WHIIRS), its component questions, sleeping pill use, and daytime and excessive 175 

daytime sleepiness, measured via the Epworth sleepiness scale), sleep disordered breathing (respiratory 176 

event indices, measures of oxyhemoglobin saturation during sleep, measures of respiratory event 177 

lengths, as well as self-reported snoring), and sleep timing (bed time and wake time as well as sleep 178 

midpoint during weekend and weekend days, and social jetlag – the difference in sleep midpoint 179 

between weekend and weekdays). In figures and tables, these domains are referred to as Duration, HR, 180 

Insomnia, SDB, and Timing. Phenotypes in the sleep timing category were analyzed as “circular” 181 

variables, i.e., to avoid bias due to day thresholding (i.e., defining a day by midnight) and to account for 182 

the fact that 11:59PM (23:59) is adjacent to 12:01AM (00:01). Other sleep phenotypes were treated as 183 

linear or binary (when dichotomized). Two nested conceptual models were used in the analyses. Model 184 

1 adjusted for batch number, demographic, and baseline clinical variables, including age, sex, field 185 

center, Hispanic/Latino background (Mexican, Puerto Rican, Cuban, Central American, Dominican, South 186 

American, and other/multi) and body mass index (BMI). Model 2 further adjusted for lifestyle variables – 187 

alcohol use (never, former, current), cigarette use (never, former, current), total physical activity (MET-188 

min/day, computed based on self-reported time spent doing physical activities), and diet (Alternative 189 

Healthy Eating Index 2010, computed based on 24 hours dietary recall data) in addition to Model 1 190 

covariates. Sleep phenotypes were used as exposures with metabolites as outcomes. When testing the 191 

association of a circular phenotype (i.e., sleep timing) with a metabolite, we first converted the sleep 192 

timing phenotype into radians (with 12am serving as the 0) and then computed the sine and cosine of 193 

these radians. We used the sine and cosine terms as predictors in the regression (37), and tested their 194 

association with the metabolite using the multivariate Wald test, accounting for two predictors and their 195 

estimated covariance. All association analyses were performed using the survey R package (version 4.1) 196 
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to account for the HCHS/SOL sampling design and provide effect estimates relevant for the HCHS/SOL 197 

target population.  198 

 199 

Estimating associations between metabolites and sleep phenotypes 200 

We separately assessed the association between each metabolite's concentration level, as an outcome, 201 

and each sleep phenotype, as a predictor, using Model 1 and Model 2 covariates as described above, in 202 

a single metabolite association analysis. Xenobiotic metabolites were imputed once, while missing 203 

values in other metabolites values were imputed 5 times. Thus, we estimated the associations of non-204 

xenobiotic metabolites with sleep phenotypes 5 times (using each of the completed datasets), and then 205 

combined the resulting estimated associations. Here we treated the linearly-modeled sleep phenotypes 206 

differently from the circular ones. The estimated metabolite associations with linearly-modeled sleep 207 

phenotypes were combined using Rubin’s rule (38). Sleep timing phenotypes cannot be combined in the 208 

same manner, because there is no method to combine the covariance between the sine and cosine 209 

terms across several completed datasets. Instead, we focused on testing and aggregated the p-value of 210 

the multivariate Wald test using the aggregated Cauchy association test (ACAT; (39)). The ACAT test was 211 

developed in the context of genetic association analyses, but it is appropriate for our settings, because it 212 

allows for the aggregated tests to be based on correlated data. Finally, after combining association 213 

results so we had one p-value per sleep phenotype-metabolite association (per model), we 214 

implemented the Benjamini-Hochberg method to control the false discovery rate (FDR) for multiple 215 

testing across all metabolites in all models for each sleep phenotype (40). Any association that resulted 216 

in an FDR-adjusted p-value<0.05 in Model 1 was considered statistically significant. In secondary 217 

analysis, we also performed sex-stratified analyses using the same analytic approach. For descriptive 218 

purposes, we computed the number of sleep traits that each metabolite was associated with at the 219 
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FDR<0.05 Model 1 threshold, and identified the top 10% metabolites based on number of sleep trait 220 

associations. 221 

 222 

We summarized the associations between sleep phenotypes, individually and categorized by domains, 223 

and metabolites, individually and categorized by pathways.  Similarities of these associations between a 224 

pair of phenotypes or domains were estimated with the Dice Similarity Coefficient (DSC) (41) defined as 225 

𝐷𝑆𝐶 =
2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌|

 226 

Where X and Y represent the set of metabolites with statistically significant associations (FDR<0.05) with 227 

two sleep phenotypes or domains. DSC takes values between 0 and 1 where 0 indicates no similarity 228 

while 1 indicates full overlap between the two sets. 229 

 230 

Bipartite network analysis 231 

Bipartite network is a type of network in which there are two groups of nodes (here: sleep phenotypes 232 

and metabolites), and links, or edges, can only exist between the two types of nodes but not within a 233 

group of nodes. We constructed a bipartite network using the sleep phenotypes and metabolites, where 234 

an edge was added between a sleep phenotype-metabolite pair if their association was statistically 235 

significant (FDR-adjusted p-value<0.05) in Model 1 association analysis. The network is built based on an 236 

incidence matrix, with rows corresponding to sleep phenotypes, columns represent metabolites, and the 237 

𝑖, 𝑗 cell in this matrix has a value of 1 if the 𝑖th sleep phenotype has a statistically significant association 238 

with the 𝑗th metabolite, and 0 otherwise. We then aggregated metabolites by sub- and super-pathway, 239 

and sleep phenotypes by domain, which results in a consolidated incidence matrix in which a value of 1 240 

in cell(m,n) indicating any statistically significant association between the mth sleep phenotype domain 241 
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and the nth metabolite sub- and super-pathway and a weight matrix documenting the number of total 242 

statistically significant associations between the mth sleep phenotype domain and the nth metabolite 243 

sub- and super-pathway. Several network property metrics were computed to offer insights into the 244 

structure and associations of the sleep domain – metabolite sub- and super- pathway network. 245 

 246 

For visualization, we converted the bipartite network into a univariate network and visualized the 247 

network using the Fruchterman-Reingold force-directed algorithm, which optimizes the placement of 248 

nodes based on connectivity similarity between nodes, where similar connectivity is reflected as 249 

proximity of nodes (42), providing an intuitive spatial representation of the network structure.  250 

  251 

Statistical software 252 
 253 

All analyses were done in R version 4.2.3. The function svyglm from the survey package was used for 254 

survey-weighted generalized linear regression models. The car package (version 3.1) was used for 255 

multivariate Wald test. The bipartite package (version 2.18) was used for bipartite network analysis, and 256 

igraph (version 1.5) and ggnetwork (version 0.5) packages were used for visualizing network graph. 257 

 258 

Results 259 
 260 

Study sample characteristics 261 

Table 1 characterizes the HCHS/SOL target population (using means and percentages weighted to 262 

account for study participation), with more comprehensive data provided in Supplementary Table S1. 263 

The analytic sample, batch 1 and batch 2 metabolomic dataset combined, included 6,180 participants 264 
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with a mean age of 44.31 years (SD=15.27), of whom 40.1% were males, 20.7% were non-alcohol users, 265 

58.5% never smoked, and 11.7% had moderate-to-severe OSA (REI3>=15). The average sleep duration 266 

was 7.98 hours (SD=1.46), while 22.7% reported restless or very restless sleep on a typical night in the 267 

last month, and 15.8% reported excessive sleepiness (ESS>=10). Batch 2 participants were older 268 

compared to batch 1 – the mean age is 41.54 years (SD) in batch 1 and 51.11 years (SD) in batch 2. The 269 

baseline rates of diabetes and hypertension were higher in batch 2 (diabetes: 29.4%; hypertensions: 270 

44.1%) compared to batch 1 (diabetes: 20.1%; hypertensions: 31.5%), consistent with the age difference 271 

between the two batches.  272 

  273 
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Table 1: HCHS/SOL target population characteristics by sex, batch, and overall 
  

 
Female Male Batch 1 Batch 2 Overall 

n 3704 2476 4002 2178 6180 
Age (mean (SD)) 44.98 

(15.17) 
43.56 (15.35) 41.54 

(15.18) 
51.11 

(13.21) 
44.31 

(15.27) 
Gender = Male (%) 0 ( 0.0) 2476 (100.0) 1705 

(42.6) 
771 

(35.4) 
2476 
(40.1) 

Hispanic/Latino background (%) 
     

BMI (mean (SD)) 30.15 
(6.69) 

28.78 (5.37) 29.42 
(6.27) 

29.72 
(5.80) 

29.50 
(6.14) 

Current alcohol drinking (%)  1401 
(37.9) 

1490 ( 60.2) 1973 
(49.3) 

918 
(42.3) 

2891 
(46.8) 

Current smoking (%) 596 
(16.1) 

668 ( 27.1) 863 
(21.6) 

401 
(18.5) 

1264 
(20.5) 

Physical activity (MET-min/day) (mean (SD)) 424.88 
(714.71) 

879.70 
(1174.88) 

697.66 
(1020.41) 

496.61 
(880.66) 

639.60 
(986.25) 

The Alternate Healthy Eating Index (2010) (mean (SD)) 46.79 
(7.42) 

48.74 (7.47) 47.28 
(7.52) 

48.75 
(7.36) 

47.71 
(7.50) 

OSA status = OSA (%) 260 ( 
7.9) 

383 ( 17.4) 388 
(10.9) 

255 
(13.0) 

643 
(11.7) 

Baseline Diabetes status (ADA) = Yes (%) 863 
(23.3) 

579 ( 23.4) 803 
(20.1) 

639 
(29.4) 

1442 
(23.3) 

Baseline Hypertension status = Yes (%) 1357 
(36.6) 

865 ( 34.9) 1261 
(31.5) 

961 
(44.1) 

2222 
(36.0) 

Sleep Duration: Work/School Days (in hours) (mean (SD)) 7.89 
(1.66) 

7.75 (1.56) 7.82 
(1.62) 

7.83 
(1.60) 

7.82 
(1.62) 

Womens's Health Initiative Insomnia Rating Scale (WHIIRS) 
total score (mean (SD)) 

7.64 
(5.58) 

6.16 (5.13) 6.78 
(5.37) 

7.34 
(5.54) 

6.95 
(5.42) 

Epworth Sleepiness Scale (ESS) total score (mean (SD)) 5.44 
(4.71) 

5.87 (4.87) 5.62 
(4.71) 

5.70 
(4.99) 

5.64 
(4.79)       

OSA was defined as respiratory event index >=15. 
     

Means and percentages have been weighted to provide values representative of the 
HCHS/SOL target population. 

   

  274 
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Results from sleep phenotype-metabolite association analysis 275 

The single metabolite association analysis was conducted in pair-wise fashion between 40 sleep 276 

phenotypes from five domains (i.e., sleep duration, HR during sleep, insomnia, SDB, and sleep timing) 277 

and 768 metabolites, including 113 unknown metabolites and 77 xenobiotic metabolites. Of the 278 

phenotypes, 35 sleep phenotypes had statistically significant associations with at least one metabolite 279 

(Table 2). When limited to Model 1, the median number of significant associations for each sleep 280 

phenotype is 16.5 (range: 0 - 304), corresponding to 2.15% (range: 0% – 39.58%) of all tested 281 

metabolites. The number of statistically significant associations is much lower among dichotomized 282 

sleep phenotypes (median: 5; range: 0 – 73) compared to non-dichotomized sleep phenotypes (median: 283 

37; range: 0 – 304), likely corresponding to loss of power due to dichotomization. Phenotypes from the 284 

heart rate during sleep domain had the highest number of statistically significant associations with 285 

metabolites (median: 174, range: 2 - 304), followed by the sleep timing domain (median: 117, range: 64 286 

- 197). The SDB domain had the lowest number of statistically significant associations with tested 287 

metabolites (median: 8, range: 0 – 68) (Supplementary Table S2). Figure 2 visualizes the strength of 288 

associations (i.e., negative logarithm of the FDR-adjusted p) between sleep phenotypes and individual 289 

metabolites grouped by superpathway. Compared to the sex-stratified analysis, sex-combined analysis 290 

tends to identify more statistically significant associations between sleep phenotypes and metabolites 291 

(Figure 3), in accordance with the higher power due to larger sample size of the sex-combined analysis. 292 

 293 
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Table 2: Statistically significant metabolite associations by sleep phenotype  
Sleep phenotype Number of 

statistically 
significant 
associations 

Percentage of 
statistically 
significant 
associations (%) 

Sleep phenotype 
domain 

Sleep phenotype 
dichotomized or 
continuous 

weekday long sleep 2 0.26 Duration Dichotomized 
weekday short sleep 0 0.00 Duration Dichotomized 
sleep duration 107 13.93 Duration Continuous 
weekday sleep duration 101 13.15 Duration Continuous 
social jetlag 0 0.00 Duration Continuous 
weekend sleep Duration 3 0.39 Duration Continuous 
min HR during sleep 225 29.30 Heart rate (HR) Continuous 
max HR during sleep 123 16.02 Heart rate (HR) Continuous 
avg HR during sleep 304 39.58 Heart rate (HR) Continuous 
std HR during sleep 2 0.26 Heart rate (HR) Continuous 
difficulty back to sleep 0 0.00 Insomnia Dichotomized 
early wake 16 2.08 Insomnia Dichotomized 
ESS 34 4.43 Insomnia Continuous 
ESS>10 (EDS) 8 1.04 Insomnia Dichotomized 
difficulty fall asleep 17 2.21 Insomnia Dichotomized 
frequent wake 0 0.00 Insomnia Dichotomized 
taking sleep pill 73 9.51 Insomnia Dichotomized 
restless sleep 6 0.78 Insomnia Dichotomized 
WHIIRS 35 4.56 Insomnia Continuous 
avg event Duration 0 0.00 SDB Continuous 
hypoxic burden 7 0.91 SDB Continuous 
per90 1 0.13 SDB Dichotomized 
rei0 11 1.43 SDB Continuous 
rei0>15 4 0.52 SDB Dichotomized 
rei0>5 27 3.52 SDB Dichotomized 
total event count 12 1.56 SDB Continuous 
total event Duration 7 0.91 SDB Continuous 
rei3 68 8.85 SDB Continuous 
rei3>15 8 1.04 SDB Dichotomized 
rei3>5 43 5.60 SDB Dichotomized 
min o2 38 4.95 SDB Continuous 
avg o2 36 4.69 SDB Continuous 
perlt90 8 1.04 SDB Continuous 
snore 4 0.52 SDB Dichotomized 
weekday bed time 158 20.57 Timing Continuous 
weekday midpoint time 197 25.65 Timing Continuous 
weekday wake time 153 19.92 Timing Continuous 
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weekend bed time 80 10.42 Timing Continuous 
weekend midpoint time 81 10.55 Timing Continuous 
weekend wake time 64 8.33 Timing Continuous 

 295 

Among the 768 included metabolites, carbohydrates had the highest average number of statistically 296 

significant associations with sleep phenotypes (mean: 4.23, range: 1 – 8 per metabolite), followed by 297 

cofactors and vitamins (mean: 3.92, range 0 – 12 per metabolite) and lipids (mean: 3.04, range: 0 – 11 298 

per metabolite). Partially characterized molecules (mean: 1.78, range: 0 – 8) and xenobiotics (mean: 299 

1.78, range: 0 – 9) had the lowest number of statistically significant associations with sleep phenotypes 300 

per metabolite (Supplementary Table S3). 301 

 302 

We aggregated metabolites by subpathway and sleep phenotypes by domain, then identified and 303 

visualized top metabolomic subpathways with over 25% statistically significant associations (defined as 304 

FDR-adjusted p<0.05) among all tested associations (Figure 4) by sleep phenotype domain. Primary bile 305 

acid metabolism showed the highest cumulative percentage of statistically significant associations 306 

across all five sleep phenotype domains, although no significant association was identified for SDB 307 

phenotypes (Supplementary Table S4). Both lipids and cofactors/vitamins had subpathways (e.g., ketone 308 

bodies, acyl glutamine, pantothenate and CoA metabolism, nicotinate and nicotinamide metabolism) 309 

that had high percentage of statistically significant associations with sleep timing phenotypes. SDB 310 

phenotypes had the highest percentage of statistically significant associations among lipids, especially 311 

progestin steroids, phosphatidylethanolamine, diacylglycerols, pregnenolone steroids and 312 

sphingomyelins, which is consistent with our previous research findings (43). As for the sleep duration 313 

domain, the top subpathways with the highest percentage of significant associations were 314 

bacterial/fungal, amino sugar metabolism, nicotinate and nicotinamide metabolism, primary bile acid 315 
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metabolism, corticosteroids, and polyamine metabolism. Insomnia domain generally had fewer 316 

statistically significant associations, among which pregnenolone steroids and vitamin A metabolism 317 

showed the highest percentage of statistically significant associations.  318 

 319 

Comparing men and women, potential sex differences can be observed (Supplementary Figure S2), with 320 

the limitation that the sample size of male participants was lower. Relatively more subpathways had 321 

statistically significant associations with SDB phenotypes among females compared to males (these 322 

include oxidative phosphorylation, lactosylceramides fructose, mannose and galactose metabolism). The 323 

subpathways from which metabolites were associated with insomnia phenotypes were mostly 324 

pregnenolone steroids, nicotinate and nicotinamide metabolism and carnitine metabolism among 325 

females, while long chain saturated and monounsaturated fatty acid and amino sugar metabolism were 326 

more associated with insomnia phenotypes among males. 327 

 328 

We also aggregated metabolites by superpathway and visualized the percentage of statistically 329 

significant associations between superpathways and sleep phenotype domains in the format of a 330 

heatmap (Figure 5). The percentage of statistically significant associations were highest for HR during 331 

sleep, especially among carbohydrates (40.34%), followed by cofactors and vitamins (26.92%), amino 332 

acids (24.70%) and peptides (24.04%) (Supplementary Table S5). Insomnia and SDB domain showed 333 

overall lower percentage of statistically significant associations with metabolites across all 334 

superpathways, all of which were below 10%. 335 

 336 
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Among all metabolites associated with at least one sleep phenotype, we identified the top 10% (n=37) 337 

with the highest number of total associations, regardless of domains (Figure 6). Sixteen metabolites 338 

were lipids, 8 were amino acids, 4 were cofactors and vitamins, 4 were unnamed, 2 were peptides, 1 339 

was carbohydrate, 1 was xenobiotic and 1 was partially characterized. Every metabolite from the top 340 

10% list had associations with more than one sleep phenotype domain, among which 11 metabolites 341 

were associated with four different domains of sleep phenotypes. The amino acids Vanillylmandelate 342 

(VMA) and 1-carboxyethylisoleucine were associated with the greatest number of sleep phenotypes 343 

from all sleep phenotype domains except for the insomnia domain.  344 

 345 

We also compared the similarities among sleep phenotype domains by calculating the Dice Similarity 346 

Coefficients (DSC) which quantifies the associated metabolites overlap between any two sleep domains. 347 

As shown in Figure 7, the highest overlap was observed between HR during sleep phenotypes and SDB 348 

(DSC=0.35), and with sleep timing domain (DSC=0.35), respectively. The overlap between SDB and sleep 349 

timing domain was lower (DSC=0.26). High overlap was also observed between sleep duration and sleep 350 

timing (DSC=0.31). The lowest levels of overlap were observed for sleep duration traits and SDB domain 351 

(DSC=0.13) and sleep duration and HR during sleep phenotypes (DSC=0.19). 352 

 353 

Bipartite network analysis based on statistically significant associations between 354 

metabolites and sleep phenotypes 355 

Figure 8 shows a network of nodes and edges in which each node represents either a sleep phenotype 356 

domain or a metabolomic subpathway, while each edge represents one or more statistically significant 357 

associations between two nodes based on the single metabolite association analysis results (FDR-358 

adjusted p<0.05). The width of the edge indicates the number of statistically significant associations 359 

between two nodes. Some metabolomic subpathways have exclusive connections with one sleep 360 
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domain, such as fatty acid and dicarboxylate subpathways and sleep timing domain. Others tend to have 361 

many connections with multiple sleep domains, such as sphingomyelins with sleep timing, heart rate 362 

and SDB phenotype domain. The placement of the nodes reflects their connectivity similarities – the 363 

closer two nodes are, the more similar their overall connectivity patterns are. SDB and heart rate 364 

phetnoypes, for instance, are closely placed together which also corresponds to the high DSC values 365 

between the two groups (Figure 7). Metabolomic subpathways located close to the center of the 366 

network indicates their connectivity with multiple sleep domains, while metabolomic subpathways 367 

located at the outskirt of the network indicates their connections with one or few closely located sleep 368 

phenotype domains. For instance, the cluster of fatty acids (i.e., fatty acid, dicarboxylate, fatty acid 369 

metabolism (acyl carnitine, hydroxy), fatty acid metabolism (acyl choline),  long chain saturated fatty 370 

acid, and fatty acid, monohydroxy, appearing in the left quadrant of Figure 8) are mostly connected to 371 

sleep timing, heart rate, and insomnia sleep domains, while lipids such as lysophospholipid, secondary 372 

bile acid metabolism and androgenic steroids are connected to sleep duration and SDB phenotype 373 

domain.  374 

 375 

Treated as a bipartite network model, we further characterized the connectivity between the 376 

metabolites, grouped at the superpathway level, and sleep domains quantified by network properties. 377 

The number of connected metabolites is the lowest for energy metabolites and the highest for lipids, 378 

which corresponds to the number of connected sleep phenotypes for the two superpathways and the 379 

average connection per node (i.e., links per node) (Figure 9). Similar trend can be observed for the mean 380 

number of shared metabolites among sleep phenotypes – the number of overlapping metabolites for 381 

sleep phenotypes is the highest among lipids and lowest among energy metabolites, which suggests that 382 

more lipids are connected to the same sleep phenotype compared to metabolites from other 383 

superpathways. The mean number of shared sleep phenotypes among metabolites, however, peaked 384 
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for carbohydrates and cofactors and vitamins, followed by lipids, suggesting metabolites from the 385 

former two superpathways are more likely to connected to similar sleep phenotypes than other 386 

superpathways, despite their low number of total metabolites.  387 

 388 

Cluster coefficient, the number of realized links divided by the number of possible links, is the highest 389 

among carbohydrates and nucleotides. This pattern indicates a higher degree of overlap in the 390 

neighboring nodes   among carbohydrates and nucleotides, compared to unnamed metabolites and 391 

when combining all metabolites together regardless of superpathways, which may suggest a lower 392 

degree of diversity in terms of their connectivity patterns. 393 

 394 

Nestedness of a graph is the property where groups of connected nodes are nested within larger groups 395 

of connected nodes. Two versions of nestedness measures were calculated. Both weighted (using the 396 

number of sleep domain-superpathway associations) and non-weighted nestedness measures generally 397 

agree, and suggest relatively high nestedness among lipids, amino acids, unnamed metabolites as well 398 

as combining all metabolites together, and relatively low nestedness among energy, carbohydrates and 399 

nucleotides (Supplementary Table S6).  400 

 401 

Modularity Q is a measure of community structure. Modulatory values are higher when there are more 402 

clusters of connected nodes in a graph. Modularity Q was the highest among energy (Q=0.57) and 403 

xenobiotics (Q=0.57), followed by peptides (Q=0.52), and the lowest among cofactors and vitamins 404 

(Q=0.39) and lipids (Q=0.4), suggesting that among the former three superpathways, there are groups of 405 

metabolites in the superpathway that tend to connect to the same sleep phenotype. Among lipids, and 406 
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cofactors and vitamins, there are less such “communities” of metabolites with similar sleep domain 407 

connections.  408 

 409 

Discussion 410 
 411 

In this study we performed single metabolite association analyses for a variety of sleep phenotypes 412 

including SDB, insomnia, sleep duration, sleep timing, and heart rate measures during sleep, adjusted 413 

for common demographic covariates and BMI, and identified metabolites with statistically significant 414 

associations with each sleep phenotype. Taking a network analysis approach, we developed a bipartite 415 

network based on the identified associations between metabolites and sleep phenotypes. This approach 416 

characterizes the connectivity patterns of metabolites from different metabolite super- and sub- 417 

pathways, and identifies “neighboring” metabolites and sleep phenotypes that are inter-connected, as 418 

well as metabolomic subpathways that may be of interest for further study. 419 

 420 

Many of the metabolites identified in our study as associated with sleep phenotypes have been 421 

previously reported to be linked to various sleep phenotypes, usually concurring with our findings. 422 

Among the top 10% of connected metabolites with the highest number of associations, regardless of 423 

sleep phenotype domain, almost all metabolites were reported in prior publications (Table 3), of which 424 

22 were related to sleep. These include some published results from our prior work in HCHS/SOL (i.e., 425 

non-independent findings). Glycine, for instance, has shown associations with multiple SDB phenotypes, 426 

and was reported to be associated with sleep deprivation (44,45). In a recent study, glycine was found to 427 

be depleted in blood among Hispanic/Latino individuals with severe SDB, likely due to microbiome 428 

changes in an oxygen-poor environment (46). Four other metabolites – 1-oleoyl-GPE (18:1), 1-(1-enyl-429 
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palmitoyl)-GPC (P-16:0)*, pregnenolone sulfate, 5alpha-pregnan-3beta,20alpha-diol monosulfate (2), 430 

previously reported to be associated with novel SDB phenotype metrics after dimension reduction in our 431 

prior work in HCHS/SOL (43), were here also associated with several SDB phenotypes as well as with 432 

phenotypes from domains including insomnia, sleep timing, and heart rate during sleep.  433 

 434 

Some of the metabolites identified in this study were also reported to be associated with other 435 

comorbidities such as cardiovascular, metabolic, and neurodegenerative diseases, potentially 436 

connecting sleep to a wide range of chronic adverse health outcomes. For instance, 1-437 

carboxyethylisoleucine and 1-carboxyethylphenylalanine, both associated with sleep duration, SDB, 438 

sleep timing and heart rate during sleep, were both reported to be altered in blood among type II 439 

diabetes patients (47), while 1-carboxyethylisoleucine, among several other branched-chain amino acid 440 

metabolites, was also altered in serum levels among gestational diabetes patients (48). Another amino 441 

acid from the top 10% connected metabolites list, 1-carboxyethylvaline, was reported to be associated 442 

with hypertension (49). Hexadecanedioate (C16-DC), a dicarboxylate fatty acid, was reported to be 443 

associated with blood pressure regulation  (50) and neurodegenerative diseases (51). Beta-444 

cryptoxanthin, an antioxidant and pre-vitamin A carotenoid found in fruits and vegetables, was found 445 

positively associated with cognition (analysis was not adjusted for sleep traits) in individuals of diverse 446 

race/ethnic backgrounds (52). These metabolites suggest some shared biochemical mechanisms 447 

between sleep and other chronic adverse health outcomes. 448 

 449 

  450 
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Table 3: Top sleep-connected metabolites and their relevant previously-reported associations. 

Metabolite Super 
pathway 

Sub pathway Prior publications 

glycine Amino Acid Glycine, Serine and Threonine 
Metabolism 

Sleep deprivation (44), OSA (46)  

  

N-acetylglycine Amino Acid Glycine, Serine and Threonine 
Metabolism 

Sleep restriction (53) 

1-carboxyethylisoleucine Amino Acid Leucine, Isoleucine and Valine 
Metabolism 

T2DM(47) and GDM (48) 

1-carboxyethylvaline Amino Acid Leucine, Isoleucine and Valine 
Metabolism 

HTN (49) 

lysine Amino Acid Lysine Metabolism Insomnia (54), repeated sleep 
disruption (55) 

1-carboxyethylphenylalanine Amino Acid Phenylalanine Metabolism T2DM (47) 

vanillylmandelate (VMA) Amino Acid Tyrosine Metabolism Sleep deprivation (56) 

pro-hydroxy-pro Amino Acid Urea cycle; Arginine and 
Proline Metabolism 

Sleep midpoint (27) 

erythronate* Carbohydrate Aminosugar Metabolism Sleep midpoint and wake time (57) 

1-methylnicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide 
Metabolism 

Sleep restriction (58) 

N1-Methyl-2-pyridone-5-
carboxamide 

Cofactors and 
Vitamins 

Nicotinate and Nicotinamide 
Metabolism 

Sleep restriction (58) 

nicotinamide N-oxide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide 
Metabolism 

Anti-inflammatory effect (59) 

beta-cryptoxanthin Cofactors and 
Vitamins 

Vitamin A Metabolism Sleep duration (60), sleepiness and 
sleep disturbance (61) cognitive 
function (52) 

behenoyl 
dihydrosphingomyelin 
(d18:0/22:0)* 

Lipid Dihydrosphingomyelins Physical exercise (62) 

sphingomyelin (d18:0/20:0, 
d16:0/22:0)* 

Lipid Dihydrosphingomyelins Blood pressure (63) 

hexadecanedioate (C16-DC) Lipid Fatty Acid, Dicarboxylate Blood pressure regulation (50), 
neurodegenerative diseases (51)  

1-linoleoyl-GPE (18:2)* Lipid Lysophospholipid Depression (64) 

1-oleoyl-GPE (18:1) Lipid Lysophospholipid SDB (43) 

1-(1-enyl-palmitoyl)-GPC (P-
16:0)* 

Lipid Lysoplasmalogen SDB (43) 

1-palmitoyl-2-linoleoyl-GPE 
(16:0/18:2) 

Lipid Phosphatidylethanolamine (PE) Infant sepsis (65) 

1-stearoyl-2-oleoyl-GPE 
(18:0/18:1) 

Lipid Phosphatidylethanolamine (PE) OSA (24) 

pregnenolone sulfate Lipid Pregnenolone Steroids SDB (43), REM sleep (66) 

glycochenodeoxycholate Lipid Primary Bile Acid Metabolism Poor sleep quality (67) 

glycochenodeoxycholate 3-
sulfate 

Lipid Primary Bile Acid Metabolism OSA (29) 
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glycocholate Lipid Primary Bile Acid Metabolism OSA (26) 

taurochenodeoxycholate Lipid Primary Bile Acid Metabolism OSA (26), sleep midpoint (27) 

5alpha-pregnan-
3beta,20alpha-diol 
monosulfate (2) 

Lipid Progestin Steroids SDB (43) 

glycoursodeoxycholate Lipid Secondary Bile Acid 
Metabolism 

Bed time (68) 

ursodeoxycholate Lipid Secondary Bile Acid 
Metabolism 

OSA intermittent 
hypoxia/hypercapnia (69) 

pentose acid* Partially 
Characterized 
Molecules 

Partially Characterized 
Molecules 

REM vs wakefulness (70) 

gamma-glutamylisoleucine* Peptide Gamma-glutamyl Amino Acid Sleep midpoint (27), wake time and 
sleep midpoint (57) 

gamma-glutamyltryptophan Peptide Gamma-glutamyl Amino Acid Late-onset sepsis among premature 
infants (71) 

mannonate* Xenobiotics Food Component/Plant Undernutrition (72) 

 451 

When working with complex data such as untargeted metabolomic profiling and multiple phenotypes, 452 

effectively summarize data and develop useful insights is challenging (73). Different visualization and 453 

analytical approaches have been developed to facilitate this process (74). Here, we applied a systems 454 

biological approach – network analysis which has been widely used in gene expression, gene regulation, 455 

gene-disease network, and drug-drug interaction studies, on statistical relations among multiple 456 

phenotypes and metabolites. This data-driven network approach is different from knowledge-based 457 

network construction approaches (75) built on biochemical relations such as KEGG networks (76). Here, 458 

the network was built on inferred statistical relations among metabolites and phenotypes, leveraging, 459 

for interpretation purposes, well-studied network properties metrics from other fields such as ecology, 460 

socioeconomics, neuroscience, drug-disease networks, among others (77–80). One interesting 461 

observation is the relatively high nestedness among lipids and amino acids. High nestedness indicates 462 

that metabolites from these two superpathways form such a structure that metabolites with fewer 463 

connections (referred to as “degree”) are more likely to “connect”, via their mutual connections with 464 

sleep domains, with metabolites with higher degree of connections, rather than with other metabolites 465 
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with a similar low degree of connectiveness. An intuitive depiction of such network is a “core-periphery” 466 

structure, in which a “core” of nodes is connected with other nodes, where a “periphery” of nodes tends 467 

to only connect with the nodes in the core. Contextually, among lipids and amino acids associated with 468 

sleep phenotypes, higher nestedness, compared to other superpathways, implies that these 469 

superpathways are more likely to have a subset of metabolites that play a “key” role forming 470 

connections with many, and the same, sleep phenotypes, rather than an evenly distributed network 471 

where metabolites form connections with various sleep phenotypes from different domains in a random 472 

manner. This is supported by the pattern observed in Figure 8 where subpathways from amino acids and 473 

lipids superpathways tend to be placed in the center of the network graph. Metabolites with high 474 

connectiveness from these two super-pathways likely have roles in shared biological processes across 475 

multiple sleep phenotypes, especially considering 24 out of 37 top 10% connected metabolites are 476 

either amino acids or lipids. Modularity metrics, on the other hand, measure how well a network can be 477 

partitioned into clusters or compartments in which there are dense connections internally and sparser 478 

connections with other clusters (81). Among energy and peptide metabolites associated with sleep 479 

phenotypes, relatively higher modularity compared to other superpathways suggests the existence of 480 

such subgroups with distinct relationships with sleep phenotypes.  481 

 482 

HR domain had the highest percentage of metabolite associations of these assessed. HR during sleep 483 

reflects activity of the autonomic nervous system, and is influenced by cardiac function, sleep stage (i.e., 484 

lowest in deep restorative sleep and highest and most variable in REM sleep and wakefulness during the 485 

sleep period), and sleep apnea-related heart rate response (82,83). Notably, both low and elevated 486 

heart rate response to SDB events are associated with biomarkers of cardiovascular disease, while 487 

elevated heart rate response to SDB events is predictive of incident fatal and non-fatal CVD (84). The 488 

finding that HR during sleep associated with hundreds of metabolites, from all superpathways, may 489 
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reflect the multiple biological mechanisms that underlie this phenotype, as well as support the sleep-490 

related HR as a marker of multiple biologically processes that may be targeted for interventions. Sleep 491 

timing also was associated with a relatively high number of metabolite associations, supportive of 492 

growing data implicating timing-related behaviors on metabolic outcomes (85), as well as the correlation 493 

of sleep timing with other sleep domains (86). In contrast, fewer associations were observed between 494 

SDB phenotypes and metabolites. This may be because that SDB measured by traditional metrics such as 495 

the AHI may poorly characterize disease that is influenced by multiple mechanistic pathways (87).  496 

 497 

An analytic choice that we made that is worth discussing is missing metabolite data imputation. Here, 498 

we imputed missing values of metabolites with no more than 25% missing values. For non-xenobiotic 499 

metabolites, we selected the imputation method based on an empirical investigation of the proportion 500 

of replicated associations between batches, and the selected method was multiple imputation that 501 

included all metabolite and other measures (covariates and lab values) that have strong associations 502 

with metabolite levels. It is natural to question whether this may somehow bias results: for example, is it 503 

possible that, for instance, using diabetes and BMI (among the rest) to impute metabolite values will 504 

lead to metabolite values that are “too reflective” or BMI and diabetes and therefore will somehow 505 

generate spurious metabolite associations with sleep measures that are associated with BMI and 506 

diabetes?  The answer is that this is very unlikely. Generation of metabolite values that are overly similar 507 

to BMI or diabetes (in this example) by the predictive mean matching function suggests overfitting to 508 

the values of these covariates. Such overfitting will reduce the likelihood of replication of associations in 509 

the second batch, rather than increase it. Further, the predictive mean matching has some randomness 510 

due to sampling, further limiting overfitting to the variables used in imputation. Finally, it is important to 511 

note that the correlation between metabolites and covariates, as with sleep, is an inherent 512 
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characteristic of this biological signal (i.e. it is a “feature, not a bug”), as are the metabolite associations 513 

with sleep measures. Therefore, leveraging this characteristic is useful. 514 

 515 

There are a few strengths to this study: we looked at multiple sleep phenotypes simultaneously which 516 

provides a unique opportunity for pattern recognition across phenotypes. We also explored the network 517 

analysis approach in summarizing the metabolite-sleep phenotypes associations which enabled us to 518 

leverage well developed network property metrics from other fields to offer new insights and potentially 519 

lead to more hypothesis generation. Additionally, we compared the metabolite-sleep phenotype 520 

associations in combined sexes and sex-stratified study populations, recognizing more work is needed to 521 

further understand the implications of potential differences. Lastly, the atlas created in this study will be 522 

a useful resource for the scientific community. This study also has a few limitations. First, our study 523 

population is based on the HCHS/SOL cohort, representative of the Hispanic/Latino population in the US. 524 

Although it’s important to study under-represented populations such as Hispanic/Latino individuals, 525 

further studies on other populations are needed to increase the generalizability of the findings. Second, 526 

the network analysis conducted in this study is not to make network inference but to summarize the 527 

associations results. Third, due to the large breadth of analyses we did not account for medication use in 528 

this work. This can influence associations as medications can affect metabolite levels and sleep 529 

phenotypes. Similarly, fourth, our primary model for which we summarize the results was not adjusted 530 

for comorbidities. In all, one cannot infer mechanisms and directionality of associations from these 531 

analyses. Fifth, another limitation is that the objective overnight sleep measures did not use EEG, 532 

limiting SDB (e.g. we do not have measures of arousals) as well as potential sleep staging measures. 533 

Finally, any comparison between the sleep domains used in this analysis is limited by the available sleep 534 

phenotypes, their number, and the correlation patterns between them.  535 
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 536 

In summary, we studied the associations between multiple sleep phenotypes from multiple sleep 537 

domains and the metabolomic environment in a large population-based cohort study. Using network 538 

analysis, we were able to visualize the interconnectedness between multiple sleep phenotypes and 539 

associated metabolites simultaneously, which provides an opportunity to glean into connectivity 540 

patterns that otherwise might be obscure when presented as individual relationships. We also created a 541 

resource for the sleep research community that will facilitate hypothesis generation in future 542 

metabolomic studies on sleep health. As sleep is highly affected by the social and built environment, it 543 

would be important, in the future, to use metabolomics to glean into the pathways by which the 544 

environment impacts sleep.  545 

 546 

Figure legends 547 
 548 

Figure 1. Study design diagram 549 

Figure 2. Scatter plot of single metabolite association analysis with sleep phenotypes 550 

-log10(FDR-p) is based on FDR-adjusted p in which the raw p was derived by accounting for the complex 551 

sampling design-based degrees of freedom, using adjusted standard errors to compute the t-statistic in 552 

single metabolite association analysis with each sleep phenotype as dependent variables, while the FDR 553 

adjustment was based on the Benjamini-Hochberg method to control false discovery rate (FDR) for 554 

multiple testing among all metabolites in all models for each sleep phenotype. Black horizontal line 555 

indicates FDR-p=0.05. 556 

 557 
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Figure 3. Number of statistically significant associations between metabolites and sleep phenotypes 558 

by domain and sex strata 559 

Associations between metabolite and sleep phenotype are identified as statistically significant based on 560 

FDR-p<0.05. The raw p-value was derived by accounting for the complex sampling design-based degrees 561 

of freedom, using adjusted standard errors to compute the t-statistic in single metabolite association 562 

analysis with each sleep phenotype as dependent variables. The FDR adjustment was based on the 563 

Benjamini-Hochberg method to control false discovery rate (FDR) for multiple testing among all 564 

metabolites in all models for each sleep phenotype. 565 

 566 

Figure 4. Number of statistically significant associations between metabolites and sleep phenotypes 567 

aggregated by subpathway and sleep phenotype domain 568 

 569 

Figure 5. Percentage of statistically significant associations between metabolites and sleep 570 

phenotypes aggregated by superpathway and sleep phenotype domain 571 

 572 

Figure 6. Number of significant associations aggregated by sleep phenotype domain among the top 573 

10% connected metabolites with the most statistically significant associations 574 

 575 

Figure 7. Dice coefficient matrix of sleep phenotype domain based on associated metabolites 576 

Dice coefficient was calculated based on the shared associations with metabolites between any two 577 

sleep phenotype domain over the total significant associations for both sleep phenotype domains 578 
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combined. A high value (maximum value of 1) indicates complete overlap, while a low value (minimum 579 

value of 0) indicates no overlap between two sleep phenotype domains. 580 

Figure 8. Network based on associations between metabolites and sleep phenotypes aggregated by 581 

subpathway and sleep phenotype domain using the Fruchterman-Reingold force-directed algorithm 582 

Here we present a network of nodes and edges in which each node represents either a sleep phenotype 583 

domain or a metabolomic subpathway, while each edge represents one or more statistically significant 584 

associations between two nodes based on the single metabolite association analysis results (FDR-585 

corrected p<0.05). The width of the edge (i.e., degree) indicates the number of statistically significant 586 

associations between two nodes. The placement of nodes is based on connectivity similarity between 587 

nodes, where similar connectivity is reflected as proximity of nodes. 588 

 589 

Figure 9. Network structural property metrics summarized by superpathway 590 

Network properties metrics were calculated for the bipartite network based on the significant 591 

associations between metabolites and sleep phenotypes (FDR-corrected P<0.05). Cluster coefficients is 592 

the number of realized links divided by the number of possible links 593 

[https://www.rdocumentation.org/packages/bipartite/versions/2.19/topics/networklevel]. Nestedness 594 

measures how the interactions of less connected nodes are a subset of the interactions of more 595 

connected nodes. A value of 0 indicates high nestedness, while a value of 100 indicates “chaos”. 596 

Weighted nestedness considers interaction frequencies of the network, proposed by Galeano et al.(75). 597 

It ranges between 1 (perfect nestedness) and 0 (perfect chaos). Modularity Q is a measure to quantify 598 

how well a network can be partitioned into different groups of nodes such that nodes that belong to the 599 

same group are more likely to be connected than nodes that belong to different groups. 600 
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Supplementary Figure S1: Study sample selection and pre-processing for the metabolomic analysis. 601 

Supplementary Figure S2: Number of statistically significant associations between metabolites and 602 

sleep phenotypes aggregated by subpathway and sleep phenotype domain stratified by sex. 603 

Data availability 604 
 605 

HCHS/SOL data are available through application to the data base of genotypes and phenotypes (dbGaP) 606 

accession phs000810. HCHS/SOL metabolomics data are available via data use agreement with the 607 

HCHS/SOL Data Coordinating Center (DCC) at the University of North Carolina at Chapel Hill, see 608 

collaborators website: https://sites.cscc.unc.edu/hchs/. The metabolite association data generated in 609 

this study are provided in a shiny app https://bws-bidmc.shinyapps.io/20240410_for_shinyappsio/. 610 

 611 

Code availability  612 

The code used in this work has been deposited in the public repository 613 

https://github.com/yzhang104/HCHS_SOL_Sleep_Metabolomics_Atlas.git.  614 
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Figure 1. Study design diagram 
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Figure 2. Scatter plot of single metabolite association analysis with sleep phenotypes 1 
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Figure 3. Number of statistically significant associations between 
metabolites and sleep phenotypes by domain and sex strata 
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Figure 4. Number of statistically significant associations between metabolites and sleep phenotypes aggregated 
by subpathway and sleep phenotype domain
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Figure 5. Percentage of statistically significant associations between 
metabolites and sleep phenotypes aggregated by superpathway and 
sleep phenotype domain 
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Figure 6. Number of significant associations aggregated by sleep phenotype domain among the top 
10% connected metabolites with the most statistically significant associations 
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Figure 7. Dice coefficient matrix of sleep phenotype domain based on associated metabolites 
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Figure 8. Network based on associations between metabolites and sleep phenotypes aggregated by 
subpathway and sleep phenotype domain using the Fruchterman-Reingold force-directed algorithm 
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Figure 9. Network structural property metrics summarized by superpathway 1 
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