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Abstract

Motivation: Genetic risk scores (GRS) summarise genetic data into a single number and allow for discrimination between
cases and controls. Many applications of GRSs would benefit from comparisons with multiple datasets to assess quality
of the GRS across different groups. However, genetic data is often unavailable. If summary statistics of the genetic data
could be used to simulate GRSs more comparisons could be made, potentially leading to improved research.
Results: We present a methodology that utilises only summary statistics of genetic data to simulate GRSs with an
example of a type 1 diabetes (T1D) GRS. An example on European populations of the mean T1D GRS for real and
simulated data are 10.31 (10.12-10.48) and 10.38 (10.24-10.53) respectively. An example of a case-control set for T1D
has a area under the receiver operating characteristic curve of 0.917 (0.903-0.93) for real data and 0.914 (0.898-0.929) for
simulated data.
Availability: The code is available at https://github.com/stevensquires/simulating_genetic_risk_scores.
Contact: s.squires@exeter.ac.uk
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Introduction

A genetic risk score (GRS) provides a summary of variation

in the genome that are related to some trait of interest [4].

Generally these are produced by application of genome wide

association studies (GWASs) [11] that search through genetic

variants looking for parts of the genome that are associated

with that trait and provides both the statistical significance

and the strength of the association.

A GRS is produced by taking the genetic variants that

show a statistically significant association with a trait. The

associated variant weights (strength of the association) are sum-

med with the number of alleles of that variant (out of the

two chromosomes). There are also more complex GRSs, for

example including interaction terms between variants which

turn the standard linear GRS into a more complicated non-

linear GRS [6]. A useful GRS will provide good discrimination

between the groups of samples with the trait from those

without.

The primary motivation for this work is to make the genera-

tion of GRSs more accessible for research. A common research

problem might be about how a specific GRS works on some

particular dataset, or on multiple datasets. As the purpose of a

GRS is the capacity to discriminate between samples with and

without a trait, making multiple comparisons can be essential.

For example, if an aim is to test an existing or new GRS it is

likely that it will require multiple datasets to provide a more

confident judgement about its performance. Datasets of inte-

rest might include: different population ancestry, variants of a

disease, geographic locations, or socio-economic status.

There are two major issues with generation of GRSs in mul-

tiple datasets: one is access to the data and the second is the

expertise required to correctly generate the GRS. The first issue

can be difficult because of, for example, ethical [10], legal [1]

or computational [7] reasons. The second issue is that geno-

mic data tends to be held in specific file formats and requires

particular software to be effectively run, requiring people with

specific skill-sets. This is a barrier for groups without this

expertise to utilise GRSs.

Our aim is to provide a GRS simulation method from

summary statistics. Ethical and legal requirements can be signi-

ficantly reduced as only a small amount of data about the

dataset needs to be released to enable the production of simu-

lated data. A range of scores on multiple datasets can be

produced to enable much wider comparisons. Significantly less

specific technical skills are required as the summary statistics

are all that is needed to generate the GRSs along with the pro-

vided Python code. If summary statistics could be collected and

stored in one place then it would be possible to automatically

produce datasets of GRSs from just those summary statistics.

We provide a methodology to take easily accessible sum-

mary statistics and generate simulated complex GRSs without

the need for access to the original genotype array data. Our
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method requires: single nucleotide polymorphism (SNP) frequ-

encies, correlations between SNPs, and any SNPs that deviate

from Hardy-Weinberg equilibrium (HWE). Both simulated SNP

arrays (for the SNPs in the GRS) and the GRS are generated

from these summary statistics. We demonstrate that our simu-

lated model produces similar results to real data for the final

GRS, relevant sub-parts of the GRS, and distributions of the

SNP values.

Methodology

Overview
Our simulation approach comprises three overall steps: 1) col-

lection of necessary summary statistics; 2) generation of the

simulated SNP array; 3) production of the final GRS. We briefly

describe the overall method and show the steps in Algorithm 1

before going into detail subsequently.

Algorithm 1 Method overview

1) Collect inputs:

• Allele frequencies.

• Correlations between SNPs.

• Fractions for SNPs out of HWE.

2) Simulate SNP array:

• Simulate SNPs from allele frequencies if in HWE.

• Simulate SNPs out of HWE from fractions.

• Calculate networks of correlated SNPs.

• For each group of networked SNPs produce loss function.

• Iterate through each correlated group swapping SNP-

sample pairs if reduces loss function.

• Continue iterating though until loss tolerance reached or

time/iteration limit reached.

3) Generate GRS:

• Linear scores generated using numbers of effect alleles

with SNP score.

• Interaction term generated and ranked then added to

linear score.

There are three summary statistics required: the allele fre-

quencies of each of the SNPs; the correlations between all the

SNPs; the proportions of homozygous and heterozygous alleles

if any of the SNPs deviate from Hardy-Weinberg equilibrium

(HWE). These can either be accessed by application to a server

producing these summary statistics, or by generation from the

original SNP arrays.

The aim of simulating SNP arrays is to produce individual

samples that are indistinguishable from real data. Our appro-

ach is to simulate SNP arrays that have both the same allele

frequencies and the same correlations between SNPs as the real

data.

We perform this in several stages. First, N samples are gene-

rated from the allele frequencies with any SNPs that deviate

from Hardy-Weinberg equilibrium generated separately based

on the proportions of homozygous and heterozygous alleles.

Secondly, the correlated SNPs are collected into G groups of

correlated SNPs. Within each group the correlations between

the SNPs are calculated and a loss function is defined. Pairs of

each correlated SNP in turn (across two samples) are compared

and switched if they reduce the loss function. This approach is

continued until the loss function falls below a chosen tolerance.

The same procedure is applied for all G groups which results

in the final simulated SNP array.

As an example of GRS production we use a type 1 dia-

betes (T1D) GRS [8] that includes both a linear term and a

term related to interacting SNPs. These two parts are gene-

rated separately from the simulated SNP array and combined

together. Our simulated GRS model would work on any linear

model (the interaction terms are excluded) or any GRS with

both a linear and interaction part that is similar to this T1D

GRS.

Datasets and GRS
To develop our method and generate results we need the rele-

vant summary statistics. To test that the simulation approach

works effectively we need to also have real SNP array data so

we can make direct comparisons.

We use two publicly available datasets: the 1000G version

3 data [2] and UK Biobank [9] SNP array data. The 1000G

dataset consists of 2,503 samples from five super-populations:

Europeans (EUR), Africans (AFR), Americans (AMR), east

Asians (EAS), and south Asians (SAS). These five super-

populations are made up of a total of 26 populations with 4

to 7 populations making up each super-population. We consi-

der five subsets of the UKBB data. Four of these are defined

by applying principal component analysis (PCA) to the SNP

arrays and defining the subsets by similar locations in the first

two principal components to four of the 1000G data (EUR,

AFR, EAS, SAS). The fifth subset is European samples with

T1D.

As a demonstration of the effectiveness of the method we

consider a T1D GRS [8] which consists of 67-SNPs. The GRS

involves both a set of linear weights on the number of effect

alleles and an additional pair-wise interaction term based upon

which of 18 pairs of 14 SNPs each sample has. Importantly the

GRS contains multiple SNPs from part of the genome where

there are known to be substantial correlations between the

SNPs (within the human leukocyte antigens, HLA, region).

Therefore, it is important when generating simulated data to

fully include these correlations between SNPs to ensure we are

generating a set of SNP array data which is similar to the real

data.

Due to missing SNP data in the 1000G dataset we exclude

two SNPs leaving 65 in the GRS. For the UKBB data we use

all 67 SNPs.

Collection of Summary Statistics
We collect summary statistics from two datasets: the 1000G

and UK Biobank. For 1000G we use the NIH LDlink suite of

applications [5] to extract variant frequencies and linkage dis-

equilibrium between SNPs. We also use the 1000G SNP array

data to extract the SNPs that deviate from Hardy-Weinberg

equilibrium.

For UK Biobank we use imputed array data extracting the

required SNPs and taking the frequencies and correlations from

the arrays. We use similar positions in 2-dimensional PCA space

as the 1000G super-populations.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.17.24307282doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.17.24307282
http://creativecommons.org/licenses/by/4.0/


Simulating genetic risk scores 3

Generation of Simulated SNP Arrays
We apply two constraints to the SNP arrays, the first is that

the frequencies of the alleles need to match the summary stati-

stics from the real data. Secondly, the correlations between the

SNPs need to also match the known correlations. There may be

a third constraint if any of the SNPs are out of Hardy-Weinberg

equilibrium, for example due to population stratification. If

that is the case then we need to impose an additional constraint

to set the correct proportions of homozygous and heterozygous

alleles for these SNPs.

The key aspect of our method is that the allele freque-

ncies (and any deviations in homozygosity and heterozygosity)

remain constant under permutations of the SNPs between sam-

ples. So if we set up a matrix of sample and SNP values that

has the correct SNP frequencies (and homozygosity deviations)

then if we permute individual SNP-samples (i.e. switch over

SNP values between samples) in the matrix we do not alter the

frequencies but can change the correlations between SNPs.

We define the simulated SNP array as a matrix X ∈ RN×p

where p is the number of SNPs in the GRS and N is the number

of desired simulated samples. We consider each SNP in turn

and generate the simulated data in one of two ways. If the SNP

holds to HWE then we generate it from the frequency by the

generation of two binary N-dimensional vectors (one for each

chromosome) with probabilities set by the allele frequency, the

SNP values are then the sum of the two. If the SNP deviates

then we have the fractions of the homozygous and heterozygous

values and we generate fractions of 0s, 1s and 2s as required.

On generation of the SNPs we have a matrix of size N × p
of 0, 1, 2s but with no correlation between the SNPs. The SNPs

with no expected correlation are left alone. For the rest of the

SNPs we group them into those that are correlated together.

In Figure 1 we show an example of correlated SNP groups. The

nodes (labelled A-G) represent SNPs and the lines represent

those SNPs which are correlated together. So {A,B,C} are

correlated together but neither A or B are correlated with D or

E. E is only correlated with D. D is correlated with both C and

E. F and G are correlated together but neither is correlated

with any of the other SNPs. As the pair of groups {A − E}
and {F −G} are not correlated together we can optimise them

separately.

Fig. 1. Examples of correlated SNPs. The two groups A-E and F-G are

not correlated together. Within group A-E: A, B and C are all correlated

together; C is additionally correlated with D; D is correlated with C and

E; E is just correlated with D. F and G are correlated together and neither

is correlated with any other SNPs.

To find the correlated groups we define a correlation thre-

shold between SNPs above which the SNPs are defined as

correlated (with number of SNPs, pC) and below which are

defined as uncorrelated. We build an adjacency matrix for

all pC SNPs and use the Python network analysis package

NetworkX [3] to extract the set of groups of correlated SNPs,

G = {g1, ...gm}. Each gi group of SNPs are connected by

correlations between then, for example the SNPs {F,G} or

{A,B,C,D,E} from Figure 1.

We now have a set of groups of SNPs. We perform the

same procedure separately for each, gi, group. We set up a

loss function which is defined by

lossi =
1

l

l∑
j=1

||ρ̂j − ρj ||22 (1)

where the sum is over the correlated pairs of SNPs (from 1 to

l), ρ̂i is the correlation between the pair of simulated SNPs and

ρi is the real correlation between the SNPs. For example the

loss function for the left side set A-E of SNPs in Figure 1 would

be given by

loss =
1

5
(||ρ̂AB − ρAB||22 + ||ρ̂AC − ρAC ||22+ (2)

||ρ̂BC − ρBC ||22 + ||ρ̂CD − ρCD||22 + ||ρ̂DE − ρDE ||22).

For a group of correlated SNPs, gi, the procedure is as

follows. We consider all possible SNP pairs in gi and rando-

mise the order we consider the SNPs. We then take a random

permutation of the N samples and compare the neighbouring

(randomised pairs) of samples, for that pair of SNPs. We swap

the SNP values across the pair of samples and check if the loss

function has reduced, if it has we make the change permanent,

if not then we revert to the previous state. The algorithm then

moves onto the next pair of samples and performs the same

procedure. If at any point the loss falls below the defined tole-

rance the iterations are stopped and the SNP values are set.

Once all the pairs of randomised samples have been iterated

through (and if the loss is still above the tolerance level) the

same procedure is applied to the next pair of SNPs (if there

are more than two SNPs in the group). Once the procedure has

been applied to all pairs of SNPs, the order of SNPs is ran-

domised so different pairs of SNPs are compared in order. A

new random permutation of samples is set up and the iteration

through pairs of samples continues. There is also a set iteration

or time limit that can be imposed.

Part of this process is shown, as a toy example, in Figure 2.

There are two correlated SNPs (the two columns) with four

samples (the four rows). The algorithm first swaps x11 and x21

(step 1). It then calculates the new loss function and it has not

fallen therefore in step 2 the pair of SNPs are returned to the

original positions. The algorithm then (step 3) swaps x11 and

x31 and checks the loss function. This time the loss function is

lower so it leaves the SNP array in the new permutation.

Fig. 2. A toy example showing the algorithm being applied to two corre-

lated SNPs with four samples. In step 1 x11 and x21 are swapped but the

loss function does not fall. So in step 2 the algorithm reverts the array

back to the previous state. Then in step 3 x11 and x31 are swapped and

this time the loss function is lower so the new state is kept.

The overall procedure for simulation of a SNP array is shown

in Algorithm 2.

Production of the GRS from Simulated SNP Arrays
The simulated SNP array is a matrix with values of {0, 1, 2}
with each row representing a sample and each column a SNP.
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Algorithm 2 Simulating SNP arrays

Inputs: Frequencies. SNP fractions. Correlations. Correla-

tion threshold. Loss tolerance. Iteration or time limit.

Steps:

Generate N × p SNP array from allele frequencies or SNP

fractions.

Build adjacency matrix from real correlations above the

correlation threshold.

Separate SNPs into G = {g1, ...gm} groups of correlated

SNPS

for i=1 to m do

Generate loss function

Within group gi with h correlated SNPs:

while iteration below iteration limit and loss above

tolerance do

Randomise order of SNP comparisons

for i=1 to h-1 do

for randomised, non-identical sample pairs do

Temporarily swap values

Check loss function and if smaller than previous

lowest loss function make swap permanent

end for

end for

end while

end for

Output: Simulated SNP array, X ∈ Rn×p

We demonstrate the production of a GRS that is a combination

of a linear weighted sum of the alleles with an interaction term

between pairs of SNPs. Any GRS of this form, or with just the

linear weights could be simulated with this method.

The linear weighted sum requires an effect allele and a wei-

ght. The SNP value is switched if the effect allele and the allele

representing 2 are not matched. For all p-SNPs the scores are

weighted and summed.

For this GRS there is also an interaction term. Here if com-

binations of pairs (18 in total) of 14 of the SNPs are present

together then there is an addition term. Only one interaction

term (or none) is permitted per sample and there is a ran-

king of terms if more than one is present which gives the final

interaction term. The interaction term and the linear term are

summed together to give the final score.

Analysis of the Simulated Data
The simulation method produces both a SNP array and a final

GRS. To assess how well the approach performs we compare the

real data to the simulated data for both 1000G and UKBB data-

sets. We investigate the final GRS values, relevant sub-parts of

the GRS, and comparisons of the SNP arrays themselves.

Comparison to final GRS

The 1000G data is a combination of data from different

populations around the world. These are combined into 5

super-populations from 26 populations. The simulation method

requires the allele frequencies and SNP correlations but these

are dependent on which grouping is consider, i.e. whether we

use summary statistics from the super-population or population

level. We investigate simulations at both levels.

The UKBB data is drawn from the UK so is of people of

predominantly Europe descent but there are also substantial

numbers of people of other ancestries. We therefore define four

different super-populations using PCA and simulate data from

those groups. As a fifth group we also use 387 people with T1D

from UKBB. This group of European T1D samples (together

with the European UKBB super-population) lets us also com-

pare the receiver operating characteristic (ROC) curves and

area under the ROC curve (AUC) for the real and simulated

data.

Comparison to sub-parts of the GRS

We also explore how the model performs at simulating sub-

parts of the GRS. Risk of T1D is dominated by the HLA region

so we split the GRS into three parts: SNPs from the HLA

region, SNPs not from the HLA region, and the interaction

term, to assess whether the simulation is correctly estimating

each part. In addition, we separately compare the parts of the

GRS generated from SNPs that are uncorrelated with any other

SNPs in the GRS and those SNPs which are correlated with at

least one other SNP in the GRS.

Comparison of the SNP arrays

The GRS we consider has 67 SNPs (65 for the 1000G due to

missing SNPs). The frequencies of the simulated SNP arrays

are defined by the algorithm to match the real frequencies

and it (unless it reaches an iteration/time limit before the loss

function has fallen below the tolerance limit) adjusts the SNPs

with known correlations to other SNPs to be correlated equi-

valently to the real data (within a tolerance). However, there

may be differences between the simulated and real SNP arrays

that are not clear from either these summary statistics or the

sub-parts of the GRS.

We therefore explore whether the overall structure of the

simulated SNP arrays are similar to real SNP arrays by per-

forming principal component analysis (PCA) on the 67 (or 65)

SNPs and projecting down onto the first two principal com-

ponents (PCs). We then investigate similarities and differences

between the simulated and real SNP arrays at the level of the

first two PCs.

Results

Comparison to final GRS
In the left plot of Figure 3 we show the mean simulated GRS

against the mean real GRS for the 1000G super-populations

and populations. The super-populations are shown with a larger

marker. In the right plot we show plots of the mean simulated

GRS against mean real GRS for the UKBB super-populations

and the T1D population. The real and simulated mean scores

for all super-populations and populations are similar.

Fig. 3. Left) Mean simulated GRS compared to mean real GRS for

the 1000G super-populations and populations. The super-populations are

marked with a larger marker size. The populations are labelled with

their super-population labels, rather that population labels, for clarity.

Right) Mean simulated GRS compared to mean real GRS for the UKBB

super-populations and the T1D population.
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In Figure 4, to the left of the dashed line, we show the distri-

butions of real (left of pair and coloured blue) and simulated

(right of pair and coloured orange) GRS for the five populations

within the European super-population. Each population has

approximately 100 samples within. To the right of the dashed

line (violin plots coloured green) we show repeated simulations

(labelled S2-S6) of the CEU population (with 99 samples) to

demonstrate that there is some variation in the distributions

simulated.

Fig. 4. Left of the dashed line are the GRS distributions of the European

populations with real GRS (left of pair and in blue) and simulated GRS

(right of each pair and in orange) shown side-by-side. TSI (Tuscan from

Italy), FIN (Finnish), IBS (Iberians from Spain), GBR (British) and CEU

(northern and western European ancestry from Utah, USA) are shown.

To the right of the dashed line, and in green, are repeated simulations of

the CEU data (labelled S2-S6).

In Table 1 we show the mean and standard deviation of

the real (with subscript R) and simulated (with subscript S)

GRSs for the super-populations from 1000G. For the mean and

standard deviation (St. Dev.) the real and simulated metrics

are mostly similar.

Table 1. The mean and standard deviation (St. Dev.) of the real

(denoted by subscript R) and the simulated (denoted by subscript

S) GRSs for the 1000G super-populations.

Mean Standard deviation

SASR 9.05 (8.86-9.25) 2.29 (2.13-2.43)

SASS 9.03 (8.87-9.19) 2.43 (2.31-2.55)

AFRR 8.42 (8.28-8.56) 1.88 (1.78-1.97)

AFRS 8.40 (8.28-8.52) 1.86 (1.76-1.95)

EASR 10.51 (10.34-10.69) 2.05 (1.94-2.17)

EASS 10.48 (10.36-10.6) 1.96 (1.86-2.04)

EURR 10.31 (10.12-10.48) 2.11 (1.96-2.25)

EURS 10.38 (10.24-10.53) 2.26 (2.15-2.36)

AMRR 10.72 (10.5-10.97) 2.17 (2.02-2.33)

AMRS 10.83 (10.7-10.98) 2.15 (2.06-2.24)

In the left plot of Figure 5 we show ROC curves and AUC

scores for separation of the European T1D and non-T1D data

from UKBB for real and simulated data. There are no signi-

ficant differences between AUC scores for real (denoted in the

legend as R. AUC ) and simulated (denoted in the legend as S.

AUC ) data. In the right plot of Figure 5 we show ROC curves

and AUC scores of three simulations of the T1D data (leaving

the non-T1D simulated data the same) to show variability in

ROC curves from repeated simulations.

Fig. 5. Left) ROC curves for separation of the non-T1D and T1D Euro-

pean populations of UKBB by the real (blue dashed line) and simulated

(red dotted line) GRSs. Associated AUC scores are shown for the real (R.

AUC) and simulated (S. AUC) data in the legend. Right) ROC curves

for three simulations of the T1D data (with the same simulated non-T1D

scores for all three) with AUCs in the legend.

Comparison to subparts of GRS
The mean sub-parts of the GRS: the linear score of the HLA

SNPs (HLA), the linear score of the non-HLA SNPs (Non-

HLA), and the interaction term (Interaction) for the 1000G

super-populations are shown in Table 2. All sub-parts are equi-

valent between the simulated and real data with no significant

discrepancies.

Table 2. Table showing the mean scores for three sub-parts of the

GRS on 1000G super-population data. The sub-parts shown are:

the linear score of the HLA SNPs (HLA), the linear score of the

non-HLA SNPs (Non-HLA) and the interaction term (Interaction).

Results are shown for the real scores (subscript R) and the simulated

scores (subscript S).

HLA Non-HLA Interaction

AFRR 5.62 (5.45-5.78) 2.24 (2.19-2.28) 0.56 (0.47-0.64)

AFRS 5.62 (5.49-5.75) 2.23 (2.19-2.26) 0.55 (0.49-0.61)

SASR 6.01 (5.82-6.21) 3.01 (2.95-3.07) 0.03 (0.00-0.07)

SASS 5.96 (5.82-6.11) 3.03 (2.98-3.07) 0.04 (0.01-0.06)

EASR 6.98 (6.79-7.18) 3.40 (3.36-3.45) 0.12 (0.07-0.18)

EASS 6.95 (6.82-7.07) 3.40 (3.37-3.43) 0.14 (0.10-0.18)

AMRR 7.30 (7.04-7.55) 3.22 (3.14-3.30) 0.21 (0.11-0.29)

AMRS 7.34 (7.20-7.47) 3.24 (3.19-3.28) 0.22 (0.17-0.27)

EURR 6.43 (6.21-6.62) 3.54 (3.47-3.60) 0.34 (0.26-0.42)

EURS 6.45 (6.30-6.61) 3.52 (3.47-3.57) 0.32 (0.27-0.38)

In Table 3 we show the number of SNPs which are correlated

with at least one other SNP in the GRS (Correlated num-

ber) and the mean summed scores for both the SNPs which

are correlated with at least one other SNP and SNPs which

are not correlated with any other SNPs in the GRS for the

1000G super-populations. The simulated GRS produces simi-

lar mean scores to the real data for both the correlated and

non-correlated SNPs.

Comparison to SNP arrays
In Figure 6 we show a comparison of the real (left plot) and

simulated (right plot) 1000G data when applying PCA to the

whole dataset (2503 samples) and the 65 SNPs. The first

two principal components are shown and the colours represent

the different super-populations. The pattern of the real and

simulated data is similar with comparable separation of the

super-populations.
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Table 3. Mean scores for the real (subscript R) and simulated

(subscript S) 1000G super-population data when separating SNPs

into those that are correlated (Correlated mean score) and non-

correlated (Non-correlated mean score). The number of SNPs that

are correlated with at least one other SNP in the GRS are also shown

(Correlated number).

Correlated Correlated Non-correlated

number mean score mean score

EURR 23 6.96 (6.76-7.15) 3.01 (2.9-3.12)

EURS 23 6.88 (6.69-7.06) 3.06 (2.94-3.17)

SASR 15 6.11 (5.93-6.3) 2.91 (2.8-3.02)

SASS 15 6.07 (5.91-6.26) 3.03 (2.91-3.17)

AFRR 15 5.91 (5.74-6.08) 1.95 (1.85-2.04)

AFRS 15 5.9 (5.74-6.04) 1.94 (1.84-2.04)

AMRR 22 7.84 (7.6-8.08) 2.68 (2.55-2.8)

AMRS 22 7.9 (7.67-8.15) 2.72 (2.6-2.85)

EASR 21 4.75 (4.58-4.91) 5.64 (5.54-5.73)

EASS 21 4.81 (4.67-4.96) 5.67 (5.58-5.77)

Fig. 6. PCA applied to the real (left) and simulated (right) whole 1000G

dataset (2503 samples). The first two principal components are shown

and the colours represent the different super-populations.

In Figure 7 we demonstrate, using the AMR super-

population, the importance of which summary statistics are

used to simulate the SNP arrays. The top left plot shows the

first two principal components applied to the 1000G AMR real

data while the top right is the simulated SNP array when the

simulations were generated using summary statistics at the

super-population level. The bottom left shows simulated PCA

of the SNP array when the four different populations making up

the super-population are generated separately (with summary

statistics at the population level) and concatenated together

before PCA is applied. The bottom right plot shows the same

plot as the bottom left but with markers and colours represen-

ting each population. The data is more spread out when the

summary statistics are used from the populations rather than

the super-populations.

In Figure 8 we show that the simulation model can produce

structure in the first two principal components similar to the

real data. The top left and top right plots show the first two

principal components of the real and simulated data of the AFR

super-population of the 1000G data with the seven populations

represented by different marker colours and shapes. In the bot-

tom row of Figure 8 we show a partial cause of the structure in

the AFR super-population first two principal component plot.

The left and right plots are the first two principal components

of the real data and the simulated data respectively. The three

marker colours/shapes represent those samples which have one

SNP (rs17843689) either as 0, 1, 2 (on the effect allele).

Fig. 7. The first two principal components of the real and simulated

65-SNP T1D GRS for the AMR super-population. Top left plot is the

real SNP PCA. Top right is the simulated data when generated from the

summary statistics on the super-population as a whole (labelled super-

pop.). The bottom left is simulated data when four separate SNP arrays

are generated for the four populations making up the super-population

and then the SNP arrays are concatenated together before PCA is applied

(labelled pops.). The bottom right plot shows the same as the bottom

left but with the populations denoted with different marker shapes and

colours.

In Figure 9 we show the first two principal components for

the European T1D and non-T1D data from the UKBB dataset.

The red crosses are the T1D data and the blue dots are 1000

random samples from the non-T1D data. The left and right

plots are the real and simulated data respectively. For both the

real and simulated data the T1D samples occupy similar parts

of the first two principal components space.

Discussion

The overall aim of this work was to simulate GRSs without

access to the original genotype data. The quality of the simu-

lated data was compared to real data both via the summary

statistics relating to the GRS and the SNP arrays.

The mean, median and standard deviation of the simulated

GRSs are similar to the equivalents for the real data for both

the 1000G data and UKBB. In addition, an AUC produced

by considering T1D cases in UKBB and comparing to non-

T1D controls are similar for simulated and real data. Therefore,

summary statistics from the simulated data would produce the

similar conclusions as using real genetic data. Given a common

use of GRSs is to calculate discrimination between cases and

controls via AUC, we have demonstrated that the simulated

data would produce similar AUC as the real data.

From the summary statistics produced by the simulated

data it could be concluded that the simulation approach pro-

duces a GRS similar to that produced on real data. However,

it is important to understand if there is variation that is hid-

den when considering summary statistics, which might result

in false final results in other circumstances.
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Fig. 8. The top left and right plots are the first two principal components

of the AFR super-population data from the 1000G for real and simulated

data respectively. Similar structure is visible in both PCA plots. The

different colours of the markers are different populations. The bottom

left (real data) and right (simulated data) plots show the relationship

between a sample from the AFR super-population of the 1000G having

a SNP (rs17843689) variant and its location in PCA space. The colours

represent whether the sample has a 0, 1, 2 value for that SNP, labelled

as SNP 0, SNP 1, SNP 2 respectively.

Fig. 9. The first two principal components for the European T1D and

non-T1D data from the UKBB dataset. The red crosses are the T1D data

and the blue dots are 1000 random samples from the non-T1D data. Left)

Real data. Right) Simulated data.

To investigate the simulation quality further we considered

both sub-parts of the GRS and the generated SNP arrays them-

selves. For the sub-parts of the GRS we looked at the generation

of the HLA, non-HLA and interaction parts. There was no dif-

ference in the mean scores for these three subparts of the GRS

between simulated and real data for either the 1000G data or

the UKBB data.

We also considered the SNPs that are correlated and the

non-correlated SNPs. If the models were not correctly produ-

cing the correlations between the SNPs then the differences

might be expected to occur in those SNPs which were correla-

ted with at least one other SNP as these needed to be optimised

by the algorithm. However, we see no differences between simu-

lated and real mean scores generated using either correlated or

non-correlated SNPs.

The metrics summarising the GRS, even sub-parts of the

GRS, might conceal variations in the distributions of the GRSs.

These distributions can vary between different runs of the simu-

lation model (see Figures 4) making it difficult to be confident

that the simulated models are producing the same distributi-

ons as the real data. None of the variation in distributions is

likely to have an effect on any conclusions drawn though and

the real data is also drawn from a much larger real distribution,

but we cannot be certain that our simulated model is correctly

estimating the entire distribution.

When considering the relationship between real and simu-

lated data at the SNP-level, the frequencies of the SNPs are

defined to be correct and the correlations are optimised by the

algorithm. The pattern of SNP values overall might be diffe-

rent though. To investigate these patterns between the SNPs

we took the first two principal components of the real and

simulated SNP arrays.

When performing PCA for all the 1000G data and com-

paring the real and simulated first two principal components

(see Figure 6) the patterns produced are similar for the real

and simulated SNP arrays. We see the same pattern of sepa-

ration of super-populations which means that the simulation is

capturing similar distributions of SNPs at the super-population

level.

We demonstrated that the level of the population of the

SNP summary statistics is particularly important for some of

the datasets. In particular for varied populations like the 1000G

AMR super-population, where the simulated SNP arrays are

insufficiently separated if we take frequencies and correlations

at the super-population level (see Figure 7). By simulating

the SNP arrays using the summary statistics at the popula-

tion level we produce distributions across the first two principal

components that are more similar to the real SNP arrays.

The simulation model also generates some structures in PCA

space which are similar to real data. We showed this in Figure 8

where the PCA plots of real and simulated data have some

structural similarities. A partial cause of this structure was also

shown in Figure 8 where the value of one SNP was driving a

lot of the variance in the first principal component.

We also simulated the T1D data at the SNP-array level

where the T1D sits in the same part of the PCA space as the

real T1D data. There is some variation in the structure in the

first two PCs here.

Overall, the simulated GRS method produces data which

appears to be similar to the real data. This is the case both

if we consider summary statistics (mean, median and standard

deviation) and discrimination power of the GRS (AUC between

T1D cases and non-T1D controls). We also see no differences

in sub-parts of the GRS. At the SNP-array level (considered as

the first two principal components) we find similar distributions

between real and simulated data.

While we have demonstrated that the model produces simu-

lated data that is similar to the real data we cannot be sure that

there are not failure cases, for some reason where the simulation

method would not work. These is some variation in the principal

components of the SNP arrays which may be statistical varia-

tion or might be real differences in structure. There are also

some differences in the summary statistics, which could be for

statistical sampling reasons or may be due to genuine variation

between real and simulated data.

Another issue, is in the level of population required - we

demonstrated that the super-population of the Americans from

1000G is not the correct level to draw summary statistics from.
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There may be subclasses below that which would be more

appropriate.

If there are too many correlated SNPs, or if there are correla-

ted SNPs that have low frequencies, the algorithm can struggle

to find an array that fully matches the correlated SNPs. There

can also be spurious correlations that can be imposed by the

algorithm. These effects are not significant in the datasets we

tested the algorithm on.

Conclusions

Our approach allows the generation of simulated SNP arrays

for GRS generation as well as the final GRS. The simulated

scores show either the same or highly similar structure to real

scores generated from genotyped or imputed data. Our method

allows comparisons to be made by the simulation of GRSs from

summary statistics without the need for access to genotyped

arrays.
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