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Abstract 15 

DNA repetitive sequences (or repeats) comprise over 50% of the human genome and have a 16 

crucial regulatory role, specifically regulating transcription machinery. The human brain is the 17 

tissue with the highest detectable repeat expression and dysregulations on the repeat activity are 18 

related to several neurological and neurodegenerative disorders, as repeat-derived products can 19 

stimulate a pro-inflammatory response. Even so, it is unclear how repeat expression acts on the 20 

aging neurotypical brain. Here, we leverage a large postmortem transcriptome cohort spanning 21 

the human lifespan to assess global repeat expression in the neurotypical brain. We identified 22 

21,696 differentially expressed repeats (DERs) that varied across seven age bins (Prenatal; 0-23 

15; 16-29; 30-39; 40-49; 50-59; 60+) across the caudate nucleus (n=271), dorsolateral prefrontal 24 

cortex (n=304), and hippocampus (n=310). Interestingly, we found that long interspersed nuclear 25 

elements and long terminal repeats (LTRs) DERs were the most abundant repeat families when 26 

comparing infants to early adolescence (0-15) with older adults (60+). Of these differentially 27 

regulated LTRs, we identified 17 shared across all brain regions, including increased expression 28 

of HERV-K-int in older adult brains (60+). Co-expression analysis from each of the three brain 29 

regions also showed repeats from the HERV subfamily were intramodular hubs in its 30 

subnetworks. While we do not observe a strong global relationship between repeat expression 31 

and age, we identified HERV-K as a repeat signature associated with the aging neurotypical brain. 32 

Our study is the first global assessment of repeat expression in the neurotypical brain. 33 

 34 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.17.24307184doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.05.17.24307184


 

Keywords 35 

HERV-K, repeat biology, retroelements, aging, neurodegeneration, RNA-seq, Co-Expression 36 

 37 

Introduction 38 

Present in multiple copies, repetitive sequences, herein referred to as repeats, are a broad category 39 

of DNA sequences known to play crucial homeostatic roles within organisms including plants, 40 

insects, and humans through evolution (Ding et al., 2017; Petersen et al., 2019). In humans, repeats 41 

comprise over 50% of the human genome and have evolved to contribute to cell biology through 42 

more than insertional mutagenesis. However, following their discovery and causative link to 43 

hemophilia A, repeats have primarily been associated with their mutagenic capacity and disease 44 

(Gorbunova et al., 2021). A subcategory of repeats, retroelements, can move through an RNA 45 

intermediate, yet most of these elements are immobilized. Even when immobilized, repeats can 46 

contribute to the transcriptome of a cell, tissue, and organ (Schrader & Schmitz, 2018; Yamamoto 47 

et al., 2022). 48 

  49 

Expression of repeat sequences poses a threat to genomic stability but is particularly relevant in 50 

the healthy human brain as it is the tissue with the highest detectable repeat expression (Bogu et 51 

al., 2019). Given the functional consequences of repeat expression in both healthy and diseased 52 

tissue, repeat sequences are regulated at the genomic, transcriptional, and post-transcriptional 53 

levels. Among the many mechanisms that human cells employ to silence repeat expression, 54 

maintenance of epigenetic marks on DNA and histones is crucial to healthy brain development.  55 

  56 

Dysregulation of repeat-derived RNAs and proteins has been reported in neurological diseases 57 

including neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and 58 

multiple sclerosis (MS) (Evans & Erwin, 2021). A series of studies investigating the role of repeat-59 
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derived products in MS found that human endogenous retroviruses, also known as HERVs, are 60 

increased in several patient samples and are associated with disease status (Macías-Redondo et 61 

al., 2021).  62 

Our current understanding of repeat expression and age relies on limited data from non-human 63 

model systems, peripheral tissues, and postmortem tissue from limited developmental timepoints 64 

(Bogu et al., 2019; de Cecco et al., 2013; He et al., 2021; Lee et al., 2012; Li et al., 2013; Schmitt 65 

et al., 2013). As a result, the field has struggled to contextualize changes to repeat expression in 66 

neurological disease states without a comprehensive understanding of repeat expression across 67 

age.  68 

 69 

This same hypothesis has been applied to aging, termed sterile inflammation, and suggests repeat-70 

derived RNAs contribute to a positive feedback loop of functional and biochemical decline with age 71 

(Dumetier et al., 2022; López-Otín et al., 2013). Dysregulation of epigenetic machinery is a hallmark 72 

of aging, and one theory suggests aging induces a global relaxation of heterochromatin. Thus, 73 

remodeling of the epigenetic landscape confers transcriptomic changes and a global de-repression 74 

of repeats (LaRocca et al., 2020). The link between repeat expression and aging is evidenced by 75 

several observations. Patients with progeroid syndromes, genetic diseases that mimic physiological 76 

aging, exhibit increased LINE-1 repeat expression (Della Valle et al., 2022). Furthermore, 77 

prematurely aged mice, exhibiting hallmarks of aged chromatin, showed increased LINE-1 (long 78 

interspersed nuclear elements) repeat expression (Simon et al., 2019). Upon treatment with reverse 79 

transcriptase inhibitors, compounds that target LINE-1 RNA products from being reverse 80 

transcribed, mice showed increased health and longevity. Together, these findings suggest repeat 81 

derepression contributes to aging phenotypes. 82 

  83 

These observations converge in Alzheimer’s Disease, a spontaneous/idiopathic neurodegenerative 84 

disease where disease risk is associated with age (Guerreiro & Bras, 2015). Tau neurofibrillary 85 
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tangles, a neuropathological hallmark of AD, has been implicated as causative in AD though the 86 

mechanism is unclear. Studies report that tau promotes neurodegeneration through chromatin 87 

relaxation and thus, activates repeat expression in human postmortem brains (Frost et al., 2014; 88 

Guo et al., 2018). It is still unclear how repeat expression contributes to disease etiology, but it is 89 

possible repeat expression is a feature of aging that is exacerbated by disease.  90 

 91 

Our study leverages a large postmortem transcriptome cohort spanning the human lifespan to 92 

assess repeat expression in three neurotypical brain regions – caudate nucleus (n=271), 93 

dorsolateral prefrontal cortex (DLPFC; n=304), and hippocampus (n=310). We pay particular 94 

attention to the expression of repeats associated with human health and disease, specifically LINEs, 95 

long terminal repeats (LTRs), short interspersed nuclear elements (SINEs), and satellite repeats. 96 

By employing co-expression and differential expression analyses across the three brain regions as 97 

a function of age, we glean valuable insights into the region-specific dynamics of repeat expression 98 

during aging and its links to age-related neurological disorders. 99 

 100 

 101 

Results 102 

 103 

Selection of repeat quantification method 104 

Here, we aimed to quantify repeat-derived RNAs from 885 postmortem brain samples (n=291 105 

female, n=594 male; Supplemental Figure 1A). To build this resource of repeat-derived RNA 106 

expression across three brain regions (caudate nucleus [n=271], DLPFC [n=304], and 107 

hippocampus [n=310]) (Benjamin et al., 2022; Jaffe et al., 2018; Schubert et al., 2015), we first 108 

tested two distinct methods designed to quantify repeat expression,  TEcount (Jin et al., 2015) 109 

and featureCounts (Liao et al., 2014). Both featureCounts and TEcount quantify genomic features 110 

(genes and repeats) and share 2,336,733 unique repeat sequences (Supplemental Figure 1B). 111 
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However, when considering all quantifiable repeats, we observe differences between the 112 

methods’ potential benefits as featureCounts can quantify genomic features on the negative 113 

strand and when considering all repeats, we observed substantial differences between the two 114 

methods with about 50% of the repeats unique to each method (Supplemental Figure 1C). 115 

TEcount method is uniquely designed to quantify transposable elements, as reflected in the 116 

composition of its annotation file (Supplemental Figure 1D). For featureCounts, we generated a 117 

custom annotation file similar to TEcounts, using RepeatMasker but allowing for strand-specific 118 

information and additional satellite repeat annotations (Supplemental Figure 1E).  119 

 120 

Despite this, the methods show high Pearsons's correlation, thus perform similarly, when 121 

quantifying evolutionarily young repeats such as L1HS (R2=0.98) and SVA F (R2=0.89) 122 

(Supplemental Figure 1F-G). Due to its ability to quantify simple and satellite repeats, including 123 

those previously associated with Huntington’s disease, amyotrophic lateral sclerosis, and 124 

frontotemporal dementia (Kmetzsch et al., 2020), featureCounts was selected for repeat 125 

quantification and downstream analyses. The authors welcome questions to help generate a 126 

custom annotation file. 127 

 128 

Quantification of repeat expression across brain age 129 

To generate repeat counts with featureCounts from 885 brain samples spanning prenatal - 90 130 

years across the caudate nucleus (n=271), DLPFC (n=304), and hippocampus (n=310) (Figure 131 

1A, 1B), we used a custom annotation file (GTF) generated from University of California Santa 132 

Cruz’s RepeatMasker containing stranded information about genes and repeats. Using this 133 

custom GTF, featureCounts randomly assigns multi-mapping reads from aligned .bam files to a 134 

corresponding genomic feature (Figure 1C). Subsequently, quality control was performed, and 135 

an expression matrix was generated containing 268 caudate samples, 287 DLPFC, and 306 136 

hippocampus samples (Supplemental Table S1). 137 
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 138 

This expression matrix contained quantification of repeat sequences across all samples and was 139 

the basis for downstream analyses including differential expression and Weighted Gene 140 

Correlation Network Analysis (WGCNA; Figure 1D) (Langfelder & Horvath, 2008). Given the high 141 

sequence similarity and multiple copies of repeats, along with the ambiguity of short reads, we 142 

acknowledge the likelihood for repetitive sequences to map to multiple locations in the genome. 143 

Therefore, downstream analyses investigate repeat expression at a superfamily or class level 144 

rather than the behavior of individual repeats at specific genomic loci/coordinates. 145 

 146 

Figure 1. Characterizing repeat expression over lifespan of the neurotypical postmortem 147 

brain. A) Neurotypical postmortem brain samples (n=855) included in study span from prenatal 148 

to 91 years of age. B) Samples originate from caudate nucleus (n=271), DLPFC (n=304), and 149 

hippocampus (n=310) and were binned according to age of death. C) Overview of repeat and 150 

gene expression quantification utilizing featureCounts algorithm and custom annotated gene 151 

transfer format (GTF) file with hg38 genome. D) Overview of downstream characterization for co-152 

expression analysis (weighted gene correlation network analysis [WGCNA]) and differential 153 

expression analysis. 154 

 155 

Hippocampal repeat expression correlates with brain age 156 

 157 

Age-related epigenetic modifications may lead to widespread activation of repetitive elements, 158 

with a positive correlation observed between total repeat expression and chronological age. To 159 

test this hypothesis, we correlated total repeat expression with ages (0-91 years) across brain 160 

regions. Here, we found a slight positive correlation between total repeat expression and age 161 

(Figure 2A; R=0.14, p=2.4e-5). Interestingly, we see a minor correlation between total repeat 162 

expression and age of death (Figure 2A; R=0.14, p=2.4e-5). When we stratify this correlation by 163 
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brain region, we observe the hippocampus has the highest correlation between total repeat 164 

expression and brain age (Figure 2B; R=0.17, p=0.0024; Spearman Rank Correlation). The 165 

caudate nucleus and DLPFC had negligible correlation. Taken together, this data suggests a 166 

relationship between age and repeat expression that is unique to neurotypical hippocampus. 167 

 168 

Figure 2. Repeats cluster together by co-expression and genes associated with RNA 169 

biology. A) Total repeat expression from uniquely mapped reads mildly correlates with age of 170 

death (Spearman two-sided; rho=0.14, p=2.4e-5) B) When stratified by brain region, correlation 171 

of total repeat expression with age of is driven by the hippocampus (Spearman two-sided; 172 

rho=0.17, p=0.0024) C) Schematic representing how WGCNA utilizes expression matrix to place 173 

repeats and genes into neighborhoods and generate co-expression networks. D) WGCNA module 174 

composition across caudate nucleus, DLPFC, and hippocampus as a proportion of genes and 175 

repeats. E) Heatmap of correlation between repeat-dense modules and clinical traits of caudate 176 

nucleus, DLPFC, and hippocampus samples. Repeat-dense modules negatively correlate with 177 

age of death across repeat-dense modules. Yet, repeat-dense modules positively correlate with 178 

neuropathological scores in the caudate nucleus. F) Gene ontology enrichment for DLPFC Brown 179 

module. G) Gene ontology enrichment for caudate nucleus, Light Cyan module. 180 

 181 

Repeats co-expression with RNA binding genes 182 

 To understand the biological pathways associated with repeats and age across the neurotypical 183 

brain, we performed weighted gene co-expression network analysis (WGCNA) on both gene and 184 

repeat expression profiles derived from bulk RNA-seq data for each of the three brain regions. 185 

WGCNA utilizes the gene expression matrix generated from uniquely mapped reads to cluster 186 

expressed features (repeats or genes) into co-expression modules, referred to as modules in the 187 

remainder of the text, based on the Pearson correlation coefficient between a pair of features. 188 

Previously, this method has been applied to gene expression, miRNA expression and DNA 189 
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methylation (Euclydes et al., 2022; Langfelder & Horvath, 2008; Pascut et al., 2020), but here, we 190 

apply WGCNA to a residualized expression matrix containing both repeat and gene expression. 191 

To reduce artifacts introduced by evolutionarily young repeats, only uniquely mapped reads were 192 

considered (Methods) when generating brain region networks using power β = 14 threshold 193 

(Supplemental Table 2). Given the potentially region-specific relationship between repeat 194 

expression and age, we applied WGCNA to organize 2336 unique repeats and 21986 unique 195 

genes into modules by brain region to generate three regional co-expression networks (Figure 196 

2C). The caudate nucleus, DLPFC, and hippocampus produced 16, 14, 13 modules, respectively. 197 

Module size varies and the total number of features (repeats and genes) within a module is 198 

indicated in parentheses and is detailed in (Supplemental Table 3). 199 

  200 

To investigate the heterogeneity of each module, we visualized the proportion of repeats and 201 

genes. Modules composed of >50% of total features were classified as repeat-dense. The number 202 

of repeat-dense modules varied by brain region (Figure 2D; Supplemental Table 3). 203 

Interestingly, while it had the highest correlation between total repeat expression and age, the 204 

hippocampus had the fewest number (2) of repeat-dense modules compared to caudate nucleus 205 

(5) or DLPFC (3).  206 

  207 

To evaluate if repeat-dense clusters correlate with age and others clinical features related with 208 

senescence, we calculated the Pearson correlation coefficient between each WGCNA’s module 209 

eigengene (kME) and our clinical features. Sample characteristics selected include age, as well 210 

as neuropathological neuritic plaque (CERAD) and neurofibrillary tangle (Braak) scores 211 

(Supplemental Table 1). Both CERAD and Braak scales are neuropathological metrics of 212 

neurodegeneration associated with Alzheimer’s and Parkinson’s Disease, respectively (Burke et 213 

al., 2008; Fillenbaum et al., 2008). Repeat-dense modules had mild correlations of <|0.2| with age 214 

of death, with DLPFC’s Brown and Salmon modules having p-value=9e-04 and p-value=0.009, 215 
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respectively (Figure 2E). Both hippocampus' repeat-dense modules had a negative correlation 216 

with age of death at (R=-0.19, p=9e-04; Pearson correlation) and (R-0.15, p=0.009; Pearson 217 

correlation), respectively. In contrast, repeat-dense modules positively correlate (>0.2) with both 218 

CERAD and Braak scores in both the caudate nucleus and DLPFC (Figure 2E). In the caudate, 219 

the Light Cyan module correlates moderately with Braak score (R=0.28, p=3e-6; Pearson 220 

correlation) and is composed of 100% repeats. In the DLPFC, the Brown module correlates 221 

moderately with CERAD score (R=0.32, p=4e-8; Pearson correlation). 222 

  223 

The DLPFC Brown module is composed of 72.71% repeats and 27.29% genes.  We next 224 

assessed the biological function of the genes contained in these repeat-dense modules. Thus, 225 

we performed gene ontology (GO) enrichment analysis on all clusters to identify enrichment of 226 

molecular function, biological processes, and cellular compartments with particular interest in GO 227 

enrichment of repeat-dense clusters containing genes (Supplemental Table 4). GO analysis of 228 

the DLPFC Brown module, caudate Light Cyan module, and caudate Yellow module revealed 229 

enrichment of genes associated with RNA and protein binding, RNA processing, and molecular 230 

functions associated with neurodegeneration including ubiquitin-protein transferase activity and 231 

ubiquitin conjugating enzyme (Figure 2E, 2F; Supplemental Figure 3A). These results suggest 232 

repeats correlate with clinical metrics of neurodegeneration. 233 

 234 

Age-associated gene modules enriched for immune response and transcriptional 235 

regulation 236 

Gene expression is known to change with age (de Magalhães et al., 2009), therefore, we also 237 

investigated GO enrichment of gene-dense modules that correlate with age of death. There were 238 

several gene-dense clusters that have a strong, positively correlated relationship with age of 239 

death including DLPFC’s blue and Hippocampus’ yellow module (Supplemental Table 3, 4). The 240 

DLPFC’s Blue module (n= 3329 genes and 20 repeats) correlated negatively with age of death 241 
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(R=-0.40, p=2e-12) was enriched for genes associated with transcriptional regulation by RNA Pol 242 

II (Supplemental Figure 3B). The hippocampus’ Yellow module (n=1925 genes and 11 repeats) 243 

correlated positively with age of death (R=0.55, p=2e-25) and was enriched for genes associated 244 

with immune response, inflammatory response, and defense response to virus (Supplemental 245 

Figure 3C). Together, these results support that gene-dense modules hold meaningful 246 

information about brain age. 247 

 248 

Figure 3. Repeats are differentially expressed between human brains 0-15 vs. 60+ years. 249 

A) Total number of DERs across differential expression comparisons with brains >60 years. B) 250 

Volcano plot visualizing 0-15 vs. 60y+ DERs by fold change and FDR. C) Most significant 0-15 251 

vs. 60+ DER in caudate nucleus, L1P3b (FDR=2.17e-21, log2(fold change)=1.18). D) Most 252 

significant 0-15 vs. 60+ DER in DLPFC, GSAT (FDR=9.15e-15, log2(fold change)=2.66).  E) Most 253 

significant 0-15 vs. 60+ DER in hippocampus, TTCATn (FDR=9.55e-7, log2(fold change)=1.42). 254 

F) R-RHO plot depicting concordance between 0-15 vs. 60y+ DERs between brain regions. 255 

 256 

Identification of differentially expressed repeats across lifespan of neurotypical brain: 257 

brain regions show distinct repeat family association with aging 258 

We hypothesized a differential expression (DE) analysis, comparing repeat expression between 259 

over age, could identify differentially expressed repeats (DER) that are potential biomarkers of 260 

the neurotypical aging brain. To perform this analysis, we utilized samples binned by age 261 

(Prenatal; 0-15; 16-29; 30-39; 40-49; 50-59; 60+) where each age bin contained an adequate 262 

sample size with a minimum of 25 samples. (Figure 1B, Supplemental Table 5). Prenatal 263 

samples were only available for hippocampus and DLPFC.  264 

  265 

Using counts generated with featureCounts (Methods), residualized expression was generated 266 

using covariates via voom linear model. In this analysis, we controlled for the effect of biological 267 
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sex, self-reported race, ancestry (SNP PCs 1-3), and RNA quality (RIN, mitochondria mapping 268 

rate, gene assignment rate, genome mapping rate, and hidden effects using surrogate variable 269 

analysis) (Methods; Model 1, Differential Expression Analyses, Eq.5), with age as our variable 270 

of interest. Criteria for a differentially expressed repeat (DER) was a false discovery rate (FDR) < 271 

0.05. Differential expression identified 21696 DERs across all three brain regions representing 272 

16.58% of all repeats analyzed (Supplemental Figure 4A, Supplemental Table 6). For contrast, 273 

differential expression analysis from TEcount resulted in 13489 DERs (Supplemental Table 7).  274 

 275 

Given age is a primary risk factor for many neurodegenerative diseases, and prenatal samples 276 

were not available for caudate nucleus, we further investigated DERs between 0-15 vs. 60+ years 277 

of age, identifying 1,401 instances between ages 0-15 and 60+ across all three brain regions 278 

(Figure 3A). When stratifying DERs by significance (FDR<0.05) and magnitude of change, we 279 

observed the majority of young (0-15 years) versus older (60+ years) DERs have a relatively small 280 

fold change (log2(fold change) < 0.5) across all three brain regions (Figure 3B).  281 

Across the caudate nucleus, DLPFC, and hippocampus, the most significant DERs between 282 

young (0-15 years) and older (60+ years) individuals belonged to distinct repeat families. In the 283 

caudate nucleus, the most upregulated DER was the LINE repeat L1P3b (FDR=2.17e-21). The 284 

DLPFC showed the greatest increase in centromeric GSAT repeats (FDR=9.15e-15), while the 285 

hippocampus exhibited the strongest upregulation of the satellite repeat TTCATn (FDR=9.55e-7) 286 

(Figure 3C-E). To explore consistency in DER patterns across brain regions, we employed Rank-287 

Rank Hypergeometric Overlap (RRHO) analysis (Plaisier et al., 2010). This analysis revealed the 288 

strongest concordance in the direction of change (up or downregulation) between DERs in the 289 

caudate nucleus and DLPFC (Figure 3F). Concordance was weaker between the DLPFC and 290 

hippocampus, and the hippocampus and caudate nucleus. All three brain regions exhibited an 291 

increase in expression from young (0-15 years) to older (60+ years) groups (Supplemental 292 

Figure 4B). 293 
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  294 

Age-related repeat expression is brain region specific  295 

Discussions of repeat expression are often centered around increases in repeat expression, as it 296 

poses threat to genomic stability and cellular homeostasis. In our analysis, we unbiasedly 297 

captured DERs with FDR<0.05, regardless of directionality of change. To test whether repeat 298 

expression ubiquitously increases with age, we stratified 0-15 vs. 60+ DERs by the sign (positive 299 

or negative) of log2(fold change) (Supplemental Table 6). We identified 549 DERs (403 300 

upregulated, 146 downregulated) in caudate nucleus, 233 DERs (92 upregulated, 233 301 

downregulated) in DLPFC, and 629 DERs (25 upregulated, 629 downregulated) in hippocampus 302 

(Supplemental Figure 5A, 5B). While 73.40% of caudate nucleus DERs are upregulated in 303 

brains >60 years, 96.02% hippocampus DERs are downregulated in brains >60 years.  304 

  305 

To test if the observations were representative across multiple categories of repeats, we 306 

investigated the behavior of LINEs, LTRs, SINEs, and satellite repeats present within 0-15 v. 60+ 307 

DERs (Figure 4A-D). LINEs and LTRs were the most abundant categories present within 0-15 308 

vs. 60y+ DERs and shared similar patterns of upregulation in caudate nucleus >60y and 309 

downregulation in hippocampus >60 years (Figure 4A, 4B; Supplemental Table S6). 310 

Interestingly, despite moderate correlation between total repeat expression and age in the 311 

hippocampus (R=0.17; Figure 2B), hippocampus DERs are primarily downregulated in brains 312 

between 0-15 and 60+ years. This suggests a small subset of non-differentially expressed repeats 313 

may drive global correlation of repeat expression-age and are not representative of more nuanced 314 

changes in repeat expression with age.  315 

 316 

Figure 4. LTRs are over-represented in differential expression results. A-D) Total number of 317 

0-15 vs. 60+ DERs downregulated (red) vs upregulated (blue), stratified by LINE, SINE, LTR, and 318 

satellite repeats E-H) Over representation analysis of LINE, SINE, LTR, and satellite repeats 319 
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within DER results across all comparisons and brain regions (DER = differentially expressed 320 

repeat, LINE = Long Interspersed Element, LTR = Long Terminal Repeat, SINE=Short 321 

Interspersed Repeat) 322 

 323 

LTRs are over-represented within differential expression results 324 

Given the unique behavior of differentially expressed repeats across brain regions, we wanted to 325 

see if any repeat classes were more likely to be differentially expressed. To test if LINEs, LTRs, 326 

SINEs, or satellite repeats were over-represented within our differential expression results, we 327 

performed the Hypergeometric distribution test, implemented by the SuperExactTest package. This 328 

methodology calculates the significance of the intersection between two sets of elements (repeats), 329 

considering a fixed background population (all unique annotated repeats, Methods). With this 330 

approach, we can assess if a specific differentially expressed repeat is overrepresented within its 331 

own repeat super family, compared to what would be expected by chance, considering all repeats 332 

annotated in our custom .gtf file (Methods). Results from each individual comparison performed 333 

across all three brain regions are shown in Figure 4E-H. We quickly identified a striking over-334 

representation of LTR elements within our differential expression results including within 0-15 vs. 335 

60y comparison across all three brain regions (Figure 4F). 336 

 337 

Figure 5. HERV-K expression increases from 0-15 vs. 60+ years in all three brain regions. 338 

A) Venn diagram of 0-15 vs. 60+ DERs across brain regions B) Distribution of repeat classes 339 

within shared 0-15 vs. 60+ DERs across all three tissues C) List of 17 LTR 0-15 vs. 60+ DERs 340 

shared across all three tissues D) Correlation between total expression of HERV-K-int and age of 341 

death by brain region E) Expression of HERV-K-int across age bins, by brain region. 342 

 343 
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Age contributes to differential expression of HERV-K in brain 344 

Given LTRs are abundant and overrepresented within 0-15 vs 60+ DERs across all three brain 345 

regions, we then wanted to evaluate if any differentially expressed LTRs were shared between the 346 

caudate nucleus, DLPFC, and hippocampus. Out of the 1401 0-15 vs 60+ DERs identified, 36 DERs 347 

were shared between all three tissues (Figure 5A). Of these, 17 were LTRs and 10 were satellite 348 

repeats (Figure 5B). Further investigation into 17 shared LTRs yielded identification of human 349 

endogenous retrovirus-K-int (HERV-K-internal sequences), a human-specific LTR, as a significant 350 

0-15 vs 60y+ DER across caudate nucleus (FDR=0.011;), DLPFC (FDR=0.043), and hippocampus 351 

(FDR=0.00026) (Figure 5C).  352 

Previously, HERVs have been identified as being dysregulated in neurological disorders including 353 

multiple sclerosis (Brudek et al., 2009; Laufer et al., 2009; Schmitt et al., 2013). Age is a risk factor 354 

for multiple sclerosis, thus, we asked if total LTR, HERV, or HERV-K expression correlated with 355 

brain age in our samples. We observed that total LTR expression has the highest Spearman Rank 356 

Correlation (R=0.077, p=0.024; test) out of all repeat categories analyzed (Supplemental Figure 357 

6A). When we look at total HERV-K expression, a subcategory of LTR elements, we see HERV 358 

only mildly expression correlates with brain age (R=0.033, p=0.0024; test) and when plotted by 359 

brain region, is similar across caudate nucleus (R=0.068, p=0.00045), DLPFC (R=0.051, 360 

p=0.0059), and hippocampus (R=0.044, p=0.014) Supplemental Figure 6B, 6C). Importantly, 361 

when plotting total HERV-K expression, we observe a strong and significant positive correlation 362 

with brain age across all three brain regions. Total expression of HERV-K has the highest 363 

correlation with brain age in the DLPFC (Figure 5D, R=0.4, p=1.8e-12). Boxplots further confirm 364 

HERV-K expression increases with age in the neurotypical caudate nucleus, DLPFC, and 365 

hippocampus (Figure 5E).  366 
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Re-investigating the co-expression analysis, we observe HERV-K-int clusters into the DLPFC 367 

Brown module containing 1718 repeats and 645 genes (Supplemental Table XX). Of the 1718 368 

repeats, 61 (3.55%) are both human endogenous retrovirus and a highly connected feature (hub) 369 

of the DLPFC Brown network. Of the 61 repeats that serve as hubs, 13 (21.3%) are from HERV-K 370 

subfamily, including HERV-K-int. All HERV-K hubs are all classified as intramodular hubs, hubs that 371 

are highly connected within the DLPFC Brown module and drive architecture of network, as 372 

indicated by a high kWithin and positive kDiff values (Supplemental Table S8, Bogenpohl et al., 373 

2016). As previously mentioned, the DLPFC Brown module shows a significant positive correlation 374 

with CERAD score (r=0.32, p<4e-08) (Figure 2E) indicating a potential relationship with HERV-K 375 

expression and neuropathological protein aggregation. 376 

 377 

GO analysis of genes in the DLPFC Brown module are enriched for molecular functions of protein 378 

and RNA binding (Figure 2F). Together, this data suggests expression of HERV-K-int correlates 379 

with brain age and shares co-expression patterns with several pathways critical to cellular 380 

homeostasis that have been previously implicated in the aging brain (Ham & Lee, 2020). 381 

 382 

Discussion 383 

In this study, we re-processed and re-quantified paired-end, stranded RNA-sequencing data from 384 

885 neurotypical samples across the caudate nucleus, DLPFC, and hippocampus from 395 385 

human, postmortem BrainSeq consortium donors (Benjamin et al., 2022; Collado-Torres et al., 386 

2019) to build a repeat expression atlas of the aging human brain. Using co-expression networks, 387 

we placed repeat-derived RNAs within the brain's transcriptional network to discover biologically 388 

relevant relationships between repeats and genes.  389 

  390 
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The impact of genomic instability, epigenetic alterations, and altered cellular communication, all 391 

hallmarks of aging, are not exclusive to genes and likely impact global expression (López-Otín et 392 

al., 2013; Yamamoto et al., 2022). The interconnectedness between repeat and gene expression 393 

has largely been understudied in the context of aging until recently. Through WGCNA, we 394 

identified that repeats generally cluster together into repeat-dense modules, an expected result 395 

given that repeats are the target of shared regulatory mechanisms at the transcriptional and post-396 

transcriptional levels. Gene-dense modules appear to hold more information about brain age, an 397 

expected result given previous studies on age-related expression changes in the brain. 398 

Interestingly, repeat-dense modules correlate with CERAD and Braak scores, suggesting a 399 

relationship between repeat expression and neuropathological hallmarks of disease, independent 400 

of age (Yamamoto et al., 2022). For example, the repeats in Light Cyan module in caudate 401 

consists exclusively of LINE-1 elements, sequences harboring conserved potential G-quadruplex 402 

(G4) forming sequences in their 3' end which are associated with increased retrotransposition 403 

(Sahakyan et al., 2017). Notably, LINE-1s have been associated with G4 formation in Alzheimer's 404 

disease induced pluripotent stem cells derived neurons (Hanna et al., 2021), being an intragenic 405 

feature reducing gene expression and potentially affecting the transcriptional programs. 406 

  407 

We then went on to identify 21696 DERs (FDR<0.05) across the caudate nucleus, DLPFC, and 408 

hippocampus with the DLPFC containing the fewest DERs, mimicking differential expression 409 

results reported in Collado-Torres et al., 2019. We observed an overrepresentation of LTRs within 410 

our DER results and among our 0-15 vs. 60y+ DER results, we identified 17 LTRs that were 411 

shared across caudate nucleus, DLPFC, and hippocampus. Of these 17, we observed HERV-K 412 

increases with brain age and is upregulated in brains >60 years.  413 

 414 

While we do not observe a strong global relationship between repeat expression and age, we 415 

identified HERV-K as a repeat signature associated with the aging neurotypical brain. Not only is 416 
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HERV-K-int a shared DER across all three brain regions, but its total expression is moderately 417 

correlated with brain age and stronger than the correlation of total expression HERV-K element 418 

expression with brain age. A recent study supports the connection between endogenous 419 

retrovirus expression and cellular senescence indicating HERV-derived proteins, including 420 

HERV-K, can serve as a biomarker of tissue aging across lung, liver, and skin (36610399). Our 421 

study expands upon this observation to confirm HERV-K RNA is a biomarker of aging across the 422 

brain, broadening and strengthening HERV-K’s position in the diagnostic and therapeutic 423 

landscape of age-related neurodegeneration.  424 

 425 

LTRs, more specifically HERVs, have also been associated with neurological disease (Dembny 426 

et al., 2020; Macías-Redondo et al., 2021). HERV-derived RNA is capable of causing and 427 

propagating neurodegeneration through Toll-like receptors (Dembny et al., 2020) and protein 428 

aggregation (Liu et al., 2023). Beyond the production HERV RNA species, Turelli et al. observed 429 

the regulatory impact of HERV-K also stems harboring transposable element-embedded 430 

regulatory sequences (TEeRS) and subsequently altering KRAB-ZFP, a transcriptional repressor, 431 

binding to neuronal genes (Turelli et al. 2020). We observe HERV-K-int, along with other HERV-432 

K sequences, are intramodular hubs within our DLPFC and hippocampus co-expression networks 433 

suggesting this LTR maintain and/or regulate biologically important relationships within a brain 434 

region. Repeat-derived products, including repeat-derived RNAs, are not only capable of 435 

propagating neurodegeneration through a pro-inflammatory response - thus contributing to 436 

disease progression (Dembny et al., 2020); but also in some forms of cancer through the ubiquitin-437 

proteasome pathway (Jin et al., 2019) and on aging phenotype (Gorbunova et al., 2021). Thus, 438 

we also propose elevated HERV-K products in neurological disease may reflect a molecular 439 

phenotype of accelerated aging that further drives transcriptional and proteomic hallmarks of 440 

neurodegeneration.  441 

  442 
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Comprehensively, our work provides the largest global assessment of repeat expression across 443 

the aging neurotypical brain and refutes previous generalizations of repeat behavior. While 444 

epigenetic alterations may change transcriptional landscape with age, we find repeat expression 445 

shows high developmental and regional specificity making age only one important factor for 446 

characterizing repeat behavior in a healthy aging tissue. We hope this global assessment will 447 

serve as a resource to the greater scientific community.  448 

 449 

Thus, as repeat expression becomes a popular target for biomarkers, diagnostics, and 450 

therapeutics, our findings highlight the need to identify baseline expression dynamics of target 451 

repeats in healthy tissues. As such, we anticipate this data will be used as a neurotypical baseline 452 

for analyzing neurodevelopmental and neurodegenerative disease-related changes in repeat 453 

expression. 454 

 455 

 456 

Methods  457 

 458 

Sample Selection 459 

The LIBD BrainSeq Consortium consists of several brain regions and includes a wide range of 460 

demographics and RNA-sequencing library preparation. We selected samples from the caudate 461 

nucleus, DLPFC, and hippocampus based on three inclusion criteria: 1) Stranded RiboZero RNA-462 

sequencing library preparation, 2) primary diagnosis of neurotypical control, and 3) self-reported 463 

ancestry of either African American or European American. This resulted in a total of 395 unique 464 

individuals for a total of 885 FASTQ files across the three brain regions. 465 

  466 

RNA-sequencing Data Processing 467 
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We downloaded FASTQ files from the BrainSeq Consortium (Benjamin et al., 2022; Jaffe et al., 468 

2018; Schubert et al., 2015). The reads were aligned to the hg38/GRCh38 human genome 469 

(GENCODE release 26, GRCh38.p10) using HISAT2 (v2.1.0) (Kim et al., 2019). Following 470 

genome alignment, we sorted and indexed the BAM files using SAMtools (v1.9) (Danecek et al., 471 

2021) with HTSlib (v1.9) (Bonfield et al., 2021). We examined alignment and read quality with 472 

RSeQC (v3.0.1) (L. Wang et al., 2012). We generated gene and repeat counts from both multi 473 

mapping (expression and downstream analysis) and unique mapping (co-expression analysis) 474 

using TEtranscripts (v2.2.1) (Jin et al., 2015) and featureCounts (v2.0.1) (Liao et al., 2014). 475 

  476 

Generating Counts from Multi-Mapping Reads and Repeat Annotation 477 

For TEtranscripts, we generated gene and repeat counts in one step using TEcount for paired 478 

end, reversed stranded reads with default parameters and the GTF file of genes and repeats 479 

provided by the Hammel Lab (http://hammelllab.labsites.cshl.edu/software/). Additionally, we 480 

used featureCounts to generate gene and repeat counts in one step with a customized GTF file 481 

of genes and repeats. For the GTF file generation, we combined the GENCODE release 26 with 482 

repeat annotation obtained from downloading the repeat masker track for hg38 from the UCSC 483 

Table Browser followed by annotating strand information with a python script. We generated 484 

counts with featureCounts using the following parameters: 1) paired end, 2) reversed stranded 485 

reads, 3) primary alignments only, 4) excluding chimeric reads, 5) allowing for multi-mapping 486 

reads and, 6) one base as the minimum overlapping fraction in a read. 487 

  488 

Quality Control  489 

For quality control, we first aggregate results for RSeQC and HISAT2 with MultiQC (Ewels et al., 490 

2016). To determine outliers, we first combined the read, alignment, and RNA quality (RIN: RNA 491 

Integrity Number and mitochondria mapping rate) for each tissue and scaled the data before 492 

applied dimensional reduction with PCA (principal component analysis) with the scikit-learn 493 
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package (Pedregosa et al., 2011). Following dimensional reduction, we calculated the distance 494 

from the centroid for all samples (Equations 1 & 2) and excluded samples that were outside of 495 

the 99 percentile (caudate and hippocampus) and 95 percentile (DLPFC). This resulted in a total 496 

of 861 samples for caudate (n=268), DLPFC (n=287), and hippocampus (n=306).  497 

 498 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  =  
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=0     (Equation 1) 499 

 500 

distance 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  =  ∑ (𝑥𝑗 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)
2𝑘

𝑗=0    (Equation 2) 501 

  502 

Low expression filtering and library normalization 503 

To filter out low expression counts, we first constructed an edgeR object (McCarthy et al., 2012; 504 

Robinson et al., 2009) of brain regions with sample information as well as raw counts. Following 505 

this, we applied filterByExpr (Chen et al., 2016) from edgeR for genes and repeats together with 506 

an interacting design matrix (Equation 3). This function keeps features (genes and repeats) that 507 

have count-per-million (CPM) above a minimum count (10 CPM) in 70% of the smallest group 508 

sample size. The smallest group sample size is determined by the design matrix. Furthermore, 509 

each feature must have a minimum number of counts across all samples (15 CPM). After filtering, 510 

we had a total of 28443, 28058, and 28740 genes and repeats for the caudate nucleus, DLPFC, 511 

and hippocampus, respectively for the TEtranscripts method. For the featureCounts methods, this 512 

resulted in 24861, 24545, and 25022 genes and repeats for the caudate nucleus, DLPFC, and 513 

hippocampus, respectively. After filtering, we normalized the library size of genes and repeats 514 

together using trimmed mean of M-values (TMM). 515 

 516 

𝐸(𝑌)  =  𝛽0 + 𝛽1𝐴𝑔𝑒𝐺𝑟𝑜𝑢𝑝 (Equation 3) 517 

  518 
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Repeat Expression Analyses 519 

  520 

Expression residualization 521 

For residualized expression, we regressed out covariates using limma-voom normalized 522 

expression and null models created without the variable of interest (Equation 5) as previously 523 

described in Benjamin et al. 2022. Following this, a z-score transformation was performed.  524 

 525 

𝐸(𝑌) = 𝛽0  +  𝛽1𝑅𝑎𝑐𝑒  +  𝛽2𝑆𝑒𝑥 +  𝛽3𝑀𝑖𝑡𝑜𝑅𝑎𝑡𝑒  +  𝛽4𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐺𝑒𝑛𝑒𝑠  +526 

𝛽5𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑅𝑎𝑡𝑒  + 𝛽6𝑅𝐼𝑁  + ∑ 𝜂𝑖
3
𝑖=1 𝑠𝑛𝑝𝑃𝐶𝑖 +∑ 𝛾𝑖

𝑘
𝑗=1 𝑆𝑉𝑗 (Equation 4) 527 

  528 

Differential expression analyses 529 

For differential expression analyses, we applied voom normalization law (Law et al., 2014) on the 530 

normalized filtered counts for genes and repeats together (Low expression filtering and library 531 

normalization), adjusted with the model covariates listed below (Leek et al., 2012) (Equation 4). 532 

Differentially expressed features were identified using the eBayes (Smyth; Hall, 2009) function 533 

from limma (Ritchie et al., 2015) for the age group fitted model. Features with a FDR < 0.05 were 534 

considered as differentially expressed.  535 

 536 

 𝐸(𝑌) = 𝛽0  +  𝛽1𝐴𝑔𝑒𝐺𝑟𝑜𝑢𝑝  +  𝛽2𝑅𝑎𝑐𝑒  +  𝛽3𝑆𝑒𝑥 +  𝛽4𝑀𝑖𝑡𝑜𝑅𝑎𝑡𝑒  +  𝛽5𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒  + 537 

 𝛽6𝑈𝑛𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑅𝑎𝑡𝑒 + 𝛽7𝑅𝐼𝑁  + ∑ 𝜂𝑖
3
𝑖=1 𝑠𝑛𝑝𝑃𝐶𝑖 + ∑ 𝛾𝑖

𝑘
𝑗=1 𝑆𝑉𝑗 (Equation 5) 538 

 539 

Covariates included sex, self-reported race, ancestry (SNP PCs 1-3), and RNA quality (RIN, 540 

mitochondria mapping rate, alignment rate, genome unmapping rate, and hidden variance using 541 

surrogate variable analysis (SVA)). 542 

  543 

Repeat Superfamily Hypergeometric Analysis 544 
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To evaluate the representation of repeat superfamilies in each differential expression result, we 545 

applied the supertest function from SuperExactTest (Wang et al., 2015). For superfamily analysis, 546 

we utilized the total number of repeats (n = 30938) included in the custom GTF file as background 547 

population. We then used the intersection between the set of repeats of a repeat superfamily (i.e. 548 

all 342 LINEs repeats present in our GTF file) with the total number of differentially expressed 549 

repeats within the same repeat family, obtained in each age comparison analysis. We performed 550 

the Hypergeometric test in 16 repeat super families. The P-values were calculated by the same 551 

function considering only the upper tail of the distribution of each intersection.  552 

  553 

WGCNA analyses 554 

  555 

Generating Counts from Uniquely Mapped Reads  556 

Considering the uneven distribution of repeats across the genome and high sequence similarity, 557 

we also generated counts from uniquely mapped reads to reduce artifacts introduced by 558 

evolutionarily young repeats (Parsana et al., 2019). We generated counts with featureCounts 559 

using the following parameters: 1) paired end, 2) reversed stranded reads, 3) primary alignments 560 

only, 4) excluding chimeric reads, 5) excluding multi-mapping reads and, 6) one base as the 561 

minimum overlapping fraction in a read.  562 

  563 

Co-expression Analysis 564 

We used the Weighted Correlation Network Analysis (WGCNA) to create co-expression networks 565 

for each brain region and identify co-expression modules (Langfelder & Horvath, 2008). As an 566 

input we used the residualized expression previously described (Equation 5), with genes and 567 

repeats together, from featureCounts. We analyzed each brain region in separate, using all age 568 

groups from each tissue. We select a β = 14, (a value with all networks achieved a scale-free 569 

independence index of R2 ≥ 0.8), using the following parameters: signed network, mergecutheight 570 
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= 0.25, deepsplit = 2, and minimum module size = 30 (Feltrin et al., 2019). Each individual module 571 

eigengene value (kME) were correlated with the following co-variables: self-reported race, sex, 572 

age of death, RIN, pH, PMI, MitoRate, AlignmentRate, CERAD/BRAAK scores and each one of 573 

the 6 age groups. Modules with a Pearson correlation coefficient p-value < 0.05 were considered 574 

as significant associations. For the identification of hub genes of each module, we selected all the 575 

genes/repeats selected by the WGCNA function intramodularConnectivity().  576 

  577 

CERAD/BRAAK Scores 578 

A subset of 108 samples representing 57 unique individuals were analyzed by a Lieber Institute 579 

for Brain Development neuropathologist. All 108 samples were given both a CERAD scores (1-4) 580 

and BRAAK score (1-4). 581 

 582 

Gene term enrichment analysis 583 

For gene term enrichment analysis, we utilized GOATOOLS, a Python package using 584 

hypergeometric tests with the Gene Ontology (GO) database (Klopfenstein et al., 2018). The GO 585 

database included molecular functions (MF), cellular components (CC), and biological processes 586 

(BP), however, MF and BP were primarily used for analyses. 587 

  588 

Code and data availability 589 

Code will be available at https://github.com/orgs/paquolalab.  590 

 591 

Supplemental Figures 592 

Figure S1. Selection of repeat quantification method.  A) Breakdown of post-mortem 593 

samples by sex. B) Overlap of quantifiable repeats on positive strand by featureCounts and 594 

TEcounts. C) Overlap of all quantifiable repeats features by featureCounts and TEcounts. D) 595 
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Breakdown of categories of quantifiable repeats in TEcounts GTF file. E) Breakdown of 596 

categories of quantifiable repeats in featureCounts  GTF file. F) Correlation between 597 

featureCounts and TEcounts, raw counts of L1HS. G) Correlation between featureCounts and 598 

TEcounts, raw counts of SVA_F. 599 

 600 

Figure S2. Co-expression defines correlation of repeat-dense WGCNA modules with 601 

clinical traits.  A) WGCNA module-trait correlation heatmap across caudate nucleus samples. 602 

B) WGCNA module-trait correlation heatmap across DLPFC samples. C) WGCNA module-trait 603 

correlation heatmap across hippocampus samples. 604 

 605 

Figure S3. Gene ontology enrichment of gene- and repeat-dense WGCNA modules. A) Gene 606 

ontology enrichment of gene-dense DLPFC blue module B) Gene ontology enrichment of gene-607 

dense hippocampus Yellow module C) Gene ontology enrichment of repeat-dense caudate 608 

nucleus Yellow module D) Gene ontology enrichment of repeat-dense hippocampus Brown 609 

module.  610 

 611 

Figure S4. Distribution of differentially expressed repeats (DERs) across lifespan of 612 

neurotypical brain. A) Total differentially expressed repeats (DERs) across each age 613 

comparison in caudate nucleus, DLPFC, hippocampus. B) Upset Plot with the distribution of 614 

unique and shared 0-15 vs. 60y+ DERs by brain region.  615 

 616 

Figure S5. Directionality of DERs across lifespan of neurotypical brain. A) Up- and 617 

downregulated 0-15 vs. 60y+ DERs across each brain region. B) Up- and downregulated DERs 618 

across age comparisons by brain region. 619 

 620 
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Figure S6. LTR and HERV-K expression correlates with age of death. A) Correlation of total 621 

LTR expression with age of death across all brain regions. B)  Correlation of total HERV 622 

expression with age of death across all brain regions. C) Correlation of total HERV expression 623 

with age of death across each individual brain region.  624 

 625 

Supplemental Tables 626 

Table S1. Sample clinical data. Information regarding all samples included in this project. 627 

 628 

Table S2. Scale-free topology fit index for each tissue-specific network (WGCNA). Values 629 

obtained from pickSoftThreshold() function, to calculate the appropriate Beta of each region’s co-630 

expression network (Caudate, DLPFC and Hippocampus). 631 

 632 

Table S3. WGCNA modules composition and features annotation for caudate nucleus, 633 

DLPFC, and hippocampus' co-expression networks. For the annotated genes, information 634 

regarding its chromosomal location is provided. For each repeats, information from its family and 635 

main class (obtained by RepeatMasker annotation) are also included. Features clustered in the 636 

'grey' (null) module were excluded for further downstream analysis. Features without the module 637 

identification were absent for the WGCNA analysis of its respective co-expression network 638 

analysis. 639 

 640 

Table S4. Gene Ontology enrichment results for each WGCNA co-expression module for 641 

caudate nucleus, DLPFC and hippocampus co-expression networks. Results were obtained 642 

with the GOATOOLS package. Only GO pathways with a FDR < 0.05 were considered as either 643 

enriched ('e') or depleted ('p'). GO: Gene Ontology; NS: Gene Ontology Category; BP: Biological 644 

Process; MF: Molecular Function; CC: Cellular Component. 645 
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 646 

Table S5. Power Analysis. Power was derived from the sample sizes of each differential 647 

expression age group: Prenatal, A (0-15), B (16-29), C (30-39), D (40-49), E (50-59), F (60+), 648 

using TTestIndPower and FTestPower functions from Python's statsmodels.stats.power. 649 

 650 

Table S6. Differential expression analysis applying limma-voom to features quantified by 651 

featureCounts algorithm. Only features with a Benjamini-Hochberg false discovery rate (FDR) 652 

< 0.05 were considered as differentially expressed and included. AveExpr: average expression 653 

across all samples; logFC: estimate of the log2-fold-change corresponding to the effect; t: 654 

moderated t-statistic; B: log-odds that the gene is differentially expressed. 655 

 656 

Table S7. Differential expression analysis applying limma-voom and features quantified by 657 

TEcount algorithm. Only features with a Benjamini-Hochberg false discovery rate < 0.05 were 658 

considered as differentially expressed and included. AveExpr: average expression across all 659 

samples; logFC: estimate of the log2-fold-change corresponding to the effect; t: moderated t-660 

statistic; B: log-odds that the gene is differentially expressed. 661 

 662 

Table S8. Top intramodular hubs from each WGCNA module. List of features (genes and/or 663 

repeats) that serve as intramodular hubs determined by the intramodularConnectivity.fromExpr() 664 

function. kTotal = total connectivity; kWhitin = intramodular connectivity; kOut = extra-modular 665 

connectivity; kDiff = the difference between the intra-modular and extra-modular connectivity. 666 

 667 

Data Availability 668 

Raw data (.fastq files) are available under restricted access to protect research subjects. For total 669 

RNA data from prefrontal cortex and hippocampus, researchers can access the files via the 670 

Globus collections (jhpce#bsp2-dlpfc and jhpce#bsp2-hippo) at https://research.libd.org/globus/. 671 
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For caudate nucleus data, researchers can obtain access to FASTQ files via dbGaP accession 672 

phs003495.v1.p1 at https://www.ncbi.nlm.nih.gov/gap/ .  673 
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C. HERVs, total expression, by brain region
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