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Abstract. When disease transmission can precede symptom onset, containing outbreaks re-
quires distinct strategies, like active surveillance. Yet it is rarely clear in advance when such
interventions are needed, especially for emerging pathogens. Predicting pre-symptomatic
transmission would be easier with knowledge of the within-host dynamics that enable pre-
symptomatic transmission. To investigate those dynamics, we survey controlled human
infection (CHI) trials with viral agents, which contain data on incubation times, infection
duration, and transmission potential following inoculation with a known dose. We find that
all studies report information on the duration of viral shedding, but few report the timing
of symptoms. Only one study provided data on the timing of shedding and symptoms for
individual participants, following norovirus inoculation. We apply a statistical model to in-
dividual time series to show significantly greater potential for pre-symptomatic transmission
with faster viral replication, but no evidence for a tradeoff between transmission rate and du-
ration during the pre-symptomatic phase. We then compare within-host models of pathogen
replication, immune clearance, and symptom onset to identify plausible assumptions about
the causes of pre-symptomatic transmission. We recover the pattern that peak shedding
can precede symptom onset if we assume that symptoms are triggered by immune responses
rather than pathogen abundance. Only by relaxing the standard assumption of exponen-
tial growth can we recover the pattern that faster viral replication enables pre-symptomatic
transmission. Thus, data on symptom onset in CHI trials, paired with models, can illumi-
nate the within-host dynamics underpinning pre-symptomatic transmission, guiding efforts
to improve control strategies.

Significance statement. The COVID-19 pandemic was exacerbated by the potential for
transmission before symptoms. Yet the causes of pre-symptomatic transmission remain un-
clear, hindering efforts to predict disease spread and tailor control efforts for novel pathogens.
For known pathogens, the potential for pre-symptomatic transmission varies across individ-
uals, but patterns may emerge from controlled human infection (CHI) trials. We surveyed
CHI trials, finding that only one reported data on individual participants. We fit a simple
model to those data, finding that faster viral replication correlates with pre-symptomatic
transmission. We used more detailed models to identify plausible assumptions about the
causes of symptom onset, e.g., that immune responses trigger symptoms. Thus, applying
models to CHI trial data gives insight into the drivers of pre-symptomatic transmission.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1 Introduction

When diseases can be transmitted before symptom onset (pre-symptomatic transmission),
controlling outbreaks is more difficult [I]. The COVID-19 pandemic exemplifies this chal-
lenge: a meta-analysis revealed that up to 69 percent of transmission was from pre-symptomatic
hosts [2]. In contrast, SARS-CoV demonstrated far less pre-symptomatic transmission and
was contained |1]. The variation in pre-symptomatic transmission, even among related
pathogens, makes it difficult to anticipate how best to control emerging pathogens. Hence
recent theory has focused on when and why pathogens evolve pre-symptomatic transmis-
sion [3-5]. Yet anticipating pre-symptomatic transmission remains difficult due to lack of
clarity about the within-host dynamics that govern the relative timing of host infectiousness
and symptoms.

Pathogens’ potential to transmit is classically assumed to scale with their rate of repli-
cation within the host [6]. That assumption finds support in positive correlations between
transmission potential and pathogen load observed in a range of systems [7], including HIV [§]
and dengue [9]. Since symptoms are ultimately a consequences of pathogen replication, symp-
tom onset might also be expected to occur earlier with faster replication rates. However, the
relationship between pathogen load and symptoms is less clear, except in extreme cases such
as HIV progressing to AIDS [§]. Symptoms could be directly correlated to pathogen load,
for example, through toxins secreted by pathogens [10-12]. Faster within-host replication
may be expected to hasten disease progression, including the onset of symptoms, as it does
in HIV [8,13]. Alternatively, symptoms could be triggered by the immune response, as in the
case of fever [14-16]. Faster pathogen replication could also hasten upregulation of immune
defenses, potentially leading to more rapid clearance of faster replicating viral strains as
shown in dengue [17]. Without a clear understanding of the links between symptom onset
and transmission, it is impossible to anticipate constraints on pathogen evolution.

Distinct from the influence of replication rates, the initial dose could also influence symp-
tom onset. A higher inoculum dose could increase the frequency of pre-symptomatic trans-
mission by decreasing the time required for a pathogen to replicate to densities sufficient for
the host to begin shedding appreciable amounts of infectious virions. Alternately, a higher
inoculum dose could reduce pre-symptomatic transmission by triggering an immune response
more quickly, leading to either the rapid onset of immune- or pathogen-mediated symptoms.
Accordingly, one potential secondary purpose of masking is to limit the initial viral load to
which an individual is exposed, which appears to lessen the severity of symptoms in respi-
ratory diseases like SARS-CoV-2 [18-20], but the consequences for the timing of symptom
onset are unclear. For some bacterial pathogens, such as Chlamydophila caviae, a higher in-
oculum dose is linked to greater upregulation of immune responses and pathology [21], while
a lower inoculum dose may prevent activation of the host immune response across bacterial
pathogens [22].

Data to investigate the role of pathogen traits and dose in promoting pre-symptomatic
transmission are obtainable from controlled human infection (CHI) trials. In CHI trials,
researchers are able to study acute infection dynamics by inoculating volunteers with a
known dose of a pathogenic organism deemed sufficiently low-risk [23]. These studies are
useful for acquiring precise data that cannot be obtained from observational studies of natural
infections, including inoculum dose, and times of infection and symptom onset [24-27]. These
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data can illuminate the links between transmission and symptom onset.

To investigate the causes of pre-symptomatic transmission, we surveyed CHI trials of
viral pathogens for data on the timing of symptom onset and transmission (that is, viral
shedding). We subsequently focused on the only study showing both transmission timing and
symptom onset for individual infections—a CHI trial with norovirus [28]—to identify how
pre-symptomatic transmission varies with inoculum dose and viral replication rates. We fit a
statistical model [29] to viral shedding data 28] to estimate replication rates and the time of
peak shedding for individual infections. We classified infections as showing pre-symptomatic
transmission when the estimated peak in pathogen shedding occurred prior to symptom
onset and found no clear relationship with inoculum dose. We also found no evidence for a
tradeoff between the rate and duration of pre-symptomatic transmission that is commonly
assumed in theory [3-5]. Faster replication rates hastened peak shedding without changing
symptom timing, enhancing pre-symptomatic transmission. By modifying a simple model of
pathogen replication and clearance by immune effectors [30], we identified assumptions about
viral replication and symptom onset consistent with empirical patterns. We found that peak
shedding could only precede symptom onset when we assumed symptoms were triggered
by increasing abundance of immune effectors, rather than pathogen load. We recovered a
positive relationship between viral replication rate and pre-symptomatic transmission when
we relaxed the assumption of exponential growth and incorporated a pathogen carrying
capacity. Thus, individual data on pathogen shedding and symptom onset enable selection
of plausible models for pre-symptomatic transmission.

2 Results

We first completed a meta-analysis of CHI trials to survey what data were reported regarding
the timing of symptoms and transmission. We then used a statistical model [29] to estimate
the timing of peak viral shedding as well as pathogen replication rates to determine trends
in pre-symptomatic transmission among patients in a norovirus study [28]—the only study
we found to include both viral load and symptom data at the individual level. Lastly, we
modified a dynamical model [30] to identify assumptions that could give rise to empirical
patterns.

2.1 Most CHI trials do not report relative timing of symptom
onset and transmission

We found 31 CHI studies tracking viral shedding and/or symptom onset and duration
(Fig. . CHI studies are summarized in Fig. , including (in order from left to right,
top to bottom) SARS-CoV-2 [31], respiratory syncytial virus (RSV) [26,32}33], rhinovirus
[27,34-36], norovirus [25}28,37,38], influenza B [39,40], and influenza A [26,/40-56].

Most of these studies (16 of 31) presented these data as graphs, rather than reporting
values in the text. Only 10 studies reported the requisite data needed to assess trends
in pre-symptomatic transmission (shedding onset, shedding duration, and symptom onset),
and only one study [28] reported these data for individual hosts. While a rhinovirus study
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Figure 1: Most CHI studies do not report individual-level data on pathogen shedding and the
timing of symptoms. Dotted lines indicate reported symptom onset and duration, while solid lines
indicate shedding times. Question marks indicate unreported data on the onset and/or duration of
shedding or symptoms. When the timing of onset was missing, we place the question mark at day
0. An asterisk indicates the only study that reports individual-level data for both shedding and
symptom onset |28].

reported individual-level shedding data, symptoms were reported as averages across patients
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over time [34].

2.2 Faster viral replication associated with pre-symptomatic trans-
mission

We used the viral shedding data reported by [28] to reconstruct the within-host trajectory,
by fitting the rates of exponential growth and decline, and the timing and height of peak
viral load. Peak viral shedding is likely to follow peak viral load in the gut by a number
of hours, and gut transit times may vary substantially across individuals (reviewed in [57]).
For simplicity, we assumed no variation in gut transit times within an individual over the
time scale of the CHI trial, i.e., that the dynamics of viral shedding reflect the dynamics of
viral abundance within the host. We later discuss how a lag between viral load and shedding
could impact our results and conclusions. To estimate the trajectory of viral load, we fit a
statistical model [29] to individual viral shedding data. The log,, viral load, V'(t), is defined

as
2P

efpg(tfpg) _|_ 6P4(t7P3) ’ (1)

V(t) =

where P, refers to the log,, peak viral load; P, and P, refer to the exponential growth
and decay rates, respectively, of viral load; and Pj refers to the time of peak viral load.
Fitting a dynamical model would have required fitting many more parameters and making
assumptions about initial conditions. The statistical model described in Eq. [1| required no
assumptions about initial conditions and could be fit with the limited data available for each
participant.

We defined pre-symptomatic transmission as occurring when peak viral shedding pre-
ceded symptom onset, on the logic that individuals shedding at their maximal rates prior
to symptoms were likely to be infectious. When fit to data from [2§], estimated individ-
ual trajectories show variation in the relative timing of peak shedding and symptom onset
(Fig. 2l data and fitted trajectories for other patients in Fig. [SI)). The timing of peak shed-
ding was not clear for two participants who were excluded from this analysis (Fig. . For
other patients, viral shedding increased initially, then decreased, with the estimated time of
peak shedding (Ps in Eq. [1)) either preceding or following symptom onset. For example, of
the three individual infections shown in Fig. [2| only the first (A) exhibits pre-symptomatic
transmission.

Across all infections with a clear peak in shedding, four out of fourteen participants ex-
hibited pre-symptomatic transmission: three from the highest inoculum dose (4800 RT-PCR
units) and one from the lowest inoculum dose (4.8 RT-PCR units) (Fig. [JA). We found a
nonsignificant trend towards longer time delays between peak shedding and symptom onset
at higher inoculation doses (Fig. [3]A) and a significant negative correlation between esti-
mated viral replication rate (P, parameter in Equation (1)) and the delay between symptom
onset and peak viral shedding (Fig. , p = 0.0182, 8 = —0.7436, R* = 0.3835, F = 7.465).
Thus, at high viral replication rates, pre-symptomatic transmission is more likely, since-
higher replication rates lead to significantly earlier peak shedding (p = 0.0029) while having
no marked impact on symptom onset (Fig. . No other significant relationships between
parameter values were found, though there was a nonsignificant correlation between rates of
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exponential expansion (replication rates) and decay. We also calculated the average shed-
ding prior to symptom onset for each participant demonstrating a clear peak to serve as a
proxy for transmission rate and used linear regression to test for a correlation with the time
until symptom onset. Theory often assumes a tradeoff between the duration and rate of
transmission prior to symptoms (e.g., [3]), but we found no correlation between transmission
rate prior to symptoms and the time until symptom onset (Fig. )
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Our definition of pre-symptomatic transmission is conservative and likely to underes-
timate pre-symptomatic transmission, since an individual could be infectious before peak
viral shedding. The inoculum doses used (4.8, 48, and 4800 genomic copies/mL liquid feces)
were vastly lower than the number of genome copies/g feces detected later on (as appar-
ent in Fig. . If we instead defined pre-symptomatic transmission less conservatively as
shedding preceding symptom onset, the proportion of participants experiencing experiencing
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pre-symptomatic transmission increases slightly (5 out of 16, Fig. . Because this measure
does not reference participants’ viral shedding trajectories, we included the two partici-
pants whose infections had unclear timing of peak shedding in this analysis. Using that less
conservative definition, no participants from the low dose group exhibit pre-symptomatic
transmission and there is a slight trend towards more pre-symptomatic transmission from
the medium and high dose groups (Fig. ) However, even with this less conservative
definition, we still find that pre-symptomatic transmission is significantly more likely with
increasing viral replication rates (Fig. [S4B, p = 0.0064).

2.3 Immune threshold for symptoms and pathogen carrying ca-
pacity can reproduce empirical patterns

The results of our analyses of the data from [28] motivate the second part of this study, to
identify a within-host model consistent with the two main patterns identified from the data
reported by [2§]: (1) that peak shedding can precede symptom onset (pre-symptomatic trans-
mission); and (2) that faster viral replication rates extend the duration of pre-symptomatic
transmission. We extend a simple model of exponential viral replication and immune clear-
ance [30] to incorporate symptom onset and determine the plausibility of symptoms arising
due to either a pathogen load threshold (sp), or an immune effector threshold (sx). As-
suming a pathogen load threshold, we find that peak viral load can never precede symptom
onset. If peak viral load falls below the symptom threshold sp, then the simulated infection
will never cause symptoms (Fig. [4JA, left). Alternately, if the symptom threshold sp is less
than peak viral load, then viral load must cross the threshold before it peaks (Fig. , right).
Because peak viral load can never precede symptom onset, pre-symptomatic transmission as
seen in the data is not possible, only post-symptomatic and asymptomatic transmission.

When the symptom threshold is determined by immune effector abundance, both pre-
symptomatic and post-symptomatic transmission are possible (i.e., peak pathogen abun-
dance can precede or follow symptom onset, Fig. ) Our analysis shows that as the repli-
cation rate r increases, the simulated outcome will switch from pre- to post-symptomatic, a
pattern we confirm with simulations (Fig. [STA, see Methods for details). Thus, this model
fails to recover the empirical pattern that faster replication extends the time window for
pre-symptomatic transmission (Fig. [3B).

Finally, we investigate the impact of incorporating a pathogen carrying capacity on pre-
symptomatic transmission. Implementing a carrying capacity would not broaden the range
of dynamics possible from a pathogen-based symptom threshold, since there would still be
no way for pathogen load to peak and then pass the symptom threshold. Retaining the
assumption of symptom onset based on an immune effector abundance threshold, we impose
a pathogen carrying capacity, implying that pathogen replication is resource-limited. We
again find that peak pathogen abundance can precede or follow symptom onset (both pre-
and post-symptomatic transmission, Fig. ) By relaxing the assumption of exponential
pathogen growth, we recover the empirical pattern that as replication rate increases, there is
a longer period of time between peak pathogen load and symptom onset (pre-symptomatic

transmission, Fig. [STB, ¢f. Fig. BB).
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Figure 4: Models reveal plausible (and implausible) drivers of pre-symptomatic transmission.
Bolded red lines indicate the quantity that triggers symptoms when its abundance exceeds the
threshold. Peak pathogen load occurs when the abundance of immune effectors X = r/k (indicated
by an open point, with a closed point to show the corresponding pathogen abundance, see main
text for details). Caption continues.
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Figure 4: Caption continued. (A) With a pathogen abundance symptom threshold (sp = 10°),
the model can only produce asymptomatic or post-symptomatic transmission (when replication is
slow or fast, respectively). (B) With an immune effector-abundance symptom threshold (sx = 10),
the model can produce post- and pre-symptomatic transmission, with fast and slow replication
(respectively). (C) Retaining an immune effector abundance symptom threshold (sx = 2) and
relaxing the assumption of exponential pathogen growth, pre-symptomatic transmission is more
likely with faster replication. In all panels, k = 3.5, « = 1, d = 0.5, and v = 10~%. Replication
rates were r = 30 (left panels) or » = 200 (right panels). In panel C, the carrying capacity was
defined as § = 5 x 10°.

3 Discussion

Pre-symptomatic transmission plays an important role in propagating outbreaks of diseases,
including SARS-CoV-2 [58-60]. Better understanding of how within-host dynamics deter-
mine the relative timing of transmission and symptoms would improve prevention strategies
by enabling predictions about the host and pathogen characteristics likely to promote pre-
symptomatic transmission. We show that achieving that level of understanding could be
greatly facilitated by applying within-host models to the invaluable data generated by CHI
trials. We find that individual time series are rarely reported from viral CHI trials, but
when reported (as in [28]), those individual-level data on the timing of transmission and
symptoms can be leveraged to pare down the plausible causes and potential consequences of
pre-symptomatic transmission. By analyzing previously reported data [28], we uncovered a
positive relationship between pathogen replication rate and pre-symptomatic transmission.
We found no evidence for dose-dependence or for a tradeoff between transmission rate and
duration during pre-symptomatic infection. Subsequent analysis revealed that the model
most consistent with the data was one in which symptom onset is triggered by immune
effector abundance exceeding a threshold and in which pathogen populations are regulated
by both resource limitation and immune clearance. Our study provides proof-of-concept for
how within-host models can be used to extend the inferences that can be drawn from CHI
trials.

We found that pathogen replication rate is positively associated with pre-symptomatic
transmission, whether our measure was conservative (peak shedding prior to symptom onset)
or not (shedding onset prior to symptom onset). Such a pattern may also play out across
pathogen species, with faster-replicating pathogens exhibiting earlier peak viral loads and
pre-symptomatic transmission. SARS-CoV-2 and HIN1pdmO09, responsible for the 2009 in-
fluenza pandemic, display early peak viral loads and appreciable amounts of pre-symptomatic
transmission, while SARS-CoV and MERS-CoV exhibit later peak viral loads and little pre-
symptomatic transmission [61]. Individual-level data from CHI trials could reveal whether
this pattern holds across diverse pathogens and whether there is any phylogenetic signal of
pre-symptomatic transmission. Although not a given, if pre-symptomatic transmission is a
trait likely to be held in common across closely relatives, it would enhance capacity to predict
spread of emerging pathogens. Distinct from the possibility of phylogenetic patterns, pre-
dictive ability would also be improved by identifying tradeoffs that constrain the evolution

11


https://doi.org/10.1101/2024.05.16.24307410
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.05.16.24307410; this version posted May 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

of pre-symptomatic transmission.

Our analysis suggests a notable absence of evidence for tradeoffs. Faster replication
promotes pre-symptomatic transmission by hastening peak pathogen shedding, but has no
impact on the timing of symptom onset (Fig. [S)). One difficulty is that symptom onset was
recorded in whole days, while fitted estimates of peak shedding achieve higher resolution.
Yet even if we do not rely on fitted estimates and instead consider the days elapsing between
onset of symptoms and shedding, we still find that pre-symptomatic shedding is more likely
with faster replicating virus (Fig. ) Moreover, there is no relationship between trans-
mission rate (i.e., average shedding) prior to symptoms and the time until symptom onset,
which belies the expected tradeoff between transmission and duration for the initial latent
(pre-symptomatic) phase of infection, commonly assumed in theory [3-5,/62]. While such a
transmission-duration tradeoff is highly relevant for some viruses (e.g., HIV, [8}/13]), other
constraints may be needed to explain the lack of evolution towards ever faster replication in
less deadly viral infections [63]. Our within-host modeling suggests that resource limitation
may be an important constraint, and one that has received more attention in recent mod-
els of within-host viral dynamics (e.g., |17]). Theory suggests that resource limitation can
generate a tradeoff between transmission early versus late in infection (e.g., in malaria para-
sites, [64,65]). If resource limitation imposes a tradeoff between pre- and post-symptomatic
transmission, then latency could evolve over the course of an epidemic, with traits that
enhance infectiousness later in infection favored as transmission becomes more difficult [66].

One area that warrants further attention is the role of replication rates in modulating the
time required for virus to exit the host. In the case of respiratory viruses, the delay between
viral replication and transmission would likely be short, given the brief time required for
a viral particle to travel from the respiratory tract to the nose or mouth to then exit the
host via activities such as breathing, coughing, and sneezing. The delay is likely greater
for pathogens colonizing the lower respiratory tract, where the site of aerosol formation is
farther from the nose or mouth [67]. In the case of enteric pathogens, the lag between
replication and fecal shedding is determined by the gut transit time. For simplicity, we
assumed no such time lag, but incorporating gut transit times would not alter our finding
that pathogen-based symptom thresholds are inconsistent with the data. Whatever the
gut transit time, peak pathogen pathogen load should always precede peak shedding. If
symptoms are assumed to occur when pathogen load crosses a threshold, then shedding must
necessarily follow symptoms, and hence that assumption cannot recapitulate the empirical
pattern that peak shedding can precede symptom onset (Fig. . This result adds to findings
in other systems that a within-host abundance threshold is insufficient to explain symptom
onset (e.g., the ‘pyrogenic threshold’ of malaria parasite numbers required to trigger malaria
fevers, [68]). The implications of other assumptions about symptom onset will depend on how
viral replication rates influence gut transit times. If a higher replication rate results in shorter
gut transit time, that could hasten both shedding and the onset of symptoms like diarrhea,
making the impact on pre-symptomatic transmission difficult to predict. Gut transit times
are known to vary person-to-person by a factor of days, as well as within individuals day-
to-day [57]. For enteric pathogens, understanding how gut transit times change following
infection, including variability across individual hosts, would enhance efforts to reconstruct
within-host dynamics from CHI data.

Host immunity is also likely to influence pre-symptomatic transmission. Our simple model
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allows predictions for how multiple immune parameters—immune effector recruitment and
loss rates, and pathogen kill rate per immune effector—impact pre-symptomatic transmis-
sion, enabling comparison with CHI shedding and symptom data [28]. More complex models
could predict how specific kinds of immune effectors modulate viral replication, shedding, and
symptoms; data on levels of immune effectors such as cytokines and antibodies are obtain-
able from CHI trials [31},/41,42]. Coupling these data with model predictions could address
a range of open questions, including whether vaccination alters the relative timing of symp-
tom onset and transmission in individuals experiencing breakthrough infections, whether
immuno-compromised patients are more or less likely to transmit pre-symptomatically, and
the extent to which different types of immune effectors promote pre-symptomatic trans-
mission. Further investigation into the impact of viral and host traits on pre-symptomatic
transmission would aid public health efforts in predicting what pathogenic agents and host
populations (for example, those with immunological memory through previous exposure or
vaccinations versus those without) are more likely to transmit pre-symptomatically. It may
then be possible to target interventions like testing, masking, or vaccination programs, where
they will be most useful.

We found no consistent effect of inoculum dose, since the direction of the (nonsignifi-
cant) trend depended on how we defined pre-symptomatic transmission. The lack of a clear
pattern makes sense given the potentially complex consequences of dose on disease progres-
sion and transmission. For the influenza virus, higher inoculum dose increases expression
of inflammatory cytokines and recruitment of innate immune effectors [69]. Innate immune
effectors may slow pathogen replication, but a greater inflammatory response could hasten
symptom onset, so the net impact on pre-symptomatic transmission is challenging to predict.
Similarly, in infections of Vibrio cholerae, higher dose allows for greater cooperative effects
among bacteria enabling more efficient colonization of the gastrointestinal tract |70|, which
promotes both pathogen load and disease progression and makes it challenging to anticipate
the impact on pre-symptomatic transmission. Yet for some pathogens, severe disease seems
to require a minimum inoculum dose, including SARS-CoV-2 [71], MERS-CoV [72], and
hepatitis C |73], suggesting that higher doses could hasten symptoms and thereby reduce
pre-symptomatic transmission. The consequences of inoculum dose for pre-symptomatic
transmission may be complex and nonlinear, but general patterns may still emerge. For
example, slowed multiplication rates when population sizes are low (known as Allee effects)
are thought to apply broadly across diverse organisms [74]. Models can provide insight into
when and how limited inoculum doses slow initial replication of pathogenic organisms (e.g.,
fitting models to data from experimental rodent malaria infections, [75]). Applying models
to CHI trial data would reveal whether relationships between dose and pre-symptomatic
transmission are idiosyncratic or predictable across different pathogens.

We compared the dynamics of pre-symptomatic transmission for models assuming that
symptoms result from crossing a threshold determined by pathogen load or immune effec-
tor abundance, but symptom onset could have multiple, related causes. Immune responses
have been demonstrated to facilitate pathology in diseases such as COVID-19, influenza,
and tuberculosis [76H78]. In COVID-19, symptoms vary considerably and the causes are
multi-faceted: ranging from headache and sore throat to myalgia, chest pain, and abdom-
inal pain for patients with severe infections [79]. Although sore throat is likely a result of
immune activity and abdominal pain a result of cell death due to pathogen activity, the
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hypothesized causes of headache, myalgia, and chest pain remain conflicting and inconclu-
sive [79]. Evidence suggests that loss of smell, one of the most characteristic symptoms
of COVID-19, is likely caused by infection of cells associated with the olfactory sensory
neurons by SARS-CoV-2. However, mucosal swelling and airflow obstruction, a result of
immune activity, could also contribute to the phenomenon [80]. To account for a variety of
causes, more complex models of symptom onset are needed to differentiate the impacts on
pre-symptomatic transmission. Understanding the within-host dynamics that give rise to
symptoms would help assess the generality of commonly assumed tradeoffs between trans-
mission and duration, which has been increasingly questioned [63]. Individual-level data on
the timing of symptoms and transmission could hasten advances in this key area.

Understanding the within-host causes of pre-symptomatic transmission is a prerequisite
for predicting the epidemiological impact. For a given pathogenic organism, variation across
individual hosts can have an outsize impact on the potential for outbreaks, with undiagnosed
or misdiagnosed infections implicated in more superspreading events than unusually high
contact rates [81]. Our analysis of individual infections reported by [28] suggests that—
even controlling for viral genetic background and dose—there are considerable differences
in both the propensity for pre-symptomatic transmission and replication rates, the latter of
which varies across orders of magnitude (Fig. . Individual-level data on the timing
of symptoms, coupled with models of symptom onset, can reveal the mechanistic causes of
pre-symptomatic transmission and offer insight into the intervention measures best-suited
to containing outbreaks.

4 Methods

4.1 Survey of CHI trials for the transmission dynamics of viral
pathogens

We searched for viral CHI studies on Google Scholar using the terms: “experimental OR
controlled infection viral load shedding duration human.” We then looked through the ref-
erences of studies found during our search and included any pertinent additional trials. The
last search performed was on November 5, 2023. Studies were included if the virus could be
classified as enteric or respiratory, as the diseases they cause have symptoms that are easier
to recognize.

We recorded mean or median onset and duration—whichever was available—for symp-
toms and shedding from the main text or tables directly when possible. If individual data
were reported, we calculated the average duration and onset of shedding and transmission.
Some studies reported symptom onset and duration as a participant-reported symptom score
over time. We then estimated the onset and duration of shedding from the first and last
reported timepoint with the mean/median symptom score greater than or equal to the min-
imum possible for a symptomatic individual. Some studies included multiple cohorts; for
these we applied the above methods to data from only one cohort. For studies that investi-
gated more than one disease, we separated datasets by virus [25,26,40].
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4.2 Identifying correlates of pre-symptomatic transmission

Atmar et al. [28] present shedding for 16 participants as plots, along with a table reporting
the timing of symptoms. We digitized individual-level shedding data reported in plots using
the R package ‘metaDigitize’ [82]. While data on symptoms were captured daily, data on
viral shedding ranged from being captured multiple times a day to once every couple of
days, depending on the availability of fecal samples. To fit the four parameters for Eq. |1} we
minimized the sum squared error between observed log;, viral shedding and predicted log,,
viral load using the optim function in R 4.2.1.

Eq. [1] describes acute infection [29], where pathogen populations grow and decline at
constant rates. Some infections showed a low level of shedding for an extended period after
a log-linear decline, a situation for which Eq. [If was not designed. We therefore defined the
end of acute infection—that is, the end of the time series we used to fit the model—as the
first local minimum in viral shedding. We found similar qualitative results if we instead
defined the end of acute infection as the first viral shedding value equal to or less than the
abundance in the first fecal sample (cf. Figs. [S1] and [S2)).

4.3 Defining a plausible within-host model for pre-symptomatic
transmission
We modified the within-host model described in [30] by incorporating thresholds for symptom

onset and allowing for a pathogen carrying capacity, 8. The model tracks the abundance of
pathogen (P) and host immune effectors (X):

dP
&~ P kXP 2
dX
1 (exponential growth)
wheren = P ) ]
1 — % (carrying capacity).

As pathogen load increases, more immune cells are activated and more pathogens are killed
upon contact. Unless otherwise indicated, the model assumes the pathogen population
grows exponentially (n = 1), and it is only the host immunity that controls the pathogen
population. Thus, even though pathogen load initially increases exponentially at rate r, it
eventually declines due to the accompanying increase in immune effector abundance. The
other parameters are the basal immune cell birth rate («), the immune cell death rate (d),
the immune cell recruitment rate (), and the immune cell kill rate of the pathogen (k), with
values given in Table [ We subsequently implement a carrying capacity for pathogen load
(n=1-P/h, and 6 =5 x 10°).

We assume symptoms (S) occurs when 1) pathogen load (P) crosses a threshold (sp); or
2) when immune effector abundance (X) crosses a threshold (sx).

Case 1:

(4)

g_ Present if P > sp
)| Absent  else
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Case 2:

(5)

g Present if X > sx
)| Absent  else

We varied viral replication rates (r) to examine their impact on the delay between symp-
tom onset and peak pathogen load (time of peak pathogen load minus time of symptom
onset). For simplicity, we assume that viral shedding is equal to viral load within the host
with no time delay (e.g., a time delay associated with gut transit time for norovirus infec-
tions).

4.3.1 Analysis of immune effector symptom threshold with exponential viral
replication

We analyze Eq.[2land 3] to examine the relationship between peak pathogen load and the time
of symptom onset under exponential growth (n = 1). By setting dP/dt = 0, we determine
the time of peak pathogen load and solve for the corresponding immune effector abundance
(X = r/k). Peak immune effector abundance follows peak pathogen abundance for the
parameter values used here (Fig. , meaning that immune effector abundance is always
increasing at peak pathogen load. Therefore, the key question is whether immune effector
abundance at peak pathogen load (r/k) is above or below the symptom threshold (neglecting
the case where peak immune effector abundance is equal to the symptom threshold). If above
(r/k > sx), then symptoms have already begun by the time pathogen abundance reaches its
peak (post-symptomatic transmission). If below (r/k < sx), then peak pathogen abundance
(and hence shedding) will precede symptom onset (pre-symptomatic transmission).
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Supplemental figures & table

Parameter Value
Pathogen replication rate (r) 10-250
Immune cell kill rate (k) 3.5
Basal immune cell birth rate («) 1
Immune cell death rate (d) 0.5
Immune cell recruitment rate (y) | 107

Table 1: Ranges for model parameters.
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Figure S1: One participant from the group inoculated with an infectious dose of 4.8 RT-PCR
units and three from the group inoculated with a dose of 4800 RT-PCR units demonstrate
pre-symptomatic transmission |28]. The dots indicate viral shedding, the solid line indicates
the fit of Equation (I} and the dotted vertical lines indicate the onset and end of symp-
toms. The infectious dose and whether the participant experienced pre-symptomatic or
post-symptomatic transmission are indicated at the top of each plot. The viral shedding
trajectory model was fit from the first observed viral shedding value to the first local min-
imum after peak viral shedding. Participants 723 and 731 were excluded from subsequent
analyses due to unclear peaks. 26
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Figure S2: Viral shedding trajectory of participants from [28] using an alternate criterion for
the endpoint. The dots indicate viral shedding, the solid line indicates the fit of Equation 1]
and the dotted vertical lines indicate the onset and end of symptoms. The infectious dose
and whether the participant experienced pre-symptomatic or post-symptomatic transmission
are indicated at the top of each plot. The trajectory model was fit from the first observed
viral shedding value to the first value after peak viral shedding that is less than or equal to
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Figure S3: Two participants from [28] were disqualified from our analyses due to lacking a
clear pathogen shedding peak: participants 723 and 731.
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Figure S4: Norovirus data [28] exhibit no dose-dependence in the relative timing of symptom
and shedding onset, but do demonstrate a positive correlation between viral replication rate and
pre-symptomatic transmission. Panel A shows the delay between symptom and shedding onset for
each patient, comparing across infectious dose, with horizontal bars to indicate the average delay
for each dose. Panel B shows that the delay between symptom onset and shedding onset becomes
more negative with faster estimated viral replication rate (P, Eq. . As viral replication rate
increases, it is more likely that shedding onset will precede symptom onset (p = 0.0064).
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Figure S5: The correlation between pre-symptomatic transmission and pathogen replication
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between the timing of peak shedding and pathogen replication rate. The faster the pathogen
replicates, the earlier an individual’s shedding peaks (p = 0.0029). There is no significant
correlation between the timing of symptom onset and pathogen replication rate (p = 0.8125).
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Figure S6: Immune response (X) peaks after pathogen load (P) in our mechanistic model
(Equations [2| and [3]) across all of the pathogen replication rates we used (r = 10 to 250 by

increments of 10).
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Figure S7: Assumptions about whether pathogen growth is exponential or limited by a carrying
capacity change the relationship between replication rate and pre-symptomatic transmission. Both
models shown here assume that symptom onset occurs when immune effector abundance exceeds
an arbitrary threshold sx. In the model with exponential pathogen growth (Equations and
where n = 1), a higher pathogen replication rate (r) decreases the chance of pre-symptomatic
transmission (A). With a carrying capacity (§ = 5 x 10°), faster replication first reduces then
increases pre-symptomatic transmission. Other parameters set are as follows: immune cell kill
rate, k = 3.5 (A) and k = 7 (B); immune response recruitment rate, v = 10~%; immune cell birth
rate, @ = 1; immune cell death rate, d = 0.5; and initial pathogen dose, P(0) = 105. Symptom
thresholds sx from low to high are 5, 10, and 15 for panel A and 1, 2, 3 for panel B. The replication
rates used in Fig. @B, C are highlighted in red.
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