1 Genomic analysis of Strongyloides stercoralis and Strongyloides fuelleborni

2 in Bangladesh

- 3
- 4 Veroni de Ree¹, Tilak Chandra Nath², Dorothee Harbecke¹, Dongmin Lee³,
- 5 Christian Rödelsperger¹ and Adrian Streit^{1*}
- 6
- 7
- 8 ¹Department of Integrative Evolutionary Biology, Max Planck Institute for
- 9 Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- 10 ²Department of Parasitology, Sylhet Agricultural University, Sylhet 3100,
- 11 Bangladesh
- 12 ³International Parasite Resource Bank, Chungbuk National University, 1
- 13 Chundae-ro, Seowon-gu, Cheongju 28644, Korea
- 14
- 15
- 16 *Corresponding author:
- 17 adrian.streit@tuebingen.mpg.de
- 18 Orcid: 0000-0002-7838-621
- 19
- 20 Orcid V dR: 0009-0001-9026-4514
- 21
- 22 Short title: *Strongyloides* in Bangladesh
- 23

24 Abstract

25	Background: About 600 million people are estimated to be infected with
26	Strongyloides stercoralis, the species that causes the vast majority of human
27	strongyloidiasis cases. <i>S. stercoralis</i> can also infect non-human primates (NHPs),
28	dogs and cats, rendering these animals putative sources for zoonotic human <i>S.</i>
29	<i>stercoralis</i> infection. <i>S. fuelleborni</i> is normally found in old world NHPs but
30	occasionally also infects humans, mainly in Africa. Dogs in southeast Asia carry at
31	least two types of <i>Strongyloides</i> , only one of which appears to be shared with
32	humans ("dog only" and "human and dog" types). For <i>S. stercoralis</i> with
33	molecular taxonomic information, there is a strong sampling bias towards
34	southeast and east Asia and Australia.
35	Methodology/Principle findings: We collected human and dog derived
36	Strongyloides spp. and hookworms from two locations in Bangladesh and
37	subjected them to molecular taxonomic and genomic analysis based on nuclear
38	and mitochondrial sequences. All hookworms found were <i>Necator americanus</i> .
39	Contrary to earlier studies in Asia, we noticed a rather high incidence of <i>S</i> .
40	<i>fuelleborni</i> in human samples. Also in this study, we found the two types of <i>S.</i>
41	stercoralis and no indication for genetic isolation from the southeast Asian
42	populations. However, we found one <i>S. stercoralis</i> worm in a human sample that
43	genomically was of the "dog only" type and we found two worms in a dog sample
44	that had the nuclear genomes of the "dog only" type but the mitochondrial
45	genome of the "human and dog" type.
46	Conclusions/Significance: S. fuelleborni may play a more prominent role as a
47	human parasite in certain places in Asia than previously thought. The
48	introgression of a mitochondria haplotype into the "dog only" population

- 49 suggests that rare interbreeding between the two *S. stercoralis* types does occur
- 50 and that exchange of genetic properties, for example a drug resistance, between
- 51 the two types is conceivable.
- 52
- 53

54 Author Summary

55 More than 600 million people are infected with the nematode intestinal parasite

56 *Strongyloides stercoralis.* Dogs can also carry *S. stercoralis.* In southeast Asia

57 different genetic types that either infect only dogs or humans and dogs were

58 described. *Strongyloides fuelleborni*, (normally found in old-world monkeys) can

also infect humans, mainly in Africa. We collected *Strongyloides* spp. and hook

60 worms, from humans and a dog in Bangladesh and analyzed their nuclear and

61 mitochondrial genomes. All hookworms were *Necator americanus*, one of the

62 two major human hookworm species. Contrary to the general believe that

63 human infections with *S. fuelleborni* are extremely rare in Asia, we found

64 multiple such cases, suggesting that *S. fuelleborni* plays a more important role as

65 a human parasite than previously thought also in Asia.

We found the two expected genetic types of *S. stercoralis*. For the first time we
found a genomically "dog only" type worm in a person and we found two worms
with nuclear genomes of the "dog only" type but mitochondrial genomes of the
"human and dog" type. This suggest that rare interbreeding between the two
types occurs, such that exchange of genetic properties, such as a drug resistance,
between the two types is conceivable.

72

73 **Keywords**: Strongyloides stercoralis, Strongyloides fuelleborni, parasitic

74 nematode, host specificity, Neglected Tropical Disease.

76 Introduction

- 77 Strongyloidiasis is one of the soil-transmitted helminthiasis (STH), which
- 78 are recognized as neglected tropical diseases (NTDs,
- 79 <u>https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab 1</u>].
- 80 However, although clearly more prevalent in tropical and sub-tropical areas, the
- 81 disease is not limited to these regions and should probably be rather regarded as
- 82 a disease of socioeconomically disadvantaged people rather than strictly a
- tropical disease [1, 2]. Until recently, strongyloidiasis was often neglected, even
- 84 in comparison with other STHs [3] but over the last few years there is increasing
- 85 interest in this disease [1, 4, 5]. The estimate of the number of people currently
- 86 infected with *Strongyloides stercoralis*, the species which causes the vast majority
- 87 of human strongyloidiasis cases, has recently been corrected upwards to "about
- 88 600 million" [2]. Given the difficulties with diagnosis, the true number may be
- 89 even higher [6-8]. Although *S. stercoralis* has also been reported to occur in non-
- 90 human primates (NHPs), dogs and cats, rendering these animals putative sources
- 91 for zoonotic human *S. stercoralis* infection [6, 9-11]. In NHPs and in cats other,
- 92 more or less host specific species of *Strongyloides* were also described, i. e. *S*.
- 93 *fuelleborni* and *S. cebus* in NHPs, and *S. planiceps* and *S. felis* in cats [12]. The
- 94 species status of *Strongyloides* in dogs has been controversially discussed ever
- 95 since Brumpt separated the *Strongyloides* in dogs as *S. canis* from the human
- 96 infective species *S. stercoralis* [13], interestingly based on the very same data
- 97 that had convinced Fülleborn that the *Strongyloides* he found in the dogs
- 98 belonged to the same species as the ones in humans [14]. While it became clear
- 99 that dogs can be experimentally infected with at least some isolates of *S*.
- 100 procyonis (natural host racoon, [15]) and human infective S. stercoralis
 - 5

101 (reviewed in [10]) it remained enigmatic if the species causing most natural

102 *Strongyloides* infections in dogs is different from the one in humans.

103	Over the last years, the Hyper Variable Regions (HVR) I and IV of the
104	nuclear Small SUbunit ribosomal RNA locus (<i>SSU</i>) and the mitochondrial <i>cox-1</i>
105	loci have emerged as the standard markers for molecular taxonomy within the
106	genus <i>Strongyloides</i> spp. and within the species, <i>S. stercoralis</i> [16-19]. A
107	nomenclature system for the different haplotypes has been proposed and
108	extended [18, 20, 21]. A few studies, analyzing samples from East and southeast
109	Asia [20, 22-24], and Iran [25] analyzed whole genome data from individual <i>S</i> .
110	<i>stercoralis</i> worms in addition to the <i>SSU</i> and <i>cox-1</i> markers. Jaleta et al. [20] and
111	Nagayasu et al. [26] in southeast Asia and Beknazarova et al. in Australia [27]
112	found that dogs carried at least two types of <i>Strongyloides</i> , only one of which
113	appeared to be shared with humans in the same region. In this manuscript we
114	will refer to them as "human and dog" and "dog only", respectively. Barratt and
115	Sapp [21] compiled all sequence information available from <i>S. stercoralis</i> from
116	different hosts and used machine learning approaches to analyze these data in
117	depth. Their findings suggest that <i>S. stercoralis</i> is in fact a complex of closely
118	related species with different but overlapping host spectra. While from these
119	data it appears most likely that zoonotic <i>S. stercoralis</i> infections can happen,
120	currently, we do not know how important such infections are for the overall <i>S</i> .
121	stercoralis epidemiology, compared with human to human transmission [10]. In
122	addition to <i>S. stercoralis, Strongyloides fuelleborni,</i> which can be distinguished
123	from <i>S. stercoralis</i> morphologically [28] and coprologicaly (from this species eggs
124	are shed with the faeces and not larvae as in <i>S. stercoralis</i> [29]), has been found
125	to be able to infect humans. Two subspecies of <i>S. fuelleborni</i> have been described,

126	namely <i>S. fuelleborni fuelleborni</i> and <i>S. fuelleborni kellyi</i> [29]. While the former is
127	the predominant species of <i>Strongyloides</i> in old world non-human primates, <i>S.</i>
128	<i>fuelleborni kellyi</i> has been found only in humans in Papua New Guinea [29].
129	Based on molecular taxonomy [30] we think <i>S. f. kellyi</i> should probably be
130	considered a separate species and do not further discuss it in this publication.
131	For the rest of this publication " <i>S. fuelleborni"</i> always refers to <i>S. fuelleborni</i>
132	<i>fuelleborni</i> . Barratt and Sapp [21] described genetic/genomic differences
133	between <i>S. fuelleborni</i> in Africa and <i>S. fuelleborni</i> in Asia. The vast majority of
134	human <i>S. fuelleborni</i> infections were found in Africa and [21] found genetic
135	indication for a human specialized sub-population within the African clade,
136	suggesting human to human transmission. In Asia, on the other hand, no such
137	genetic hint was found and it appears that human <i>S. fuelleborni</i> infections are
138	restricted to individuals with close contact to non-human primates, indicating
139	that most, if not all human <i>S. fuelleborni</i> cases in Asia are zoonotic [21] and
140	references therein.
141	So far, for <i>S. stercoralis</i> with molecular taxonomic information, there is a
142	strong sampling bias towards southeast Asia, East Asia and Australia [21]. To
143	further extend the geographic range, we collected <i>S. stercoralis</i> from two
144	locations in Bangladesh. We knew that <i>S. stercoralis</i> is prevalent in Bangladesh
145	([2] lists an estimated overall prevalence of 17.3%), but we are not aware of any

146 published systematic study on *S. stercoralis* in this country. Contrary to earlier

147 studies in Asia, we noticed a rather high incidence of *S. fuelleborni* in humans.

148 Molecular taxonomically these worms grouped clearly with the Asian clade

defined by [21]. Molecular taxonomically, the *S. stercoralis*, we found mixed in

150 with the southeast Asian population described earlier [20, 22, 23, 26] and

151 appeared not to form a separate population. However, we found one S. 152 stercoralis worm in a human sample that was of a type that had been considered 153 dog-specific and we found two worms in a dog sample that had the nuclear 154 genomes of the "dog only" type but the mitochondrial genome of the "human and 155 dog" type, suggesting that occasional interbreeding between the types does 156 occur. 157 158 Methods 159 **Ethics statement** 160 All participants were volunteers and gave informed consent. The sampling of 161 human-derived material including the procedures to obtain informed consent, 162 was in accordance with the Bangladeshi legal requirements and with the 163 guidelines of the Sylhet Agricultural University. This study was approved by the 164 Ethical Review Committee, Sylhet Agricultural University Research System 165 (SAURES), Bangladesh (SAURES-UGC-2022-04). Interested putative participants 166 were informed orally about the project and, if they chose to participate, were 167 handed collection containers. All participants remained free to return the 168 container or not 169 170 Study area, Sample collection and processing 171 Human faecal samples were collected from two regions from Bangladesh that 172 had been previously identified as high prevalence areas for helminthiasis: Sylhet, 173 and Dhaka in December 2022. 134 human samples from four different locations 174 in Sylhet; Khadim tea garden, Daldali tea garden, Baluchar and Fotehpur and one

175 dog sample from the premises of Sylhet Agricultural University were analysed. In

176 Dhaka 95 human samples were collected from two locations: Hazaribug and

177 Mohammadpur.

178

179	Stool collection jars with a spoon were distributed to the individuals who agreed
180	to participate in the study after explaining how to properly collect the stool
181	sample without soil contamination. The next day the sample jars were collected.
182	Faecal samples were mixed well with approximately equal volumes of activated
183	charcoal (Roth 5966.1) to facilitate air exchange. Water was added to make the
184	samples well moisturized but not soakingly wet. This mixture was incubated in
185	the room temperature (R.T.) for 24-48hrs with the lid partially open and re-
186	moisturized on need-to basis. Samples were analysed using modified miniature
187	Baermann apparatuses based on 50ml Falcon Tubes as described [31]. In brief,
188	faeces mixture was placed in the centre of a 10×10 cm cotton gauze and made it
189	into a pouch secured using a toothpick which was submerged in a 50ml falcon
190	tube filled with lukewarm water. After 3hrs of incubation at ambient
191	temperature the sediment was taken out using a Pasteur pipette and observed
192	under a stereo dissecting microscope for the presence of worms. These worms in
193	part individually and in part bulk preserved in 80% ethanol at the Sylhet
194	Agricultural University as described [32] and brought back to the Max Planck
195	Institute for Biology, Tübingen for molecular/genomic analysis.
196	
197	Single worm lysis and <i>cox-1, SSU</i> HVR-I and <i>SSU</i> HVR-IV genotyping
198	Single worm lysis for adults and larvae was performed as described [32]. For
199	infective larvae the lysis was extended to 6 hrs at 65°C. The lysate was either

200 freshly used for PCR or stored at -20°C. The *cox-1*, *SSU* HVR-I and *SSU* HVR-IV

201	were PCR amplified using the primers described in [24]. For the SSU HVR-I and
202	the SSU HVR-IV for all worms the same primer pairs RH5401/RH5402 and
203	18SP4F/18SPCR, respectively, were used. For <i>cox-1</i> the primers designed for <i>S</i> .
204	stercoralis (but also working for some other species) (ZS6985/ZS6986) were
205	used, unless the worm was already known to be a hookworm, in which case the
206	hookworm optimized primer ZS6989 was used as the reverse primer instead of
207	ZS6986. For the PCR, 10μ l of QIAGEN <i>Taq</i> PCR master mix (x2) (201443), 0.4 μ l
208	of $10\mu M$ forward and reverse primers, $7.2\mu l$ of PCR water and as template $2\mu l$ of
209	single worm lysate were added. For <i>S. fuelleborni</i> the same primers as for <i>S.</i>
210	<i>stercoralis</i> were used.
211	For sequencing 1µl of PCR product was mixed with 1µl of the relevant
212	sequencing primer (10 μ M) [24] and 8 μ l of water and submitted to Genewiz,
213	Leipzig, Germany. S. stercoralis P203 iL3 HVR-I PCR product and S. fuelleborni
214	<i>cox-1</i> PCR products were gel purified (1% agarose, 1X TAE) using the QIAquick
215	gel extraction kit (Qiagen 28706) prior to sequencing. If the sequencing result
216	was not clean, the PCR products were sequenced again using the alternative
217	sequencing primers listed by [24] or the amplification primers. Sequence quality
218	and the presence of hybrid sequences was manually assessed by looking at the
219	chromatograms using the SnapGene ${ m I\!R}$ software (from Dotmatrics; available at
220	snapgene.com). The sequences were first compared with published sequences in
221	the National Centre for Biotechnology Information (NCBI) database using the
222	BLAST function (<u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>) and then
223	phylogenetically analysed using MEGA11 [33] with the Neighbour-joining
224	method and default settings. The robustness of the trees was assessed with 1000
225	boot strap repetitions. Position numbers refer to GeneBank entries AF279916

- for the *S. stercoralis* and *S. fuelleborni SSU*, LC050212 for the *S. stercoralis* and *S.*
- 227 *fuelleborni cox-1* and AJ417719 for hookworm *cox-1* sequences.
- 228 We also retrieved *cox-1* sequences from the read data of the whole genome
- sequenced worms in [20] (see Fig. 4 of this reference) and submitted them to
- 230 GenBank along with the *cox-1* sequences from this study (accession numbers
- 231 OR804688-712, OR805174, 81, OR810937-54, OR809277-99).
- 232

233 Whole genome sequencing

- Whole genome sequencing was done as described [25] with slight differences as
- follows. In the DNA clean-up step, $11-14\mu$ l of lysis were used instead of 10μ l. In
- the pooling and concentration adjustment step the bead clean-up was skipped.
- 237 The concentrations were calculated for the samples and 2nM of each sample
- were pooled which resulted in a 1.85nM final concentration in the pool which
- was then submitted to the MPI for Biology in-house sequencing facility for
- 240 Illumina NexSeq 2000 sequencing.
- 241

242 Analysis of the whole genome sequences

- 243 Whole genome tree
- 244 The paired end sequencing resulted 5.7-21.5 x coverage for the *S. stercoralis*
- samples. WGS data for 12 *S. stercoralis* samples and three *S. fuelleborni* samples
- 246 were uploaded to the European Nucleotide Archive under the study accession
- 247 PRJEB70604.
- 248 The read alignment, duplicate removal, variant calling, defining heterozygous
- 249 sites, creating the genotype using variant positions and constructing the NJ tree
- 250 based on the variant positions were all done as described [25].

251

252 Whole mitochondrial (wmit) tree

253	WG sequencing reads from this study and previous studies were aligned to the <i>S</i> .
254	<i>stercoralis</i> wmit reference genome (NC_028624.1 [identical to LC050212]) to
255	generate wmit sequence assemblies. The four wmit sequences from [34] were
256	used directly. Read alignment, binary alignment file generation and duplicate
257	removal were done as mentioned above. BAM files were loaded to IGV_2.16.0
258	and the consensus sequences were obtained using the 'copy consensus sequence
259	function' in IGV. NJ trees were generated using MEGA 11. The sequence file used
260	as input for MEGA 11 can be found in S1 File.
261	To generate wmit assemblies from the <i>S. fuelleborni</i> in this study we first aligned
262	the reads to two mitochondrial whole genome sequences from [35] (OL505577,
263	arrangement A and OL602833, arrangement B) and visualized the BAM files
264	using IGV. Since the tRNA(Met) gene that is present in arrangement B but absent
265	in arrangement A was absent from all our <i>S. fuelleborni</i> sequences we decided to
266	use 0L505577 as reference. A wmit tree for <i>S. fuelleborni</i> was generated using
267	sequences from this study and from [35] as described for <i>S. stercoralis</i> above.
268	
269	Heterozygosity analysis
270	General heterozygosity analysis was done as described [25].
271	
272	Coverage analysis
273	Coverage for both autosomal contigs and X-chromosomal contigs were analysed

- using samtools (0.1.18) depth command and the coverage was plotted against
- 275 the number of positions using R studio.

276

278 Results

279	We analysed 134 human samples (in most cases rather small samples) collected
280	from Sylhet and found worms in 25 of them. In seven samples we found only
281	Strongyloides, in five samples Strongyloides and hookworms, in 12 samples only
282	hookworms and in one sample we found several worms that, based on their $18S$
283	sequence belonged to <i>Tokorhabditis</i> spp., which is a genus of free-living
284	nematodes [36]. We think this last case represents a contamination from the
285	ground and this sample is not further discussed. The one dog sample we
286	obtained was positive for Strongyloides. From Dhaka, we found Strongyloides in
287	only two out of 95 human samples, while, based on 18S sequence, we detected
288	Caenorhabditis nigoni, which are free-living nematodes [37] in six of them. These
289	worms likely represent ground contamination and are not discussed further.
290	For 71 hookworms and 99 <i>Strongyloides</i> (67 from humans, 32 from the dog) the
291	sequence of at least one out of the SSU HVR-I, SSU HVR-IV or cox-1 was
292	successfully determined.
293	
294	The hookworms found were Necator americanus
295	Initially 47 worms were confirmed to be hookworms, based on SSU sequences.
296	Since the different hookworm species cannot be distinguished based on their SSU
297	HVR-I or SSU HVR-IV sequences, we determined the cox-1 sequence using the
298	same primers used in [24], which was successful for 42 worms. Among these

- 299 worms, we identified 18 different *cox-1* haplotypes (accession numbers
- 300 OR810937-54), of which six were identical with existing database entries, while
- 301 12 were new (S1 Table). In several occasions worms with different *cox-1*
- 302 sequences were found within the same host (S1 Table). All 18 sequences

303	clustered with perfect bootstrap support with the group A [38] which is
304	considered <i>Necator americanus</i> (Fig. 1). Within the species <i>N. americanus,</i> our
305	samples did not cluster together but intermixed with sequences derived from
306	Africa and Asia, arguing against the presence of a Bangladesh specific sub-
307	population. In addition, 24 larvae for which we amplified the <i>cox-1</i> sequence
308	using the primers optimized for <i>S. stercoralis</i> turned out to be hookworms. Since
309	these sequences were shorter than the ones generated using the hookworm
310	specific primers, they are not included in Fig. 1. However, all 24 sequences
311	clearly grouped with <i>Necator americanus</i> sequences. Hence, overall, we
312	identified 71 worms as hookworms, of which we confirmed 66 to be <i>Necator</i> and
313	not Ancylostoma.
314	
315	Fig. 1: Neighbour joining tree based on partial hookworm <i>cox-1</i> sequences
316	(670bp). Sequences found in this study are in red, the number of worms this
317	sequence was found in is in (). Triangles indicate haplotypes that had been
318	previously known. For every sample the country of origin (CAR=Central African
319	Republic), the host and the GenBank accession number are given.
320	
321	
322	High incidence of <i>S. fuelleborni</i>
323	Strikingly, four out of the 12 individuals found to be infected with Strongyloides
324	spp. in Sylhet carried <i>S. fuelleborni</i> and not <i>S. stercoralis</i> (two of them were co-
325	infected with hookworms).
326	At the SSU, all 16 S. fuelleborni genotyped were HVR-I haplotype XIV and HVR-IV
327	haplotype S (cf. [21]). Out of the 16 worms, <i>cox-1</i> sequences were obtained for

351	sequences (552bp). Sequences found in this study are in red, the number of
350	Fig. 2: Neighbour joining tree based on partial <i>S. fuelleborni cox-1</i>
349	
348	hypothesized to represent the ancestral state [35] (Fig. 3).
347	observed in <i>S. fuelleborni</i> derived from macaques in Myanmar and Japan and was
346	arrangement A but present in arrangement B. Arrangement A had been
345	arrangement A and did not contain the tRNA(Met) gene that is absent from
344	three worms clustered with the samples containing mitochondrial genome
343	sequences reported by [35]. The sequences analysed are listed in S1 File. All
342	extracted the full mitochondrial genomes and compared them with the
341	data publicly available here without further analysis. From these data we
340	there is no reference nuclear genome for this species available, we make these
339	data in the European Nucleotide Archive (accession number PRJEB70604). Since
338	whole genome Illumina short read sequencing (Table 1) and deposited the read
337	From three <i>S. fuelleborni</i> derived from three different persons we performed
336	clade exist [21].
335	from <i>S. stercoralis</i>) geographic sub-populations exist and an Asian and an African
334	as cluster 3 by [21], further supporting the notion that in <i>S. fuelleborni</i> (different
333	fuelleborni from southeast Asia (mainly Thailand, Myanmar and Laos) described
332	based on the <i>cox-1</i> sequences (Fig. 2), all eight sequences clearly grouped with <i>S</i> .
331	carried worms with different haplotypes (S1 Table). In a phylogenetic analysis
330	persons for whom we obtained the <i>cox-1</i> sequence from more than one worm,
329	OR805174-81), none of which had been reported before (S1 Table). All three
328	15. We identified eight different <i>cox-1</i> haplotypes (accession numbers
220	

352 worms this sequence was found in is in (). For every sample the country of origin

353 (CAR=Central African Republic), the host and the GenBank accession number are

354 given.

355

356 **Fig. 3: Neighbour joining tree based on full mitochondrial nucleotide**

- 357 sequences. All non-Bangladesh sequences are from Ko et al. (2023). The Letters
- 358 (A or B) refer to the genome arrangement described in Ko et al. (2023)
- 359 (compared with B, arrangement A lacks a tRNA(Met) gene present adjacent to
- the *S1* gene). For every sample the country of origin, the host and the GenBank
- 361 accession number or the worm identifier (for sequences from this study) are
- 362 given. The sequences from this study were extracted from the data available
- 363 from the European Nucleotide Archive under the accession number
- 364 PRJEB70604. A FASTA file with all sequences used is provided as S1 File.
- 365
- 366

367 S. stercoralis SSU haplotypes

- 368 For *SSU* HVR haplotype nomenclature see [21]. At the *SSU* HVR-IV the *S*.
- 369 *stercoralis* in our samples had either haplotype A (28 individuals), which was
- described to be indicative for the "human and dog" type [20, 21] or a new
- haplotype we call U (31 individuals, Fig. 4a). All but one (see below) of the
- 372 carriers of haplotype U were isolated from the dog. At *SSU* HVR-I, 28 worms had
- 373 haplotype I, 26 worms had haplotype II and one worm each had haplotype III
- and V. In all cases where we have the sequences for both HVRs, HVR-IV
- 375 haplotype A co-occurred with HVR-I haplotype II (24 cases) or III (one case)
- 376 while HVR-IV haplotype U co-occurred with HVR-I haplotype I (28 cases) or V

- 377 (one case). Notice that in an earlier study in Cambodia [20], HVR-I haplotype I
- did also co-occur with HVR-IV haplotype A.
- 379

Fig. 4: *cox-1, SSU* HVR-I and *SSU* HVR-IV haplotypes of our samples

381 **compared with selected published sequences**. A: sequence of the new *SSU*

- 382 HVR-IV haplotype U compared with the previously reported haplotypes
- 383 (nomenclature according to [21]) mentioned in B. Notice that haplotype E was
- 384 called haplotype C in Zhou et al. (2019). B: neighbour joining tree based on
- 385 partial *S. stercoralis cox-1* sequences (552bp). Sequences found in this study are
- in red, the number of worms this sequence was found in is in (). Samples in blue
- are worms from [20] for which full genome short read sequences are available.
- 388 For every sample the country of origin (CAR=Central African Republic,
- 389 USA=United States of America), the host and the GenBank accession number is
- 390 given. For worms from Cambodia also the worm individual is given after the
- host to facilitate cross reference with [20]. For each *cox-1* haplotype the *SSU*
- 392 HVR-I and SSU HVR-IV haplotypes found in individuals with this cox-1 haplotype
- are indicated (if known). Samples from Cambodia are from [20], samples from
- Laos are from [39], samples from Myanmar, Thailand and Uganda are from [26],
- 395 samples from Iran are from [25], sample from the USA is from [40], samples
- from Tanzania, and Japan are from [17], samples from CAR are from [41] and
- 397 samples from China are from [24]. Haplotypes separated by '/' indicates a
- 398 heterozygous worm. For a *cox-1* tree with more sequences see S1 Fig. Diamonds
- 399 label the two worms that showed "human and dog" type mitochondrial but "dog
- 400 only" type nuclear sequences. The asterisk labels the worm in the "dog only"
- 401 cluster isolated from a human host.

402

403

404 *S. stercoralis cox-1* haplotypes

- 405 In a total of 76 worms, we detected 25 different *cox-1* haplotypes (accession
- 406 numbers 0R804688-712) of which three had been previously reported while 22
- 407 were new (S1 Table). Each haplotype was present in between one and 15
- 408 different worms with the previously known haplotypes being the first (15
- 409 worms), second (11 worms) and fifth (seven worms) most abundant ones (Fig.
- 410 4). Upon phylogenetic analysis (Fig. 4, S1 Fig) the previously described and five
- 411 of the new haplotypes (representing 48 worms, two of which had been isolated
- 412 from the dog) grouped with sequences in the "human and dog" clusters
- 413 according to [20]. 17 haplotypes (representing 28 worms, of which one had been
- 414 isolated from a human sample [see below]) grouped with one of the "dog only"
- 415 clusters according to [20].
- 416

417 **A** "dog only" type *S. stercoralis* in a human host

- 418 Strikingly, one of the worms that by *cox-1* sequence fell into the "dog only"
- 419 cluster had been isolated from a human from Dhaka (worm: Human_J102 f1,
- 420 asterisk in Fig. 4B). This was the sole worm found in this particular sample and it
- 421 carried the new SSU HVR-IV haplotype U, and HVR-I haplotype I, like all but one
- 422 (the one with HVR-I haplotype V) of the other worms from our study in this
- 423 cluster, which all came from the dog.
- 424

425 First finding of a "human and dog" type mitochondrial genome in

426 combination with a "dog only" type nuclear genome

427	In all previous studies that we are aware of, where nuclear and mitochondrial
428	sequences from the same worms were determined [20, 23, 26, 42, 43] both
429	sequence kinds always fell in the same group as defined by [20, 26] ("human and
430	dog" or "dog only"). Here, for the first time, we found worms where the
431	phylogenetic positioning based on the <i>cox-1</i> and on the <i>SSU</i> sequences was not in
432	agreement. In the dog we found two worms, that based on their <i>cox-1</i> sequences
433	fell within the "human and dog" type but had <i>SSU</i> haplotypes normally
434	associated with the "dog only" type (diamonds in Fig. 4B). This suggests that rare
435	interbreeding between the two types does occur.
436	
437	The <i>S. stercoralis</i> population in humans is genetically close to the one in
437 438	The <i>S. stercoralis</i> population in humans is genetically close to the one in southeast Asia
437 438 439	The <i>S. stercoralis</i> population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative
437 438 439 440	The <i>S. stercoralis</i> population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative positions, we performed Illumina whole genome sequencing of the three notable
437 438 439 440 441	The S. stercoralis population in humans is genetically close to the one insoutheast AsiaSince the conclusions above are based on a rather small number of informativepositions, we performed Illumina whole genome sequencing of the three notableworms mentioned above along with nine other individuals isolated from humans
 437 438 439 440 441 442 	The S. stercoralis population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative positions, we performed Illumina whole genome sequencing of the three notable worms mentioned above along with nine other individuals isolated from humans and the dog (Table 1). Then we compared their mitochondrial and nuclear
 437 438 439 440 441 442 443 	The S. stercoralis population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative positions, we performed Illumina whole genome sequencing of the three notable worms mentioned above along with nine other individuals isolated from humans and the dog (Table 1). Then we compared their mitochondrial and nuclear genomes. The read data are available from the European Nucleotide Archive
 437 438 439 440 441 442 443 444 	The S. stercoralis population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative positions, we performed Illumina whole genome sequencing of the three notable worms mentioned above along with nine other individuals isolated from humans and the dog (Table 1). Then we compared their mitochondrial and nuclear genomes. The read data are available from the European Nucleotide Archive (accession number PRJEB70604). The extracted whole mitochondrial genomes
 437 438 439 440 441 442 443 444 445 	The S. stercoralis population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative positions, we performed Illumina whole genome sequencing of the three notable worms mentioned above along with nine other individuals isolated from humans and the dog (Table 1). Then we compared their mitochondrial and nuclear genomes. The read data are available from the European Nucleotide Archive (accession number PRJEB70604). The extracted whole mitochondrial genomes are listed in S2 File.
 437 438 439 440 441 442 443 444 445 446 	The <i>S. stercoralis</i> population in humans is genetically close to the one in southeast Asia Since the conclusions above are based on a rather small number of informative positions, we performed Illumina whole genome sequencing of the three notable worms mentioned above along with nine other individuals isolated from humans and the dog (Table 1). Then we compared their mitochondrial and nuclear genomes. The read data are available from the European Nucleotide Archive (accession number PRJEB70604). The extracted whole mitochondrial genomes are listed in S2 File.

447 Table 1: Whole genome sequenced samples

Sample	Worm ID	Species	cox-1	<i>SSU</i> HVR-I	SSU HVR-IV	Internal ID in
number			haplotype	haplotype	haplotype	sequencing
			(type)			protocol
1	Human_C19 - f2	S. stercoralis	OR804711	II	A	1

2	Human_C19 - f4	S. stercoralis	OR804711	II	A	3
3	Human_F40 - f1	S. stercoralis	OR804710	II	A	14
4	Human_F10 - f1	S. stercoralis	OR804710	II	A	17
5	Human_F10 - f3	S. stercoralis	OR804709	II	A	19
6	Human_J102 - f1	S. stercoralis	OR804706	I	U	20
7	Dog-f1	S. stercoralis	OR804688	I	U	21
8	Dog-f2	S. stercoralis	OR804689	I	U	22
9	Dog-f4	S. stercoralis	OR804691	Ι	U	24
10	Dog-f5	S. stercoralis	OR804692	Ι	U	25
11	Dog - f6	S. stercoralis	OR804693	I	U	26
12	Dog - m2	S. stercoralis	OR804701	I	U	27
13	Human_A22 - f1	S. fuelleborni	OR805174	XIV	S	29
14	Human_G22 - f1	S. fuelleborni	OR805178	XIV	S	33
15	Human_V132 - f1	S. fuelleborni	OR805181	XIV	S	36

The *cox-1* haplotypes are referred to by their GenBank accession numbers. The
nomenclature for the *SSU* HVRs is taken from [21] with U being a new haplotype

450 found for the first time in this publication (Fig. 4A).

451

452 We reconstructed Neighbour Joining cladograms based on the full mitochondrial

453 (Fig. 5, S2 Fig) and nuclear (Fig. 6, S3 Fig, S4 Fig) genomes. In all cases the

454 classification as "human and dog" or "dog only" agreed with the one based on

455 only *cox-1* for the mitochondrial genome (cf. Figs. 5 and 4B) or only the *SSU* HVR-

456 IV for the nuclear genome (cf. Figs. 6B and 4B). Notice that the nuclear genome

457 tree should not be interpreted as a phylogenetic tree because it is a within-

458	species tree with genomes possibly undergoing mixing due to meiotic
459	recombination. Neighbour Joining clustering of the "human and dog" type whole
460	nuclear genome sequences showed that the worms from Bangladesh group with
461	the sequences previously described for southeast Asia, Japan and Iran and away
462	from a possibly asexual population described in southern China and the
463	laboratory reference isolate, which originated from the USA (Fig. 6A, for
464	references see figure legend).
465	
466	Fig. 5: Neighbour joining tree based on full mitochondrial genomes
467	determined in this study (in red) plus the worms mentioned in Fig. 4 of
468	[20] and four worms of the reference isolate [44] for comparison. For a tree
469	with more sequences see S3 Fig. A FASTA file with all sequences used in this
470	figure and in S3 Fig is provided as S2 File. Diamonds label the two worms that
471	showed "human and dog" type mitochondrial but "dog only" type nuclear
472	sequences. The asterisk labels the worm in the "dog only" cluster isolated from a
473	human host.
474	
475	Fig. 6: Neighbour joining tree (A without and B with "dog only" type
476	worms) based on full nuclear genomes determined in this study (in red)
477	plus selected worms from earlier studies for comparison. Diamonds label
478	the two worms that showed "human and dog" type mitochondrial but "dog only"
479	type nuclear sequences. The asterisk labels the worm in the "dog only" cluster
480	isolated from a human host. To get an impression on how different the "dog

- 481 $\,$ only" type is from the "human and dog" type, compare in A and B the branch $\,$
- 482 lengths of the samples from the USA and China (boxed), which are the "human

and dog" type worms with the greatest genomic difference from the southeast
Asian human derived *S. stercoralis.* For a different representation, see S3 Fig and
S4 Fig. Sequences from Cambodia are from [20], Thailand are from [22], Iran are
from [25], Myanmar and Japan are from [23], the USA are from [44] and China is
from [24].

- 488
- 489

490 Whole genome sequence confirms the unexpected worms

491 When the sequences of the "dog only" cluster are included in the analysis, there 492 remains little resolution in the "human and dog" branch of the nuclear genome 493 tree (Fig. 6B, S2 Fig). This is because, compared with the "dog only" sequences 494 they are very similar to each other and the inclusion of more samples reduced 495 the number of informative sites included in the analysis (only positions covered 496 in all worms in the analysis were considered, see Materials and Methods). 497 However, this analysis confirms the unexpected results based on the SSU and the 498 *cox-1* sequences . Worm Human [102 - f1 (isolated from a human host, marked 499 with an asterisk in Figs. 5 and 6) grouped with respect to the nuclear and with 500 respect to the mitochondrial genome with the "dog only" cluster, while worms 501 Dog f6 and Dog m2 (marked with diamonds in Figs. 5 and 6) both show a 502 mitochondrial genome that groups with the "human and dog" cluster but a 503 nuclear genome that belongs to the "dog only" cluster. We conclude from this 504 result that occasional interbreeding of the two types does occur and thereby a 505 "human and dog" type mitochondrial genome introgressed into the "dog only" 506 population. Presumably, a "human and dog" type female and a "dog only" type 507 male interbred and the descendants later bred with "dog only" type partners,

508 thereby rendering the recombining nuclear genome "dog only" type while 509 maintaining the uni-parentally (maternally) inherited mitochondrial genome. 510 511 Worms belonging to the "human and dog" type show low heterozygosity 512 In order to compare our samples from Bangladesh with earlier studies [22-25] 513 we performed a heterozygosity analysis (Fig. 7A). The worms of the "human and 514 dog" type from Bangladesh showed very similar heterozygosity like the ones 515 described from southeast Asia [22, 23] and a portion of the worms from a recent 516 study in Iran [25]. The heterozygosity was clearly lower than in the presumably 517 essentially asexual populations in Japan [23] and in southern China [24] and in a 518 portion of the worms from Iran [25]. 519 520 Fig. 7: Measured heterozygosity of the whole genome sequenced worms 521 from this and previous studies. The X axis shows the heterozygosity on the 522 autosomes and the Y axis shows the heterozygosity on the X chromosome. A: 523 only "human and dog" type worms. B: the same worms as in A plus the "dog 524 only" type worms from this study and from [20]. Notice the high heterozygosity 525 on the X chromosome in males of the "dog only" type. The samples are from

- 526 previous studies are from the following references: Thailand [22], Iran [25], USA
- 527 [44], Japan and Myanmar [23], Cambodia [20] and China [24].

528

529

- 530 Worms belonging to the "dog only" type show high apparent
- 531 heterozygosity that is likely caused in part by structural variations, rather
- 532 than true heterozygosity

533 When we attempted to include the "dog only" type worms (including the one 534 isolated from a human host) in the heterozygosity analysis we noticed that they 535 showed very high apparent heterozygosity (Fig. 7B). Strikingly, this was also the 536 case for heterozygosity on the X chromosome in males. To determine if this was 537 an anomaly of our samples from Bangladesh we subjected the sequences of the 538 five whole genome sequenced "dog only" type worms from [20] to the same 539 analysis. Except for the worm L6, these sequences showed even higher apparent 540 heterozygosity, including on the X chromosome (all "dog only" type whole 541 genome sequenced individuals by [20] were males). Notice that with respect to 542 the mitochondrial and the nuclear genomes, L6 belongs to a separate sub-cluster 543 of the "dog-only" cluster than the other four worms and the worms isolated in 544 this study. It is not clear, if worms in this subcluster are more closely related to 545 the other "dog only" worms or to the "human and dog" worms (compare the 546 positions of L6 in Figs. 4-6 and Suppl. Figs. 1.2). We think this high apparent 547 heterozygosity is in part a consequence of using a divergent reference genome 548 sequence (the reference sequence for the human infective *S. stercoralis* belongs 549 to 'human and dog' cluster) for calling the heterozygous positions. The argument 550 for this with Figs. is provided in S3 File and briefly summarized here. First, we 551 asked if some of the *S. stercoralis* in Asia, in particular the "dog only" type might 552 not employ XX/XO sex determination as it is the case in the USA derived S. 553 stercoralis reference isolate [44]. We therefore performed read coverage analysis 554 for males and females. Overall, in both types the X chromosome showed lower 555 read coverage in males compared with autosomes and with females, suggesting 556 that males of the "dog only" type do only have one X chromosome. We then 557 analysed the heterozygosity over the length of the chromosomes. Males did

558 indeed show very low heterozygosity over large portions of the X chromosome 559 but there were apparent heterozygosity hot spots. These were visible in both 560 males and in females and also on autosomes. We think these apparent 561 heterozygosity hotspots reflect duplications and X to autosome translocations in 562 the genome of the "dog only" type, compared with the *S. stercoralis* reference 563 genome [44]. 564 565 Discussion 566 Among 12 *Strongyloides* positive persons from the Sylhet region we found four 567 who carried *S. fuelleborni* rather than *S. stercoralis*. This was unexpected, since in 568 Asia infections of humans with S. fuelleborni are considered very rare and 569 restricted to people with very close interactions with monkeys [45-47]. 570 In the Sylhet region there is a large population of free roaming monkeys. Albeit 571 we have no reason to distrust out study participants, we need to point out that 572 we cannot formally exclude that monkey faeces instead of human stool was 573 returned. In future studies intending to confirm this 'higher than expected' 574 infection of humans with *S. fuelleborni*, an independent confirmation of the host 575 (e.g. through the detection of host specific sequences in the stool), would be 576 desirable in order to dispel all doubts. Based on the *cox-1* sequences, the *S*. 577 fuelleborni in Bangladesh were most closely related with worms from Thailand, 578 Myanmar and Laos (cluster 3 in [21]) which makes sense due to geographic 579 proximity. 580 As expected, we also found hookworms. Based on their *cox-1* sequences they 581 were of the species *Necator americanus* (group A in [48]). In agreement with

earlier studies [24, 48], we found no indication for population separation

583 between Asia and Africa.

584	Overall, at the level of the nuclear and the mitochondrial genomes, the S.
585	stercoralis we found in Bangladesh in humans mixed in with the worms
586	described earlier from southeast Asia. Hence, we have no reason to assume that
587	S. stercoralis in humans from Bangladesh and from southeast Asia are genetically
588	distinguishable sub-populations. Together with the recent findings of [25] that <i>S</i> .
589	stercoralis in Iran also share much of their genetic diversity with the ones in
590	southeast Asia, these findings support the proposal by [26] and [34] that <i>S</i> .
591	stercoralis has only rather recently established in humans after a host switch of a
592	particular genotype from a canine host (possibly upon domestication of dogs)
593	and then spread in the human population. It should, however, be noticed that
594	based on reviewing published cox-1 sequences, [19] did detect significant
595	population structure and based on whole genome sequence, a possible asexual
596	population of <i>S. stercoralis</i> in southern China and the laboratory reference isolate
597	that originates from the USA, are genomically rather different from the southeast
598	Asian <i>S. stercoralis</i> [24].
599	We found only one Strongyloides positive dog and all worms we analysed from
600	this host individual had nuclear genomes that fell into the "dog only" cluster,
601	based on the nuclear SSU and (if determined) whole genome sequences) (cf. [20,
602	21, 26]). S. stercoralis of the "dog only" type (based on molecular taxonomy) had
603	so far been described only in southeast Asia [20, 26] and Australia [27] such that
604	our findings extend the range, in which this type is known to occur, further West.
605	The "dog only" type worms in this study showed a new SSU HVR-IV haplotype
606	(now called haplotype U) that differs by one nucleotide from haplotype D (c.f.

607	[21]). The fact that based on whole genome neighbour joining clustering all our
608	dog derived worms grouped together with perfect bootstrap support should not
609	be overinterpreted given that these worms were all derived from the same host
610	individual and therefore might have been closely related. It is, however,
611	noteworthy that the one worm that was isolated from a human but appeared
612	genomically to belong to the "dog only" type also grouped with the dog derived
613	worms although it had been isolated from Dhaka while the dog had been
614	sampled in Sylhet. Again, given an N of one, this should not be over interpreted.
615	In this study we made two unexpected observations. First, one of the human
616	derived worms belonged genomically to the type that was so far considered to
617	occur only in dogs. This one "dog only" type worm in a human does not
618	invalidate the general conclusion about species specificity by [20, 21, 26].
619	Occasional zoonotic infections of humans with animal parasitic nematodes have
620	been observed before, for example with filarial nematodes [49-53] or, even
621	rather frequently, with animal parasitic hookworms [54, 55] (and references
622	therein). It is therefore not really astonishing that with increasing sampling such
623	a case emerged also for <i>Strongyloides</i> . We must point out that also in this case,
624	we do not have an independent host confirmation and can therefore not exclude
625	with absolute certainty that dog faeces was returned. Second and more
626	importantly, we found two worms in the dog with nuclear genomes of the "dog
627	only" type but mitochondrial genomes of the "human and dog" type. This was
628	rather astonishing because, so far, in all cases where nuclear and mitochondrial
629	sequences from the same worms had been determined [20, 23, 26, 42, 43] both
630	sequence kinds always fell in the same cluster as defined by [20, 26] ("human
631	and dog" or "dog only"). This finding suggests that at least occasional

632	interbreeding of the two types does occur. A rare productive mating between a
633	"human and dog" type female and a "dog only" type male followed by breeding
634	with "dog only" type partners may have let to the introgression of the "human
635	and dog" mitochondrial haplotype into the "dog only" population.
636	We found a very high apparent heterozygosity in worms of the "dog only" type.
637	We think that this is in part an artifact caused by using the <i>S. stercoralis</i>
638	reference genome, which is derived from a human infective isolate [44].
639	Compared with the reference, the "dog only" type, which, in our opinion, is likely
640	to be a different species, might have a number of duplications with slightly
641	deviating sequences. The positions that differ between the copies will be falsely
642	considered heterozygous positions when the sequencing reads are aligned to the
643	reference sequence without the duplication. Further, there might be
644	translocations that are X chromosomal in the reference but autosomal in the
645	"dog only" type. We think these findings illustrate that the two types are
646	genomically rather different and that the <i>S. stercoralis</i> reference sequence is not
647	suitable as a reference for certain genomic analyses of at least some of the "dog
648	only" type <i>S. stercoralis</i> .
649	

650

651 Acknowledgements

652 We are grateful for infrastructural, logistic and practical field support to

653 Hyeonmo Kim (International Parasite Research Bank), Tarek Siddiki, Proloy

654 Chakraborty, Mohammad Rokibul Hasan Shanto (Sylhet Agricultural University),

655 Hamida Khanum, Mandira Mukutmoni, Priyanka Barua, Ayan Goswami and

656 Nusrat Jahan Moonmoon (University of Dhaka). We thank Keeseon Eom and the

657	International Parasite Research Bank and the Caenorhabditis elegans and
658	Nematode Bank at the Chungbuk National University for organisational support
659	and the MPI for Biology Tübingen Genome centre for assistance with whole
660	genome sequencing.
661	
662	
663	References
664	1. Beknaeknazarova M, Whiley H, Ross K. Strongyloidiasis: A Disease of
665	Socioeconomic Disadvantage. Int J Environ Res Public Health. 2016;13(5):517.
666	doi: 10.3390/ijerph13050517. PubMed PMID: 27213420; PubMed Central
667	PMCID: PMCPMC4881142.
668	2. Buonfrate D, Bisanzio D, Giorli G, Odermatt P, Furst T, Greenaway C, et al.
669	The Global Prevalence of Strongyloides stercoralis Infection. Pathogens.
670	2020;9(6):468. Epub 2020/06/18. doi: 10.3390/pathogens9060468. PubMed
671	PMID: 32545787; PubMed Central PMCID: PMCPMC7349647.
672	3. Olsen A, van Lieshout L, Marti H, Polderman T, Polman K, Steinmann P, et
673	al. Strongyloidiasisthe most neglected of the neglected tropical diseases?
674	Transactions of the Royal Society of Tropical Medicine and Hygiene.
675	2009;103(10):967-72. PubMed PMID: 19328508.
676	4. Bisoffi Z, Buonfrate D, Montresor A, Requena-Mendez A, Munoz J,
677	Krolewiecki AJ, et al. Strongyloides stercoralis: a plea for action. PLoS Negl Trop
678	Dis. 2013;7(5):e2214. Epub 2013/05/16. doi: 10.1371/journal.pntd.0002214.
679	PubMed PMID: 23675546; PubMed Central PMCID: PMC3649953.

680 5.	Buonfrate D	. Hunt VL.	Odermatt P	. Streit A. <i>Si</i>	tronavloides:	omics to worm-
--------	-------------	------------	------------	-----------------------	---------------	----------------

- 681 free populations. Philos Trans R Soc Lond B Biol Sci. 2024;379(1894):20220448.
- 682 Epub 20231127. doi: 10.1098/rstb.2022.0448. PubMed PMID: 38008116.
- 683 6. Buonfrate D, Tamarozzi F, Paradies P, Watts MR, Bradbury RS, Bisoffi Z.
- 684 The diagnosis of human and companion animal *Strongyloides stercoralis*
- infection: Challenges and solutions. A scoping review. Adv Parasitol. 2022;118:1-
- 686 84. Epub 20220902. doi: 10.1016/bs.apar.2022.07.001. PubMed PMID:
- 687 <u>36088083</u>.
- 688 7. Page W, Speare R. Chronic strongyloidiasis Don't look and you won't
- 689 find. Aust Fam Physician. 2016;45(1):40-4. PubMed PMID: 27051986.
- 690 8. Watts MR, G. R, Bradbury RS. The laboratory diagnosis of *Strongyloides*
- 691 *stercoralis*. Microbiology Australia. 2016;37(1):10.1071/MA16003.
- 692 9. Bradbury RS, Pafco B, Noskova E, Hasegawa H. *Strongyloides* genotyping:
- 693 a review of methods and application in public health and population genetics. Int
- 694 J Parasitol. 2021;51(13-14):1153-66. Epub 2021/11/11. doi:
- 695 10.1016/j.ijpara.2021.10.001. PubMed PMID: 34757088.
- 696 10. Bradbury RS, Streit A. Is strongyloidiasis a zoonosis from dogs? Philos
- 697 Trans R Soc Lond B Biol Sci. 2024;379(1894):20220445. Epub 20231127. doi:
- 698 10.1098/rstb.2022.0445. PubMed PMID: 38008118.
- 699 11. Wulcan JM, Dennis MM, Ketzis JK, Bevelock TJ, Verocai GG. Strongyloides
- spp. in cats: a review of the literature and the first report of zoonotic
- 701 *Strongyloides stercoralis* in colonic epithelial nodular hyperplasia in cats.
- 702 Parasites & vectors. 2019;12(1):349. Epub 2019/07/14. doi: 10.1186/s13071-
- 703 019-3592-7. PubMed PMID: 31300009.

- Thamsborg SM, Ketzis J, Horii Y, Matthews JB. *Strongyloides* spp.
- infections of veterinary importance. Parasitology. 2017;144(3):274-84. Epub
- 706 2016/07/05. doi: 10.1017/S0031182016001116. PubMed PMID: 27374886.
- 13. Brumpt E. Strongyloides stercoralis (Bavay, 1877) [in French]. In: Brumpt
- 708 E, editor. Précis de Parasitologie. Collection de Précis médicaux. 3ème edition ed.
- 709 Paris: Mason et Cie; 1922. p. 691-7.
- 710 14. Fulleborn F. Untersuchungen über den Infektionsweg bei Strongyloides
- und Ancylostomum und die Biologie dieser Parasiten. Arch Schiff Tropenhyg.
- 712 1914;18:182-236.
- 15. Little MD. Seven new species of *Strongyloides* (Nematoda) from Louisiana.
- 714 J Parasitol. 1966;52(1):85-97. PubMed PMID: 5932110.
- 16. Hasegawa H, Hayashida S, Ikeda Y, Sato H. Hyper-variable regions in 18S
- rDNA of *Strongyloides* spp. as markers for species-specific diagnosis. Parasitol
- 717 Res. 2009;104(4):869-74. PubMed PMID: 19050926.
- 718 17. Hasegawa H, Sato H, Fujita S, Nguema PP, Nobusue K, Miyagi K, et al.
- 719 Molecular identification of the causative agent of human strongyloidiasis
- acquired in Tanzania: dispersal and diversity of *Strongyloides* spp. and their
- 721 hosts. Parasitology international. 2010;59(3):407-13. Epub 2010/07/14. doi:
- 722 10.1016/j.parint.2010.05.007. PubMed PMID: 20621633.
- 18. Barratt JLN, Lane M, Talundzic E, Richins T, Robertson G, Formenti F, et al.
- A global genotyping survey of *Strongyloides stercoralis* and *Strongyloides*
- *fuelleborni* using deep amplicon sequencing. PLoS Negl Trop Dis.
- 726 2019;13(9):e0007609. Epub 2019/09/17. doi: 10.1371/journal.pntd.0007609.
- PubMed PMID: 31525192; PubMed Central PMCID: PMCPMC6762204 Talundzic
- 728 E, Bradbury R, Olsen C, Flaherty B. Removing Interfering Host Nucleic Acids for

729	Molecular Parasite Detection. Meredith Lane is employed by Synergy America as
730	a contractor to provide laboratory technical service to the Division of Parasitic
731	Diseases and Malaria at the Centers for Disease Control and Prevention. In this
732	capacity, there are no competing Interests in Ms. Lane's employment at Synergy
733	and her authorship of this paper. Meredith Lane is correctly affiliated to this
734	company (Synergy America). Meredith Lane and Synergy America hold no
735	consultancies or patents and have no products in development or marketed
736	products that are competing interests with this publication.
737	19. Spotin A, Mahami-Oskouei M, Nami S. Assessment of the global paradigms
738	of genetic variability in <i>Strongyloides stercoralis</i> infrapopulations determined by
739	mitochondrial DNA sequences. Comp Immunol Microbiol Infect Dis.
740	2019;67:101354. Epub 2019/10/07. doi: 10.1016/j.cimid.2019.101354. PubMed
741	PMID: 31586852.
742	20. Jaleta TG, Zhou S, Bemm FM, Schar F, Khieu V, Muth S, et al. Different but
743	overlapping populations of Strongyloides stercoralis in dogs and humans-Dogs as
744	a possible source for zoonotic strongyloidiasis. PLoS Negl Trop Dis.
745	2017;11(8):e0005752. doi: 10.1371/journal.pntd.0005752. PubMed PMID:
746	28793306; PubMed Central PMCID: PMCPMC5565190.
747	21. Barratt JLN, Sapp SGH. Machine learning-based analyses support the
748	existence of species complexes for Strongyloides fuelleborni and Strongyloides
749	stercoralis. Parasitology. 2020;147(11):1184-95. Epub 20200616. doi:
750	10.1017/S0031182020000979. PubMed PMID: 32539880; PubMed Central
751	PMCID: PMCPMC7443747.
752	22. Aupalee K, Wijit A, Singphai K, Rodelsperger C, Zhou S, Saeung A, et al.
753	Genomic studies on Strongyloides stercoralis in northern and western Thailand.

- 754 Parasites & vectors. 2020;13(1):250. Epub 2020/05/15. doi: 10.1186/s13071-
- 755 020-04115-0. PubMed PMID: 32404172; PubMed Central PMCID:
- 756 PMCPMC7222524.
- 757 23. Kikuchi T, Hino A, Tanaka T, Aung MP, Afrin T, Nagayasu E, et al. Genome-
- 758 Wide Analyses of Individual *Strongyloides stercoralis* (Nematoda: Rhabditoidea)
- 759 Provide Insights into Population Structure and Reproductive Life Cycles. PLoS
- 760 Negl Trop Dis. 2016;10(12):e0005253. doi: 10.1371/journal.pntd.0005253.
- 761 PubMed PMID: 28033376; PubMed Central PMCID: PMC5226825.
- 762 24. Zhou S, Fu X, Pei P, Kucka M, Liu J, Tang L, et al. Characterization of a non-
- sexual population of *Strongyloides stercoralis* with hybrid 18S rDNA haplotypes
- in Guangxi, Southern China. PLoS Negl Trop Dis. 2019;13(5):e0007396. Epub
- 765 2019/05/07. doi: 10.1371/journal.pntd.0007396. PubMed PMID: 31059500.
- 766 25. Beiromvand M, Ashiri A, de Ree V, Harbecke D, Rodelsperger C, Streit A, et
- al. *Strongyloides stercoralis* genotyping in a human population in southwestern
- 768 Iran. Parasites & vectors. 2024;17(1):21. Epub 20240116. doi: 10.1186/s13071-
- 769 023-06103-6. PubMed PMID: 38229164; PubMed Central PMCID:
- 770 PMCPMC10792921.
- 771 26. Nagayasu E, Aung M, Hortiwakul T, Hino A, Tanaka T, Higashiarakawa M,
- et al. A possible origin population of pathogenic intestinal nematodes,
- 773 *Strongyloides stercoralis,* unveiled by molecular phylogeny. Sci Rep.
- 774 2017;7(1):4844. doi: 10.1038/s41598-017-05049-x. PubMed PMID: 28687738;
- 775 PubMed Central PMCID: PMCPMC5501853.
- 776 27. Beknazarova M, Barratt JLN, Bradbury RS, Lane M, Whiley H, Ross K.
- 777 Detection of classic and cryptic *Strongyloides* genotypes by deep amplicon
- sequencing: A preliminary survey of dog and human specimens collected from

- remote Australian communities. PLoS Negl Trop Dis. 2019;13(8):e0007241.
- 780 Epub 2019/08/21. doi: 10.1371/journal.pntd.0007241. PubMed PMID:
- 781 31430282; PubMed Central PMCID: PMCPMC6716672.
- 782 28. Little MD. Comparative morphology of six species of *Strongyloides*
- (Nematoda) and redefinition of the genus. J Parasitol. 1966;52(1):69-84. PubMed
- 784 PMID: 5929983.
- 785 29. Viney ME, Ashford RW, Barnish G. A taxonomic study of Strongyloides
- 786 Grassi, 1879 (Nematoda) with special reference to Strongyloides fuelleborni von
- Linstow, 1905 in man in Papua New Guinea and the description of a new
- subspecies. Systematic Parasitology. 1991;18:95-109.
- 789 30. Dorris M, Viney ME, Blaxter ML. Molecular phylogenetic analysis of the
- 790 genus *Strongyloides* and related nematodes. International Journal for
- 791 Parasitology. 2002;32(12):1507-17. PubMed PMID: 12392916.
- 792 31. Gelaye W, Williams NA, Kepha S, Junior AM, Fleitas PE, Marti-Soler H, et al.
- 793 Performance evaluation of Baermann techniques: The quest for developing a
- microscopy reference standard for the diagnosis of *Strongyloides stercoralis*.
- 795 PLoS Negl Trop Dis. 2021;15(2):e0009076. Epub 20210218. doi:
- 796 10.1371/journal.pntd.0009076. PubMed PMID: 33600434; PubMed Central
- 797 PMCID: PMCPMC7891789.
- 798 32. Zhou S, Harbecke D, Streit A. From the feces to the genome: a guideline for
- the isolation and preservation of *Strongyloides stercoralis* in the field for genetic
- and genomic analysis of individual worms. Parasites & vectors. 2019;12(1):496.
- 801 Epub 2019/10/24. doi: 10.1186/s13071-019-3748-5. PubMed PMID: 31640777;
- 802 PubMed Central PMCID: PMCPMC6805601.

- 803 33. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics
- 804 Analysis Version 11. Mol Biol Evol. 2021;38(7):3022-7. doi:
- 805 10.1093/molbev/msab120. PubMed PMID: 33892491; PubMed Central PMCID:
- 806 PMCPMC8233496.
- 807 34. Ko PP, Suzuki K, Canales-Ramos M, Aung M, Htike WW, Yoshida A, et al.
- 808 Phylogenetic relationships of *Strongyloides* species in carnivore hosts.
- 809 Parasitology international. 2020;78:102151. Epub 20200603. doi:
- 810 10.1016/j.parint.2020.102151. PubMed PMID: 32502520.
- 811 35. Ko PP, Haraguchi M, Hara T, Hieu DD, Ito A, Tanaka R, et al. Population
- 812 genetics study of *Strongyloides fuelleborni* and phylogenetic considerations on
- 813 primate-infecting species of *Strongyloides* based on their mitochondrial genome
- 814 sequences. Parasitology international. 2023;92:102663. Epub 20220901. doi:
- 815 10.1016/j.parint.2022.102663. PubMed PMID: 36058466.
- 816 36. Kanzaki N, Yamashita T, Lee JS, Shih PY, Ragsdale EJ, Shinya R.
- 817 *Tokorhabditis* n. gen. (Rhabditida, Rhabditidae), a comparative nematode model
- 818 for extremophilic living. Sci Rep. 2021;11(1):16470. Epub 20210813. doi:
- 819 10.1038/s41598-021-95863-1. PubMed PMID: 34389775; PubMed Central
- 820 PMCID: PMCPMC8363662.
- 821 37. Felix MA, Braendle C, Cutter AD. A streamlined system for species
- 822 diagnosis in *Caenorhabditis* (Nematoda: Rhabditidae) with name designations for
- 15 distinct biological species. PLoS One. 2014;9(4):e94723. Epub 2014/04/15.
- doi: 10.1371/journal.pone.0094723. PubMed PMID: 24727800; PubMed Central
- 825 PMCID: PMC3984244.
- 826 38. Hasegawa H, Modry D, Kitagawa M, Shutt KA, Todd A, Kalousova B, et al.
- 827 Humans and great apes cohabiting the forest ecosystem in central african

828	republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8(3):e2715.					
829	doi: 10.1371/journal.pntd.0002715. PubMed PMID: 24651493; PubMed Central					
830	PMCID: PMCPMC3961186.					
831	39. Laymanivong S, Hangvanthong B, Insisiengmay B, Vanisaveth V,					
832	Laxachack P, Jongthawin J, et al. First molecular identification and report of					
833	genetic diversity of Strongyloides stercoralis, a current major soil-transmitted					
834	helminth in humans from Lao People's Democratic Republic. Parasitol Res.					
835	2016;115(8):2973-80. doi: 10.1007/s00436-016-5052-z. PubMed PMID:					
836	27083185.					
837	40. Hu M, Chilton NB, Gasser RB. The mitochondrial genome of <i>Strongyloides</i>					
838	stercoralis (Nematoda) - idiosyncratic gene order and evolutionary implications.					
839	Int J Parasitol. 2003;33(12):1393-408. PubMed PMID: 14527522.					
840	41. Hasegawa H, Kalousova B, McLennan MR, Modry D, Profousova-Psenkova					
841	I, Shutt-Phillips KA, et al. <i>Strongyloides</i> infections of humans and great apes in					
842	Dzanga-Sangha Protected Areas, Central African Republic and in degraded forest					
843	fragments in Bulindi, Uganda. Parasitology international. 2016;65(5 Pt A):367-					
844	70. doi: 10.1016/j.parint.2016.05.004. PubMed PMID: 27180094.					
845	42. Basso W, Grandt LM, Magnenat AL, Gottstein B, Campos M. Strongyloides					
846	stercoralis infection in imported and local dogs in Switzerland: from clinics to					
847	molecular genetics. Parasitol Res. 2019;118(1):255-66. doi: 10.1007/s00436-					
848	018-6173-3. PubMed PMID: 30552576.					
849	43. Sanpool O, Intapan PM, Rodpai R, Laoraksawong P, Sadaow L, Tourtip S, et					
850	al. Dogs are reservoir hosts for possible transmission of human strongyloidiasis					
851	in Thailand: molecular identification and genetic diversity of causative parasite					
	25					
	37					

- 852 species. J Helminthol. 2019;94:e110. Epub 2019/12/18. doi:
- 853 10.1017/S0022149X1900107X. PubMed PMID: 31843028.
- 44. Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, Foth BJ, et al. The genomic
- 855 basis of parasitism in the *Strongyloides* clade of nematodes. Nat Genet.
- 856 2016;48(3):299-307. doi: 10.1038/ng.3495. PubMed PMID: 26829753.
- 45. Janwan P, Rodpai R, Intapan PM, Sanpool O, Tourtip S, Maleewong W, et
- al. Possible transmission of *Strongyloides fuelleborni* between working Southern
- pig-tailed macaques (*Macaca nemestrina*) and their owners in Southern
- 860 Thailand: Molecular identification and diversity. Infect Genet Evol.
- 861 2020;85:104516. Epub 2020/08/30. doi: 10.1016/j.meegid.2020.104516.
- 862 PubMed PMID: 32860989.
- 863 46. Thanchomnang T, Intapan PM, Sanpool O, Rodpai R, Sadaow L, Phosuk I,
- 864 et al. First molecular identification of *Strongyloides fuelleborni* in long-tailed
- 865 macaques in Thailand and Lao People's Democratic Republic reveals
- 866 considerable genetic diversity. J Helminthol. 2019;93(5):608-15. Epub
- 867 2018/07/22. doi: 10.1017/S0022149X18000512. PubMed PMID: 30027858.
- 868 47. Thanchomnang T, Intapan PM, Sanpool O, Rodpai R, Tourtip S, Yahom S,
- 869 et al. First molecular identification and genetic diversity of *Strongyloides*
- 870 stercoralis and Strongyloides fuelleborni in human communities having contact
- with long-tailed macaques in Thailand. Parasitol Res. 2017;116(7):1917-23. doi:
- 872 10.1007/s00436-017-5469-z. PubMed PMID: 28500375.
- 873 48. Hasegawa H, Shigyo M, Yanai Y, McLennan MR, Fujita S, Makouloutou P, et
- al. Molecular features of hookworm larvae (*Necator* spp.) raised by coproculture
- 875 from Ugandan chimpanzees and Gabonese gorillas and humans. Parasitology

- 876 international. 2017;66(2):12-5. doi: 10.1016/j.parint.2016.11.003. PubMed
- 877 PMID: 27840196.
- 878 49. Aupalee K, Saeung A, Srisuka W, Fukuda M, Streit A, Takaoka H. Seasonal
- 879 Filarial Infections and Their Black Fly Vectors in Chiang Mai Province, Northern
- 880 Thailand. Pathogens. 2020;9(6):512. Epub 20200625. doi:
- 881 10.3390/pathogens9060512. PubMed PMID: 32630410; PubMed Central PMCID:
- 882 PMCPMC7350311.
- 883 50. Huang F, Srisuka W, Aupalee K, Streit A, Fukuda M, Pitasawat B, et al.
- 884 Diversity of nematodes infecting the human-biting black fly species, Simulium
- 885 nigrogilvum (Diptera: Simuliidae) in central Thailand. Acta Trop.
- 886 2021;224:106140. Epub 2021/09/26. doi: 10.1016/j.actatropica.2021.106140.
- 887 PubMed PMID: 34562429.
- 888 51. Fukuda M, Uni S, Igari T, Utsumi Y, Otsuka Y, Nakatani J, et al. Human case
- 889 of Onchocerca dewittei japonica infection in Fukushima, Northeastern Honshu,
- Japan. Parasitology international. 2019;72:101943. Epub 20190617. doi:
- 891 10.1016/j.parint.2019.101943. PubMed PMID: 31220633.
- 892 52. Takaoka H, Fukuda M, Otsuka Y, Aoki C, Uni S, Bain O. Blackfly vectors of
- zoonotic onchocerciasis in Japan. Med Vet Entomol. 2012;26(4):372-8. Epub
- 894 20120725. doi: 10.1111/j.1365-2915.2012.01023.x. PubMed PMID: 22827756.
- 895 53. Wesolowska M, Zajac-Pytrus H, Masny A, Pytrus W, Knysz B, Golab E, et al.
- 896 Onchocerca jakutensis ocular infection in Poland: a new vector-borne human
- health risk? Parasites & vectors. 2020;13(1):61. Epub 20200212. doi:
- 898 10.1186/s13071-020-3925-6. PubMed PMID: 32051010; PubMed Central
- 899 PMCID: PMCPMC7017525.

- 900 54. Hawdon JM, Wise KA. *Ancylostoma caninum* and Other Canine
- 901 Hookworms. In: Strube C, Mehlhorn H, editors. Dog Parasites Endangering
- 902 Human Health. Cham: Springer International Publishing; 2021. p. 147-93.
- 903 55. Aguilar-Rodriguez D, Seco-Hidalgo V, Lopez A, Romero-Sandoval N,
- 904 Calvopina M, Guevara A, et al. Geographic Distribution of Human Infections with
- 905 Zoonotic Ancylostoma ceylanicum and Anthropophilic Hookworms in Ecuador: A
- 906 Retrospective Analysis of Archived Stool Samples. Am J Trop Med Hyg.
- 907 2024;110(3):460-9. Epub 20240123. doi: 10.4269/ajtmh.23-0469. PubMed
- 908 PMID: 38266286.
- 909

911 **Supporting information Captions**

- 912
- 913 S1 File: FASTA file of the *S. fuelleborni* whole mitochondrial sequences used in
- 914 Fig. 3.
- 915
- 916 S2 File: FASTA file of the *S. stercoralis* whole mitochondrial sequences used in S2
- 917 Fig (contains all sequences used in Fig. 5).
- 918
- 919 S3 File: Full argument for result section 2.10 Worms belonging to the "dog only"
- 920 type show high apparent heterozygosity that is likely caused in part by structural

921 variations, rather than true heterozygosity (text and three figures).

922

923 S1 Table: Excel table showing the different *cox-1* haplotypes for the *S. stercoralis,*

924 *S. fuelleborni* and *N. americanus* found in this study in different tabs. The last tab

shows the sequences extracted from the *S. stercoralis* whole genome sequencingread data from [20].

927

928 S1 Fig: NJ tree based on *cox-1* with more sequences compared with Fig. 4.

929 Diamonds label the two worms that showed "human and dog" type

930 mitochondrial but "dog only" type nuclear sequences. The asterisk labels the

931 worm in the "dog only" cluster isolated from a human host. Sequences found in

- 932 this study are in red, the number of worms this sequence was found in is in ().
- 933 Samples in blue are worms from [20] for which full genome short read
- 934 sequences are available. For every sample the country of origin (CAR=Central
- 935 African Republic, USA=United States of America), the host and the GenBank

936	accession number is given. For worms from Cambodia also the worm individual
937	is given after the host to facilitate cross reference with [20]. Samples from
938	Cambodia are from [20], samples from Laos are from [39], samples from
939	Myanmar, Thailand and Uganda are from [26], samples from Iran are from [25],
940	sample from the USA is from [40], samples from Tanzania, and Japan are from
941	[17], samples from CAR are from [41] and samples from China are from [24].
942	
943	S2 Fig: NJ tree based on whole mitochondrial genome sequences with more
944	sequences compared with Fig. 5. Diamonds label the two worms that showed
945	"human and dog" type mitochondrial but "dog only" type nuclear sequences. The
946	asterisk labels the worm in the "dog only" cluster isolated from a human host.
947	The sequences from this study are in red. The other sequences were extracted
948	from the whole genome sequencing read data of the following references:
949	Cambodia [20], Thailand [22], Iran [25], Myanmar and Japan [23], USA [44] and
950	China [24]. A FASTA file with all sequences used is provided as S2 File.
951	
952	S3 Fig (without the "dog only" cluster) and S4 Fig (including the "dog only"
953	cluster): Different representation of the cladograms based on whole genome
954	sequences compared with Fig. 6. Diamonds label the two worms that showed
955	"human and dog" type mitochondrial but "dog only" type nuclear sequences. The
956	asterisk labels the worm in the "dog only" cluster isolated from a human host.
957	The sequences from this study are in red. The other sequences were extracted
958	from the whole genome sequencing read data of the following references:
959	Cambodia [20], Thailand [22], Iran [25], Myanmar and Japan [23], USA [44] and
960	China [24].

0.02

Figure 3

0.01

Heterozygosity autosome

Heterozygosity autosome

Heterozygosity X-chromosome