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 2

Abstract 24 

Background: About 600 million people are estimated to be infected with 25 

Strongyloides stercoralis, the species that causes the vast majority of human 26 

strongyloidiasis cases. S. stercoralis can also infect non-human primates (NHPs), 27 

dogs and cats, rendering these animals putative sources for zoonotic human S. 28 

stercoralis infection. S. fuelleborni is normally found in old world NHPs but 29 

occasionally also infects humans, mainly in Africa. Dogs in southeast Asia carry at 30 

least two types of Strongyloides, only one of which appears to be shared with 31 

humans ("dog only" and "human and dog" types).  For S. stercoralis with 32 

molecular taxonomic information, there is a strong sampling bias towards 33 

southeast and east Asia and Australia.  34 

Methodology/Principle findings: We collected human and dog derived 35 

Strongyloides spp. and hookworms from two locations in Bangladesh and 36 

subjected them to molecular taxonomic and genomic analysis based on nuclear 37 

and mitochondrial sequences. All hookworms found were Necator americanus. 38 

Contrary to earlier studies in Asia, we noticed a rather high incidence of S. 39 

fuelleborni in human samples. Also in this study, we found the two types of S. 40 

stercoralis and no indication for genetic isolation from the southeast Asian 41 

populations. However, we found one S. stercoralis worm in a human sample that 42 

genomically was of the "dog only" type and we found two worms in a dog sample 43 

that had the nuclear genomes of the "dog only" type but the mitochondrial 44 

genome of the "human and dog" type. 45 

Conclusions/Significance: S. fuelleborni may play a more prominent role as a 46 

human parasite in certain places in Asia than previously thought. The 47 

introgression of a mitochondria haplotype into the "dog only" population 48 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.24307305doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.16.24307305
http://creativecommons.org/licenses/by/4.0/


 3

suggests that rare interbreeding between the two S. stercoralis types does occur 49 

and that exchange of genetic properties, for example a drug resistance, between 50 

the two types is conceivable. 51 

 52 

 53 

Author Summary 54 

More than 600 million people are infected with the nematode intestinal parasite 55 

Strongyloides stercoralis. Dogs can also carry S. stercoralis. In southeast Asia 56 

different genetic types that either infect only dogs or humans and dogs were 57 

described. Strongyloides fuelleborni, (normally found in old-world monkeys) can 58 

also infect humans, mainly in Africa. We collected Strongyloides spp. and hook 59 

worms, from humans and a dog in Bangladesh and analyzed their nuclear and 60 

mitochondrial genomes. All hookworms were Necator americanus, one of the 61 

two major human hookworm species. Contrary to the general believe that 62 

human infections with S. fuelleborni are extremely rare in Asia, we found 63 

multiple such cases, suggesting that S. fuelleborni plays a more important role as 64 

a human parasite than previously thought also in Asia. 65 

We found the two expected genetic types of S. stercoralis. For the first time we 66 

found a genomically "dog only" type worm in a person and we found two worms 67 

with nuclear genomes of the "dog only" type but mitochondrial genomes of the 68 

"human and dog" type. This suggest that rare interbreeding between the two 69 

types occurs, such that exchange of genetic properties, such as a drug resistance, 70 

between the two types is conceivable. 71 

 72 
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Introduction 76 

Strongyloidiasis is one of the soil-transmitted helminthiasis (STH), which 77 

are recognized as neglected tropical diseases (NTDs, 78 

https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1). 79 

However, although clearly more prevalent in tropical and sub-tropical areas, the 80 

disease is not limited to these regions and should probably be rather regarded as 81 

a disease of socioeconomically disadvantaged people rather than strictly a 82 

tropical disease [1, 2]. Until recently, strongyloidiasis was often neglected, even 83 

in comparison with other STHs [3] but over the last few years there is increasing 84 

interest in this disease [1, 4, 5]. The estimate of the number of people currently 85 

infected with Strongyloides stercoralis, the species which causes the vast majority 86 

of human strongyloidiasis cases, has recently been corrected upwards to "about 87 

600 million" [2]. Given the difficulties with diagnosis, the true number may be 88 

even higher [6-8]. Although  S. stercoralis has also been reported to occur in non-89 

human primates (NHPs), dogs and cats, rendering these animals putative sources 90 

for zoonotic human S. stercoralis infection [6, 9-11]. In NHPs and in cats other, 91 

more or less host specific species of Strongyloides were also described, i. e. S. 92 

fuelleborni and S. cebus in NHPs, and S. planiceps and S. felis in cats [12]. The 93 

species status of Strongyloides in dogs has been controversially discussed ever 94 

since Brumpt separated the Strongyloides in dogs as S. canis from the human 95 

infective species S. stercoralis [13], interestingly based on the very same data 96 

that had convinced Fülleborn that the Strongyloides he found in the dogs 97 

belonged to the same species as the ones in humans [14].  While it became clear 98 

that dogs can be experimentally infected with at least some isolates of S. 99 

procyonis (natural host racoon, [15]) and human infective S. stercoralis 100 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.16.24307305doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.16.24307305
http://creativecommons.org/licenses/by/4.0/


 6

(reviewed in [10]) it remained enigmatic if the species causing most natural 101 

Strongyloides infections in dogs is different from the one in humans.  102 

Over the last years, the Hyper Variable Regions (HVR) I and IV of the 103 

nuclear Small SUbunit ribosomal RNA locus (SSU) and the mitochondrial cox-1 104 

loci have emerged as the standard markers for molecular taxonomy within the 105 

genus Strongyloides spp. and within the species, S. stercoralis [16-19]. A 106 

nomenclature system for the different haplotypes has been proposed and 107 

extended [18, 20, 21]. A few studies, analyzing samples from East and southeast 108 

Asia [20, 22-24], and Iran [25] analyzed whole genome data from individual S. 109 

stercoralis worms in addition to the SSU and cox-1 markers. Jaleta et al. [20] and 110 

Nagayasu et al. [26]  in southeast Asia and Beknazarova et al. in Australia [27] 111 

found that dogs carried at least two types of Strongyloides, only one of which 112 

appeared to be shared with humans in the same region. In this manuscript we 113 

will refer to them as "human and dog" and "dog only", respectively. Barratt and 114 

Sapp [21] compiled all sequence information available from S. stercoralis from 115 

different hosts and used machine learning approaches to analyze these data in 116 

depth. Their findings suggest that S. stercoralis is in fact a complex of closely 117 

related species with different but overlapping host spectra. While from these 118 

data it appears most likely that zoonotic S. stercoralis infections can happen, 119 

currently, we do not know how important such infections are for the overall S. 120 

stercoralis epidemiology, compared with human to human transmission [10]. In 121 

addition to S. stercoralis, Strongyloides fuelleborni, which can be distinguished 122 

from S. stercoralis morphologically [28] and coprologicaly (from this species eggs 123 

are shed with the faeces and not larvae as in S. stercoralis [29]), has been found 124 

to be able to infect humans. Two subspecies of S. fuelleborni have been described, 125 
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namely S. fuelleborni fuelleborni and S. fuelleborni kellyi [29]. While the former is 126 

the predominant species of Strongyloides in old world non-human primates, S. 127 

fuelleborni kellyi has been found only in humans in Papua New Guinea [29]. 128 

Based on molecular taxonomy [30] we think S. f. kellyi should probably be 129 

considered a separate species and do not further discuss it in this publication. 130 

For the rest of this publication "S. fuelleborni" always refers to S. fuelleborni 131 

fuelleborni. Barratt and Sapp [21] described genetic/genomic differences 132 

between S. fuelleborni in Africa and S. fuelleborni in Asia. The vast majority of 133 

human S. fuelleborni infections were found in Africa and [21] found genetic 134 

indication for a human specialized sub-population within the African clade, 135 

suggesting human to human transmission. In Asia, on the other hand, no such 136 

genetic hint was found and it appears that human S. fuelleborni infections are 137 

restricted to individuals with close contact to non-human primates, indicating 138 

that most, if not all human S. fuelleborni cases in Asia are zoonotic [21] and 139 

references therein. 140 

So far, for S. stercoralis with molecular taxonomic information, there is a 141 

strong sampling bias towards southeast Asia, East Asia and Australia [21]. To 142 

further extend the geographic range, we collected S. stercoralis from two 143 

locations in Bangladesh. We knew that S. stercoralis is prevalent in Bangladesh 144 

([2] lists an estimated overall prevalence of 17.3%), but we are not aware of any 145 

published systematic study on S. stercoralis in this country. Contrary to earlier 146 

studies in Asia, we noticed a rather high incidence of S. fuelleborni in humans. 147 

Molecular taxonomically these worms grouped clearly with the Asian clade 148 

defined by [21]. Molecular taxonomically, the S. stercoralis, we found mixed in 149 

with the southeast Asian population described earlier [20, 22, 23, 26] and 150 
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appeared not to form a separate population. However, we found one S. 151 

stercoralis worm in a human sample that was of a type that had been considered 152 

dog-specific and we found two worms in a dog sample that had the nuclear 153 

genomes of the "dog only" type but the mitochondrial genome of the "human and 154 

dog" type, suggesting that occasional interbreeding between the types does 155 

occur. 156 

 157 

Methods 158 

Ethics statement 159 

All participants were volunteers and gave informed consent. The sampling of 160 

human-derived material including the procedures to obtain informed consent, 161 

was in accordance with the Bangladeshi legal requirements and with the 162 

guidelines of the Sylhet Agricultural University. This study was approved by the 163 

Ethical Review Committee, Sylhet Agricultural University Research System 164 

(SAURES), Bangladesh (SAURES-UGC-2022-04). Interested putative participants 165 

were informed orally about the project and, if they chose to participate, were 166 

handed collection containers. All participants remained free to return the 167 

container or not. 168 

 169 

Study area, Sample collection and processing 170 

Human faecal samples were collected from two regions from Bangladesh that 171 

had been previously identified as high prevalence areas for helminthiasis: Sylhet, 172 

and Dhaka in December 2022. 134 human samples from four different locations 173 

in Sylhet; Khadim tea garden, Daldali tea garden, Baluchar and Fotehpur and one 174 

dog sample from the premises of Sylhet Agricultural University were analysed. In 175 
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Dhaka 95 human samples were collected from two locations: Hazaribug and 176 

Mohammadpur.  177 

 178 

Stool collection jars with a spoon were distributed to the individuals who agreed 179 

to participate in the study after explaining how to properly collect the stool 180 

sample without soil contamination. The next day the sample jars were collected.   181 

Faecal samples were mixed well with approximately equal volumes of activated 182 

charcoal (Roth 5966.1) to facilitate air exchange. Water was added to make the 183 

samples well moisturized but not soakingly wet. This mixture was incubated in 184 

the room temperature (R.T.) for 24-48hrs with the lid partially open and re-185 

moisturized on need-to basis. Samples were analysed using modified miniature 186 

Baermann apparatuses based on 50ml Falcon Tubes as described [31]. In brief, 187 

faeces mixture was placed in the centre of a 10x10cm cotton gauze and made it 188 

into a pouch secured using a toothpick which was submerged in a 50ml falcon 189 

tube filled with lukewarm water. After 3hrs of incubation at ambient 190 

temperature the sediment was taken out using a Pasteur pipette and observed 191 

under a stereo dissecting microscope for the presence of worms. These worms in 192 

part individually and in part bulk preserved in 80% ethanol at the Sylhet 193 

Agricultural University as described [32] and brought back to the Max Planck 194 

Institute for Biology, Tübingen for molecular/genomic analysis.  195 

 196 

Single worm lysis and cox-1, SSU HVR-I and SSU HVR-IV genotyping 197 

Single worm lysis for adults and larvae was performed as described [32]. For 198 

infective larvae the lysis was extended to 6 hrs at 65°C. The lysate was either 199 

freshly used for PCR or stored at -20°C.  The cox-1, SSU HVR-I and SSU HVR-IV 200 
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were PCR amplified using the primers described in [24]. For the SSU HVR-I and 201 

the SSU HVR-IV for all worms the same primer pairs RH5401/RH5402 and 202 

18SP4F/18SPCR, respectively, were used. For cox-1 the primers designed for S. 203 

stercoralis (but also working for some other species) ( ZS6985/ZS6986) were 204 

used, unless the worm was already known to be a hookworm, in which case the 205 

hookworm optimized primer ZS6989 was used as the reverse primer instead of 206 

ZS6986. For the PCR, 10µl of QIAGEN Taq PCR master mix (x2) (201443), 0.4µl 207 

of 10µM forward and reverse primers, 7.2µl of PCR water and as template 2µl of 208 

single worm lysate were added. For S. fuelleborni the same primers as for S. 209 

stercoralis were used. 210 

For sequencing 1µl of PCR product was mixed with 1µl of the relevant 211 

sequencing primer (10µM) [24] and 8µl of water and submitted to Genewiz, 212 

Leipzig, Germany. S. stercoralis P203 iL3 HVR-I PCR product and S. fuelleborni 213 

cox-1 PCR products were gel purified (1% agarose, 1X TAE) using the QIAquick 214 

gel extraction kit (Qiagen 28706) prior to sequencing. If the sequencing result 215 

was not clean, the PCR products were sequenced again using the alternative 216 

sequencing primers listed by [24] or the amplification primers. Sequence quality 217 

and the presence of hybrid sequences was manually assessed by looking at the 218 

chromatograms using the SnapGene® software (from Dotmatrics; available at 219 

snapgene.com). The sequences were first compared with published sequences in 220 

the National Centre for Biotechnology Information (NCBI) database using the 221 

BLAST function (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and then 222 

phylogenetically analysed using MEGA11 [33] with the Neighbour-joining 223 

method and default settings. The robustness of the trees was assessed with 1000 224 

boot strap repetitions. Position numbers refer to GeneBank entries AF279916 225 
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for the S. stercoralis and S. fuelleborni SSU, LC050212 for the S. stercoralis and S. 226 

fuelleborni cox-1 and AJ417719 for hookworm cox-1 sequences. 227 

We also retrieved cox-1 sequences from the read data of the whole genome 228 

sequenced worms in [20] (see Fig. 4 of this reference) and submitted them to 229 

GenBank along with the cox-1 sequences from this study (accession numbers 230 

OR804688-712, OR805174, 81, OR810937-54, OR809277-99).  231 

 232 

Whole genome sequencing 233 

Whole genome sequencing was done as described [25] with slight differences as 234 

follows. In the DNA clean-up step, 11-14µl of lysis were used instead of 10µl. In 235 

the pooling and concentration adjustment step the bead clean-up was skipped. 236 

The concentrations were calculated for the samples and 2nM of each sample 237 

were pooled which resulted in a 1.85nM final concentration in the pool which 238 

was then submitted to the MPI for Biology in-house sequencing facility for 239 

Illumina NexSeq 2000 sequencing.  240 

 241 

Analysis of the whole genome sequences 242 

Whole genome tree 243 

The paired end sequencing resulted 5.7-21.5 x coverage for the S. stercoralis 244 

samples. WGS data for 12 S. stercoralis samples and three S. fuelleborni samples 245 

were uploaded to the European Nucleotide Archive under the study accession 246 

PRJEB70604.  247 

The read alignment, duplicate removal, variant calling, defining heterozygous 248 

sites, creating the genotype using variant positions and constructing the NJ tree 249 

based on the variant positions were all done as described [25]. 250 
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 251 

Whole mitochondrial (wmit) tree 252 

WG sequencing reads from this study and previous studies were aligned to the S. 253 

stercoralis wmit reference genome (NC_028624.1 [identical to LC050212]) to 254 

generate wmit sequence assemblies. The four wmit sequences from [34] were 255 

used directly. Read alignment, binary alignment file generation and duplicate 256 

removal were done as mentioned above. BAM files were loaded to IGV_2.16.0 257 

and the consensus sequences were obtained using the ‘copy consensus sequence 258 

function’ in IGV. NJ trees were generated using MEGA 11. The sequence file used 259 

as input for MEGA 11 can be found in S1 File.   260 

To generate wmit assemblies from the S. fuelleborni in this study we first aligned 261 

the reads to two mitochondrial whole genome sequences from  [35] (OL505577, 262 

arrangement A and OL602833, arrangement B) and visualized the BAM files 263 

using IGV. Since the tRNA(Met) gene that is present in arrangement B but absent 264 

in arrangement A was absent from all our S. fuelleborni sequences we decided to 265 

use OL505577 as reference. A wmit tree for S. fuelleborni was generated using 266 

sequences from this study and from [35] as described for S. stercoralis above. 267 

 268 

Heterozygosity analysis 269 

General heterozygosity analysis was done as described [25].  270 

 271 

Coverage analysis 272 

Coverage for both autosomal contigs and X-chromosomal contigs were analysed 273 

using samtools (0.1.18) depth command and the coverage was plotted against 274 

the number of positions using R studio.   275 
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Results 278 

We analysed 134 human samples (in most cases rather small samples) collected 279 

from Sylhet and found worms in 25 of them. In seven samples we found only 280 

Strongyloides, in five samples Strongyloides and hookworms, in 12 samples only 281 

hookworms and in one sample we found several worms that, based on their 18S 282 

sequence belonged to Tokorhabditis spp., which is a genus of free-living 283 

nematodes [36]. We think this last case represents a contamination from the 284 

ground and this sample is not further discussed. The one dog sample we 285 

obtained was positive for Strongyloides. From Dhaka, we found Strongyloides in 286 

only two out of 95 human samples, while, based on 18S sequence, we detected 287 

Caenorhabditis nigoni, which are free-living nematodes [37] in six of them. These 288 

worms likely represent ground contamination and are not discussed further. 289 

For 71 hookworms and 99 Strongyloides (67 from humans, 32 from the dog) the 290 

sequence of at least one out of the SSU HVR-I, SSU HVR-IV or cox-1 was 291 

successfully determined. 292 

 293 

The hookworms found were Necator americanus 294 

Initially 47 worms were confirmed to be hookworms, based on SSU sequences. 295 

Since the different hookworm species cannot be distinguished based on their SSU 296 

HVR-I or SSU HVR-IV sequences, we determined the cox-1 sequence using the 297 

same primers used in [24], which was successful for 42 worms. Among these 298 

worms, we identified 18 different cox-1 haplotypes (accession numbers 299 

OR810937-54), of which six were identical with existing database entries, while 300 

12 were new (S1 Table). In several occasions worms with different cox-1 301 

sequences were found within the same host (S1 Table).  All 18 sequences 302 
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clustered with perfect bootstrap support with the group A [38] which is 303 

considered Necator americanus (Fig. 1). Within the species N. americanus, our 304 

samples did not cluster together but intermixed with sequences derived from 305 

Africa and Asia, arguing against the presence of a Bangladesh specific sub-306 

population. In addition, 24 larvae for which we amplified the cox-1 sequence 307 

using the primers optimized for S. stercoralis turned out to be hookworms. Since 308 

these sequences were shorter than the ones generated using the hookworm 309 

specific primers, they are not included in Fig. 1. However, all 24 sequences 310 

clearly grouped with Necator americanus sequences. Hence, overall, we 311 

identified 71 worms as hookworms, of which we confirmed 66 to be Necator and 312 

not Ancylostoma. 313 

 314 

Fig. 1: Neighbour joining tree based on partial hookworm cox-1 sequences 315 

(670bp). Sequences found in this study are in red, the number of worms this 316 

sequence was found in is in (). Triangles indicate haplotypes that had been 317 

previously known. For every sample the country of origin (CAR=Central African 318 

Republic), the host and the GenBank accession number are given.  319 

 320 

 321 

High incidence of S. fuelleborni 322 

Strikingly, four out of the 12 individuals found to be infected with Strongyloides 323 

spp. in Sylhet carried S. fuelleborni and not S. stercoralis (two of them were co-324 

infected with hookworms). 325 

At the SSU, all 16 S. fuelleborni genotyped were HVR-I haplotype XIV and HVR-IV 326 

haplotype S (cf. [21]). Out of the 16 worms, cox-1 sequences were obtained for 327 
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15. We identified eight different cox-1 haplotypes (accession numbers 328 

OR805174-81), none of which had been reported before (S1 Table).  All three 329 

persons for whom we obtained the cox-1 sequence from more than one worm, 330 

carried worms with different haplotypes (S1 Table). In a phylogenetic analysis 331 

based on the cox-1 sequences (Fig. 2), all eight sequences clearly grouped with S. 332 

fuelleborni from southeast Asia (mainly Thailand, Myanmar and Laos) described 333 

as cluster 3 by [21], further supporting the notion that in S. fuelleborni (different 334 

from S. stercoralis) geographic sub-populations exist and an Asian and an African 335 

clade exist [21]. 336 

From three S. fuelleborni derived from three different persons we performed 337 

whole genome Illumina short read sequencing (Table 1) and deposited the read 338 

data in the European Nucleotide Archive (accession number PRJEB70604). Since 339 

there is no reference nuclear genome for this species available, we make these 340 

data publicly available here without further analysis. From these data we 341 

extracted the full mitochondrial genomes and compared them with the 342 

sequences reported by [35]. The sequences analysed are listed in S1 File. All 343 

three worms clustered with the samples containing mitochondrial genome 344 

arrangement A and did not contain the tRNA(Met) gene that is absent from 345 

arrangement A but present in arrangement B.  Arrangement A had been 346 

observed in S. fuelleborni derived from macaques in Myanmar and Japan and was 347 

hypothesized to represent the ancestral state [35] (Fig. 3). 348 

 349 

Fig. 2: Neighbour joining tree based on partial S. fuelleborni cox-1 350 

sequences (552bp). Sequences found in this study are in red, the number of 351 

worms this sequence was found in is in (). For every sample the country of origin 352 
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(CAR=Central African Republic), the host and the GenBank accession number are 353 

given.  354 

 355 

Fig. 3: Neighbour joining tree based on full mitochondrial nucleotide 356 

sequences. All non-Bangladesh sequences are from Ko et al. (2023). The Letters 357 

(A or B) refer to the genome arrangement described in Ko et al. (2023) 358 

(compared with B, arrangement A lacks a tRNA(Met) gene present adjacent to 359 

the S1 gene). For every sample the country of origin, the host and the GenBank 360 

accession number or the worm identifier (for sequences from this study) are 361 

given. The sequences from this study were extracted from the data available 362 

from the European Nucleotide Archive under the accession number 363 

PRJEB70604. A FASTA file with all sequences used is provided as S1 File. 364 

 365 

 366 

S. stercoralis SSU haplotypes 367 

For SSU HVR haplotype nomenclature see [21]. At the SSU HVR-IV the S. 368 

stercoralis in our samples had either haplotype A (28 individuals), which was 369 

described to be indicative for the "human and dog" type [20, 21] or a new 370 

haplotype we call U (31 individuals, Fig. 4a). All but one (see below) of the 371 

carriers of haplotype U were isolated from the dog. At SSU HVR-I, 28 worms had 372 

haplotype I, 26 worms had haplotype II and one worm each had haplotype III 373 

and V. In all cases where we have the sequences for both HVRs, HVR-IV 374 

haplotype A co-occurred with HVR-I haplotype II (24 cases) or III (one case) 375 

while HVR-IV haplotype U co-occurred with HVR-I haplotype I (28 cases) or V 376 
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(one case). Notice that in an earlier study in Cambodia [20], HVR-I haplotype I 377 

did also co-occur with HVR-IV haplotype A. 378 

 379 

Fig. 4: cox-1, SSU HVR-I and SSU HVR-IV haplotypes of our samples 380 

compared with selected published sequences. A: sequence of the new SSU 381 

HVR-IV haplotype U compared with the previously reported haplotypes 382 

(nomenclature according to [21]) mentioned in B. Notice that haplotype E was 383 

called haplotype C in Zhou et al. (2019).  B: neighbour joining tree based on 384 

partial S. stercoralis cox-1 sequences (552bp). Sequences found in this study are 385 

in red, the number of worms this sequence was found in is in (). Samples in blue 386 

are worms from [20] for which full genome short read sequences are available. 387 

For every sample the country of origin (CAR=Central African Republic, 388 

USA=United States of America), the host and the GenBank accession number is 389 

given.  For worms from Cambodia also the worm individual is given after the 390 

host to facilitate cross reference with [20]. For each cox-1 haplotype the SSU 391 

HVR-I and SSU HVR-IV haplotypes found in individuals with this cox-1 haplotype 392 

are indicated (if known). Samples from Cambodia are from [20], samples from 393 

Laos are from [39], samples from Myanmar, Thailand and Uganda are from [26], 394 

samples from Iran are from [25], sample from the USA is from [40], samples 395 

from Tanzania, and Japan are from [17], samples from CAR are from [41] and 396 

samples from China are from [24]. Haplotypes separated by ‘/’ indicates a 397 

heterozygous worm. For a cox-1 tree with more sequences see S1 Fig. Diamonds 398 

label the two worms that showed "human and dog" type mitochondrial but "dog 399 

only" type nuclear sequences. The asterisk labels the worm in the "dog only" 400 

cluster isolated from a human host. 401 
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 402 

 403 

S. stercoralis cox-1 haplotypes 404 

In a total of 76 worms, we detected 25 different cox-1 haplotypes (accession 405 

numbers OR804688-712) of which three had been previously reported while 22 406 

were new (S1 Table). Each haplotype was present in between one and 15 407 

different worms with the previously known haplotypes being the first (15 408 

worms), second (11 worms) and fifth (seven worms) most abundant ones (Fig. 409 

4). Upon phylogenetic analysis (Fig. 4, S1 Fig) the previously described and five 410 

of the new haplotypes (representing 48 worms, two of which had been isolated 411 

from the dog) grouped with sequences in the "human and dog" clusters 412 

according to [20]. 17 haplotypes (representing 28 worms, of which one had been 413 

isolated from a human sample [see below]) grouped with one of the "dog only" 414 

clusters according to [20]. 415 

 416 

A "dog only" type S. stercoralis in a human host 417 

Strikingly, one of the worms that by cox-1 sequence fell into the "dog only" 418 

cluster had been isolated from a human from Dhaka (worm: Human_J102 - f1, 419 

asterisk in Fig. 4B). This was the sole worm found in this particular sample and it 420 

carried the new SSU HVR-IV haplotype U, and HVR-I haplotype I, like all but one 421 

(the one with HVR-I haplotype V) of the other worms from our study in this 422 

cluster, which all came from the dog. 423 

 424 

First finding of a "human and dog" type mitochondrial genome in 425 

combination with a "dog only" type nuclear genome 426 
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In all previous studies that we are aware of, where nuclear and mitochondrial 427 

sequences from the same worms were determined [20, 23, 26, 42, 43] both 428 

sequence kinds always fell in the same group as defined by [20, 26] ("human and 429 

dog" or "dog only"). Here, for the first time, we found worms where the 430 

phylogenetic positioning based on the cox-1 and on the SSU sequences was not in 431 

agreement. In the dog we found two worms, that based on their cox-1 sequences 432 

fell within the "human and dog" type but had SSU haplotypes normally 433 

associated with the "dog only" type (diamonds in Fig. 4B). This suggests that rare 434 

interbreeding between the two types does occur. 435 

 436 

The S. stercoralis population in humans is genetically close to the one in 437 

southeast Asia 438 

Since the conclusions above are based on a rather small number of informative 439 

positions, we performed Illumina whole genome sequencing of the three notable 440 

worms mentioned above along with nine other individuals isolated from humans 441 

and the dog (Table 1). Then we compared their mitochondrial and nuclear 442 

genomes. The read data are available from the European Nucleotide Archive 443 

(accession number PRJEB70604). The extracted whole mitochondrial genomes 444 

are listed in S2 File.  445 

 446 

Table 1: Whole genome sequenced samples 447 

Sample 

number 

Worm ID Species cox-1 

haplotype 

(type) 

SSU HVR-I 

haplotype 

SSU HVR-IV 

haplotype 

Internal ID in 

sequencing 

protocol 

1 Human_C19 - f2 S. stercoralis OR804711 II A 1 
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2 Human_C19 - f4 S. stercoralis OR804711 II A 3 

3 Human_F40 - f1 S. stercoralis OR804710 II A 14 

4 Human_F10 - f1 S. stercoralis OR804710 II A 17 

5 Human_F10 - f3 S. stercoralis OR804709 II A 19 

6 Human_J102 - f1 S. stercoralis OR804706 I U 20 

7 Dog - f1 S. stercoralis OR804688 I U 21 

8 Dog - f2 S. stercoralis OR804689 I U 22 

9 Dog - f4 S. stercoralis OR804691 I U 24 

10 Dog - f5 S. stercoralis OR804692 I U 25 

11 Dog - f6 S. stercoralis OR804693 I U 26 

12 Dog - m2 S. stercoralis OR804701 I U 27 

13 Human_A22 - f1 S. fuelleborni OR805174 XIV S 29 

14 Human_G22 - f1 S. fuelleborni OR805178 XIV S 33 

15 Human_V132 - f1 S. fuelleborni OR805181 XIV S 36 

The cox-1 haplotypes are referred to by their GenBank accession numbers. The 448 

nomenclature for the SSU HVRs is taken from [21] with U being a new haplotype 449 

found for the first time in this publication (Fig. 4A). 450 

 451 

We reconstructed Neighbour Joining cladograms based on the full mitochondrial 452 

(Fig. 5, S2 Fig) and nuclear (Fig. 6, S3 Fig, S4 Fig) genomes. In all cases the 453 

classification as "human and dog" or "dog only" agreed with the one based on 454 

only cox-1 for the mitochondrial genome (cf. Figs. 5 and 4B) or only the SSU HVR-455 

IV for the nuclear genome (cf. Figs. 6B and 4B). Notice that the nuclear genome 456 

tree should not be interpreted as a phylogenetic tree because it is a within-457 
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species tree with genomes possibly undergoing mixing due to meiotic 458 

recombination. Neighbour Joining clustering of the "human and dog" type whole 459 

nuclear genome sequences showed that the worms from Bangladesh group with 460 

the sequences previously described for southeast Asia, Japan and Iran and away 461 

from a possibly asexual population described in southern China and the 462 

laboratory reference isolate, which originated from the USA (Fig. 6A, for 463 

references see figure legend).  464 

 465 

Fig. 5: Neighbour joining tree based on full mitochondrial genomes 466 

determined in this study (in red) plus the worms mentioned in Fig. 4 of 467 

[20] and four worms of the reference isolate [44] for comparison. For a tree 468 

with more sequences see S3 Fig. A FASTA file with all sequences used in this 469 

figure and in S3 Fig is provided as S2 File. Diamonds label the two worms that 470 

showed "human and dog" type mitochondrial but "dog only" type nuclear 471 

sequences. The asterisk labels the worm in the "dog only" cluster isolated from a 472 

human host. 473 

 474 

Fig. 6: Neighbour joining tree (A without and B with "dog only" type 475 

worms) based on full nuclear genomes determined in this study (in red) 476 

plus selected worms from earlier studies for comparison. Diamonds label 477 

the two worms that showed "human and dog" type mitochondrial but "dog only" 478 

type nuclear sequences. The asterisk labels the worm in the "dog only" cluster 479 

isolated from a human host. To get an impression on how different the "dog 480 

only" type is from the "human and dog" type, compare in A and B the branch 481 

lengths of the samples from the USA and China (boxed), which are the "human 482 
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and dog" type worms with the greatest genomic difference from the southeast 483 

Asian human derived S. stercoralis. For a different representation, see S3 Fig and 484 

S4 Fig. Sequences from Cambodia are from [20], Thailand are from [22], Iran are 485 

from [25], Myanmar and Japan are from [23], the USA are from [44] and China is 486 

from [24].  487 

 488 

 489 

Whole genome sequence confirms the unexpected worms 490 

When the sequences of the "dog only" cluster are included in the analysis, there 491 

remains little resolution in the "human and dog" branch of the nuclear genome 492 

tree (Fig. 6B, S2 Fig). This is because, compared with the "dog only" sequences 493 

they are very similar to each other and the inclusion of more samples reduced 494 

the number of informative sites included in the analysis (only positions covered 495 

in all worms in the analysis were considered, see Materials and Methods). 496 

However, this analysis confirms the unexpected results based on the SSU and the 497 

cox-1 sequences . Worm Human_J102 - f1 (isolated from a human host, marked 498 

with an asterisk in Figs. 5 and 6) grouped with respect to the nuclear and with 499 

respect to the mitochondrial genome with the "dog only" cluster, while worms 500 

Dog_f6 and Dog_m2 (marked with diamonds in Figs. 5 and 6) both show a 501 

mitochondrial genome that groups with the "human and dog" cluster but a 502 

nuclear genome that belongs to the "dog only" cluster. We conclude from this 503 

result that occasional interbreeding of the two types does occur and thereby a 504 

"human and dog" type mitochondrial genome introgressed into the "dog only" 505 

population. Presumably, a "human and dog" type female and a "dog only" type 506 

male interbred and the descendants later bred with "dog only" type partners, 507 
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thereby rendering the recombining nuclear genome "dog only" type while 508 

maintaining the uni-parentally (maternally) inherited mitochondrial genome.  509 

 510 

Worms belonging to the "human and dog" type show low heterozygosity 511 

In order to compare our samples from Bangladesh with earlier studies [22-25] 512 

we performed a heterozygosity analysis (Fig. 7A).  The worms of the "human and 513 

dog" type from Bangladesh showed very similar heterozygosity like the ones 514 

described from southeast Asia [22, 23] and a portion of the worms from a recent 515 

study in Iran [25]. The heterozygosity was clearly lower than in the presumably 516 

essentially asexual populations in Japan [23] and in southern China [24] and in a 517 

portion of the worms from Iran [25].  518 

 519 

Fig. 7: Measured heterozygosity of the whole genome sequenced worms 520 

from this and previous studies.  The X axis shows the heterozygosity on the 521 

autosomes and the Y axis shows the heterozygosity on the X chromosome. A: 522 

only "human and dog" type worms. B: the same worms as in A plus the "dog 523 

only" type worms from this study and from [20]. Notice the high heterozygosity 524 

on the X chromosome in males of the "dog only" type. The samples are from 525 

previous studies are from the following references: Thailand [22], Iran [25], USA 526 

[44], Japan and Myanmar [23], Cambodia [20] and China [24].  527 

 528 

 529 

Worms belonging to the "dog only" type show high apparent 530 

heterozygosity that is likely caused in part by structural variations, rather 531 

than true heterozygosity 532 
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When we attempted to include the "dog only" type worms (including the one 533 

isolated from a human host) in the heterozygosity analysis we noticed that they 534 

showed very high apparent heterozygosity (Fig. 7B). Strikingly, this was also the 535 

case for heterozygosity on the X chromosome in males. To determine if this was 536 

an anomaly of our samples from Bangladesh we subjected the sequences of the 537 

five whole genome sequenced "dog only" type worms from [20] to the same 538 

analysis. Except for the worm L6, these sequences showed even higher apparent 539 

heterozygosity, including on the X chromosome (all "dog only" type whole 540 

genome sequenced individuals by [20] were males). Notice that with respect to 541 

the mitochondrial and the nuclear genomes, L6 belongs to a separate sub-cluster 542 

of the "dog-only" cluster than the other four worms and the worms isolated in 543 

this study. It is not clear, if worms in this subcluster are more closely related to 544 

the other "dog only" worms or to the "human and dog" worms (compare the 545 

positions of L6 in Figs. 4-6 and Suppl. Figs. 1,2). We think this high apparent 546 

heterozygosity is in part a consequence of using a divergent reference genome 547 

sequence (the reference sequence for the human infective S. stercoralis belongs 548 

to ‘human and dog’ cluster) for calling the heterozygous positions. The argument 549 

for this with Figs. is provided in S3 File and briefly summarized here. First, we 550 

asked if some of the S. stercoralis in Asia, in particular the "dog only" type might 551 

not employ XX/XO sex determination as it is the case in the USA derived S. 552 

stercoralis reference isolate [44]. We therefore performed read coverage analysis 553 

for males and females. Overall, in both types the X chromosome showed lower 554 

read coverage in males compared with autosomes and with females, suggesting 555 

that males of the "dog only" type do only have one X chromosome. We then 556 

analysed the heterozygosity over the length of the chromosomes. Males did 557 
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indeed show very low heterozygosity over large portions of the X chromosome 558 

but there were apparent heterozygosity hot spots. These were visible in both 559 

males and in females and also on autosomes. We think these apparent 560 

heterozygosity hotspots reflect duplications and X to autosome translocations in 561 

the genome of the "dog only" type, compared with the S. stercoralis reference 562 

genome [44]. 563 

 564 

Discussion 565 

Among 12 Strongyloides positive persons from the Sylhet region we found four 566 

who carried S. fuelleborni rather than S. stercoralis. This was unexpected, since in 567 

Asia infections of humans with S. fuelleborni are considered very rare and 568 

restricted to people with very close interactions with monkeys [45-47].  569 

In the Sylhet region there is a large population of free roaming monkeys. Albeit 570 

we have no reason to distrust out study participants, we need to point out that 571 

we cannot formally exclude that monkey faeces instead of human stool was 572 

returned. In future studies intending to confirm this ‘higher than expected’ 573 

infection of humans with S. fuelleborni, an independent confirmation of the host 574 

(e.g. through the detection of host specific sequences in the stool), would be 575 

desirable in order to dispel all doubts.  Based on the cox-1 sequences, the S. 576 

fuelleborni in Bangladesh were most closely related with worms from Thailand, 577 

Myanmar and Laos (cluster 3 in [21]) which makes sense due to geographic 578 

proximity. 579 

As expected, we also found hookworms. Based on their cox-1 sequences they 580 

were of the species Necator americanus (group A in [48]). In agreement with 581 
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earlier studies [24, 48], we found no indication for population separation 582 

between Asia and Africa. 583 

Overall, at the level of the nuclear and the mitochondrial genomes, the S. 584 

stercoralis we found in Bangladesh in humans mixed in with the worms 585 

described earlier from southeast Asia. Hence, we have no reason to assume that 586 

S. stercoralis in humans from Bangladesh and from southeast Asia are genetically 587 

distinguishable sub-populations. Together with the recent findings of [25] that S. 588 

stercoralis in Iran also share much of their genetic diversity with the ones in 589 

southeast Asia, these findings support the proposal by [26] and [34] that S. 590 

stercoralis has only rather recently established in humans after a host switch of a 591 

particular genotype from a canine host (possibly upon domestication of dogs) 592 

and then spread in the human population.  It should, however, be noticed that 593 

based on reviewing published cox-1 sequences, [19] did detect significant 594 

population structure and based on whole genome sequence, a possible asexual 595 

population of S. stercoralis in southern China and the laboratory reference isolate 596 

that originates from the USA, are genomically rather different from the southeast 597 

Asian S. stercoralis [24].  598 

We found only one Strongyloides positive dog and all worms we analysed from 599 

this host individual had nuclear genomes that fell into the "dog only" cluster, 600 

based on the nuclear SSU and (if determined) whole genome sequences) (cf. [20, 601 

21, 26]). S. stercoralis of the "dog only" type (based on molecular taxonomy) had 602 

so far been described only in southeast Asia [20, 26] and Australia [27] such that 603 

our findings extend the range, in which this type is known to occur, further West. 604 

The "dog only" type worms in this study showed a new SSU HVR-IV haplotype 605 

(now called haplotype U) that differs by one nucleotide from haplotype D (c.f. 606 
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[21]). The fact that based on whole genome neighbour joining clustering all our 607 

dog derived worms grouped together with perfect bootstrap support should not 608 

be overinterpreted given that these worms were all derived from the same host 609 

individual and therefore might have been closely related. It is, however, 610 

noteworthy that the one worm that was isolated from a human but appeared 611 

genomically to belong to the "dog only" type also grouped with the dog derived 612 

worms although it had been isolated from Dhaka while the dog had been 613 

sampled in Sylhet. Again, given an N of one, this should not be over interpreted.  614 

In this study we made two unexpected observations. First, one of the human 615 

derived worms belonged genomically to the type that was so far considered to 616 

occur only in dogs. This one "dog only" type worm in a human does not 617 

invalidate the general conclusion about species specificity by [20, 21, 26]. 618 

Occasional zoonotic infections of humans with animal parasitic nematodes have 619 

been observed before, for example with filarial nematodes [49-53] or, even 620 

rather frequently, with animal parasitic hookworms [54, 55] (and references 621 

therein). It is therefore not really astonishing that with increasing sampling such 622 

a case emerged also for Strongyloides. We must point out that also in this case, 623 

we do not have an independent host confirmation and can therefore not exclude 624 

with absolute certainty that dog faeces was returned. Second and more 625 

importantly, we found two worms in the dog with nuclear genomes of the "dog 626 

only" type but mitochondrial genomes of the "human and dog" type. This was 627 

rather astonishing because, so far, in all cases where nuclear and mitochondrial 628 

sequences from the same worms had been determined [20, 23, 26, 42, 43] both 629 

sequence kinds always fell in the same cluster as defined by [20, 26] ("human 630 

and dog" or "dog only"). This finding suggests that at least occasional 631 
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interbreeding of the two types does occur. A rare productive mating between a 632 

"human and dog" type female and a "dog only" type male followed by breeding 633 

with "dog only" type partners may have let to the introgression of the "human 634 

and dog" mitochondrial haplotype into the "dog only" population.  635 

We found a very high apparent heterozygosity in worms of the "dog only" type. 636 

We think that this is in part an artifact caused by using the S. stercoralis 637 

reference genome, which is derived from a human infective isolate [44]. 638 

Compared with the reference, the "dog only" type, which, in our opinion, is likely 639 

to be a different species, might have a number of duplications with slightly 640 

deviating sequences. The positions that differ between the copies will be falsely 641 

considered heterozygous positions when the sequencing reads are aligned to the 642 

reference sequence without the duplication. Further, there might be 643 

translocations that are X chromosomal in the reference but autosomal in the 644 

"dog only" type. We think these findings illustrate that the two types are 645 

genomically rather different and that the S. stercoralis reference sequence is not 646 

suitable as a reference for certain genomic analyses of at least some of the "dog 647 

only" type S. stercoralis.  648 
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Supporting information Captions 911 

 912 

S1 File: FASTA file of the S. fuelleborni whole mitochondrial sequences used in 913 

Fig. 3. 914 

 915 

S2 File: FASTA file of the S. stercoralis whole mitochondrial sequences used in S2 916 

Fig (contains all sequences used in Fig. 5). 917 

 918 

S3 File: Full argument for result section 2.10 Worms belonging to the "dog only" 919 

type show high apparent heterozygosity that is likely caused in part by structural 920 

variations, rather than true heterozygosity (text and three figures). 921 

 922 

S1 Table: Excel table showing the different cox-1 haplotypes for the S. stercoralis, 923 

S. fuelleborni and N. americanus found in this study in different tabs. The last tab 924 

shows the sequences extracted from the S. stercoralis whole genome sequencing 925 

read data from [20].  926 

 927 

S1 Fig: NJ tree based on cox-1 with more sequences compared with Fig. 4. 928 

Diamonds label the two worms that showed "human and dog" type 929 

mitochondrial but "dog only" type nuclear sequences. The asterisk labels the 930 

worm in the "dog only" cluster isolated from a human host.  Sequences found in 931 

this study are in red, the number of worms this sequence was found in is in (). 932 

Samples in blue are worms from [20] for which full genome short read 933 

sequences are available. For every sample the country of origin (CAR=Central 934 

African Republic, USA=United States of America), the host and the GenBank 935 
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accession number is given.  For worms from Cambodia also the worm individual 936 

is given after the host to facilitate cross reference with [20]. Samples from 937 

Cambodia are from [20], samples from Laos are from [39], samples from 938 

Myanmar, Thailand and Uganda are from [26], samples from Iran are from [25], 939 

sample from the USA is from [40], samples from Tanzania, and Japan are from 940 

[17], samples from CAR are from [41] and samples from China are from [24]. 941 

 942 

S2 Fig: NJ tree based on whole mitochondrial genome sequences with more 943 

sequences compared with Fig. 5. Diamonds label the two worms that showed 944 

"human and dog" type mitochondrial but "dog only" type nuclear sequences. The 945 

asterisk labels the worm in the "dog only" cluster isolated from a human host. 946 

The sequences from this study are in red. The other sequences were extracted 947 

from the whole genome sequencing read data of the following references: 948 

Cambodia [20], Thailand [22], Iran [25], Myanmar and Japan [23], USA [44] and 949 

China [24].  A FASTA file with all sequences used is provided as S2 File. 950 

 951 

S3 Fig (without the "dog only" cluster) and S4 Fig (including the "dog only" 952 

cluster): Different representation of the cladograms based on whole genome 953 

sequences compared with Fig. 6.  Diamonds label the two worms that showed 954 

"human and dog" type mitochondrial but "dog only" type nuclear sequences. The 955 

asterisk labels the worm in the "dog only" cluster isolated from a human host. 956 

The sequences from this study are in red. The other sequences were extracted 957 

from the whole genome sequencing read data of the following references: 958 

Cambodia [20], Thailand [22], Iran [25], Myanmar and Japan [23], USA [44] and 959 

China [24]. 960 
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