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Abstract 

Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading 
to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting 
early PF have not been identified. We investigated whether endocannabinoids could serve as blood 
biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human 
subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with 
endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum 
endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a 
peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were 
increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not 
observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) 
levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 
years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung 
process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum 
AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later 
fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in 
bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 
patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in 
progressive fibrotic lung diseases. 
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Introduction 

 

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder with 11 reported genetic types, caused by 

bi-allelic mutations in any of 11 different genes (1, 2). HPS-1 genotype is the most common and severe 

form. To date, 1,464 individuals with HPS are registered with the HPS Network (www.hpsnetwork.org; 

personal communication of Donna Appell, R.N.). A major complication in HPS patients is HPS 

pulmonary fibrosis (HPSPF), which remains a leading cause of mortality with no approved treatment to 

date (3, 4). HPSPF particularly poses a risk to middle-aged adults with HPS-1 or HPS-4 and children 

with HPS-2 or HPS-10. Clinically HPSPF shares similarities with idiopathic pulmonary fibrosis (IPF) 

(5), though unlike IPF, which typically affects older patients and occurs sporadically, HPSPF is highly 

predictable among adults with HPS-1 based on the natural history of disease (6). Importantly, fibrotic 

lung disease is progressive in HPS-1, and the identification of biomarkers capturing this progression 

could allow the initiation of treatment at the earliest stages of the disease.  

 

Endocannabinoids are bioactive lipids that act on cannabinoid receptor 1 (CB1R) and cannabinoid 

receptor 2 (CB2R). Cannabinoid receptors also recognize and mediate the effects of the active ingredient 

of cannabis (7). Anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoylglycerol (2-AG) are 

two well-characterized endocannabinoids that serve as endogenous agonists of the cannabinoid 

receptors. Endocannabinoids, particularly through CB1R promote fibrosis in multiple peripheral organs 

including liver (8-12), kidney (13-15), heart (16, 17), and skin (18-20). Consequently, peripheral CB1R 

antagonism has emerged as a potential therapeutic strategy for fibrotic disorders, as it has shown 

efficacy in attenuating organ fibrosis in multiple experimental models (21). Importantly, overactivity of 

the endocannabinoid/CB1R system contributes to pulmonary fibrosis with different etiologies such as 

radiation-induced PF (22), IPF (23) and HPSPF (24). Notably, elevated AEA levels in the 

bronchoalveolar lavage fluid (BALF) of IPF (25) and HPSPF (24) patients were found to inversely 
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correlate with pulmonary function test (PFT) parameters, suggesting that AEA could be a biomarker of 

PF progression in diseases such as HPSPF and IPF.  

 

Endocannabinoids are synthesized and utilized on-demand by multiple cell types in tissues and blood to 

modulate the cannabinoid receptors that serve autocrine or paracrine functions (26). Dysregulation of the 

endocannabinoid system in peripheral organs accompanies inflammatory and profibrotic conditions 

(21). In this study, we investigated endocannabinoids in blood specimens of HPS patients with and 

without PF. We examined longitudinal samples from patients exhibiting progressive HPSPF and utilized 

an animal model of HPSPF to further our understanding. Our findings point to circulating AEA in 

peripheral blood as a promising early biomarker for HPSPF, reflecting the broader role of the 

endocannabinoid system in regulating cellular and metabolic homeostasis. 
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Materials and Methods 

 

Study Participants and Human Subject Consent 

Patients with IPF, HPS and healthy research volunteers provided written informed consent and enrolled 

in protocol 95-HG-0193 (clinicaltrials.gov NCT00001456, “Clinical and Basic Investigations into 

Hermansky-Pudlak syndrome”) and/or 04-HG-0211 (clinicaltrials.gov NCT00084305, “Procurement 

and Analysis of Specimens from Individuals with Pulmonary Fibrosis”), which were approved by the 

Institutional Review Board of the National Human Genome Research Institute from the National 

Institutes of Health. Study eligibility criteria were previously described (27). 

 

Patients 

We conducted peripheral blood biomarker analysis in three separate sets of samples from the natural 

history cohort referred to as the study [1], validation [2], or progression [3] cohort. Blood was collected 

when patients visited the NIH clinical center and processed to isolate serum according to standard 

methods. The study cohort was comprised of 90 serum samples from 12 normal volunteers (NVs), 11 

HPS-1 patients without PF, 40 HPS-1 patients with HPSPF, 10 IPF patients, and 10 HPS-3 patients 

without PF (Table 1, Figure 1). The validation cohort comprised of 40 serum samples from five NVs, 10 

HPS-1 patients without PF, 10 HPS-1 patients with HPSPF, 5 IPF patients, and 10 HPS-3 or HPS-5 

patients without PF (Table 2, Figure 2). To monitor longitudinal, progressive changes of PF in the same 

HPS-1 patients, we also employed a progression cohort comprised of eight HPS-1 patients (four female 

and four male) ranging from 35 to 60 years of age. Each patient had five or six serial blood samples, 

PFTs and HRCT imaging during a longitudinal follow up ranging from 5 to 14 years.  

 

Pulmonary Function Tests for Human Subjects 
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PFT parameters were performed as described (28). Briefly, forced vital capacity (FVC), total lung 

capacity (TLC), and diffusion capacity of carbon monoxide (DLCO) measurements were made in 

accordance with American Thoracic Society guidelines (SensorMedics, Yorba Linda, CA, USA). Values 

were expressed as percentages of predicted values. 

 

High-Resolution Computed Tomography 

High-resolution computed tomography (HRCT) scans of the chest without intravenous contrast were 

performed in the prone position at end-inspiration. Pulmonary fibrosis was diagnosed by characteristic 

findings on HRCT scans of the chest as previously described (29, 30). 

 

Chemicals   

S-MRI-1867 (zevaquenabant) was synthesized as described (31, 32). Pharmaceutical grade bleomycin 

was from Hospira (Lake Forest, IL, USA). All the other chemicals were from Sigma–Aldrich (St. Louis, 

MO, USA). 

 

Experimental Drug Treatment 

Zevaquenabant was administered by oral gavage once daily as indicated and illustrated in Figure 5A. 

The vehicle was a 1:1:18 ratio of DMSO:Tween 80:Saline. Oral formulations were applied at 1 mg/mL 

concentrations to achieve dose of 10 mg/kg, which provided the target exposure, the target engagement 

and antifibrotic efficacy in bleomycin-induced PF models (23, 24). 

 

Animals 

All animal procedures were conducted in accordance with the rules and regulations of the Institutional 

Animal Care and Use Committee of the National Institutes of Alcohol Abuse and Alcoholism 

(NIAAA), under the protocols of LPS-GK1. We used male pale ear (Hps1ep/ep) mouse model since it is 

the most widely used model of HPS-1, as it mimics structural abnormalities observed in patients with 
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HPS and is susceptible to bleomycin-induced PF (33). Pale ear mice were on a C57Bl/6J genetic 

background. Mice were housed individually under a 12-hour light/dark cycle and fed a standard diet, ad 

libitum (Teklad NIH-31; Envigo, Huntingdon, UK).  

 

Subcutaneous Osmotic Delivery of Bleomycin 

We generated a bleomycin-induced PF model by delivering bleomycin (60 U/kg/7 days) via 

subcutaneous osmotic delivery (33, 34) as previously described. 

 

Endocannabinoid Measurement  

Tissue levels of endocannabinoids were measured by stable isotope dilution liquid 

chromatography/tandem mass spectrometry (LC-MS/MS) as described (31). Briefly, Anandamide 

(AEA) and 2-Arachidonyl Glycerol (2-AG), were quantified in human serum samples by liquid 

chromatography/tandem mass spectrometry. 100 �L serum was incubated at -20oC for 10 min with 900 

ml ice-cold acetone and 400 µL Tris buffer (50 mM, pH 8.0) to precipitate proteins. After spinning at 

2000g at 4oC for 10 min, the supernatant was transferred to a glass tube to evaporate the acetone phase 

under nitrogen flow. Then, 0.5 mL of ice-cold methanol/Tris buffer (50 mM, pH 8.0) added to the 

supernatant, 1:1, containing 7 ng of [2H4] arachidonoyl ethanolamide ([2H4] AEA), and 50 ng of [2H5] 

arachidonoyl glycerol ([2H5] 2AG), as internal standards.  Then, the supernatant was extracted two times 

with 2 ml of CHCl3:MeOH (2:1, vol/vol). Lower chloroform phase was collected and transfer another 

glass tube. Then combined chloroform phases were dried under nitrogen flow. The dried samples were 

reconstituted in 50 µL of ice-cold methanol prior to loading autosampler for mass spectrometry 

measurements.  

LC-MS/MS analyses were conducted on an Agilent 6470 triple quadrupole mass spectrometer 

(Agilent Technologies) coupled to an Agilent 1200 LC system. Liquid chromatographic separation was 

obtained using 2 µl injections of samples onto a InfinityLab Poroshell 120 EC-C18 column (3.0mm×100 

mm, 2.7 Micron) from the Agilent Technologies. The autosampler temperature was set at 4◦C and the 
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column was maintained at 34◦C during the analysis. Gradient elution mobile phases consisted of 0.1% 

formic acid in H2O (phase A) and 0.1% formic acid in MeOH (phase B). Gradient elution (350 μL/min) 

was initiated at 10% B, followed by a linear increase to 50% B at 0.5 min, followed by a linear increase 

to 85% B at 3 min and maintained until 14 min, then increased linearly to 100% B at 18 min and 

maintained until 20 min. The mass spectrometer was set for electrospray ionization operated in positive 

ion mode. The source parameters were as follows: capillary voltage, 3,500 V; gas temperature, 300 °C; 

drying gas, 5 L/min; nitrogen was used as the nebulizing gas. Collision-induced dissociation was 

performed using nitrogen. Levels of each compound were analyzed by multiple reaction monitoring. 

The molecular ion and fragment for each compound were measured as follows: m/z 348.3→62.1 for 

AEA, m/z 379.3→287.2 for 2AG, m/z 384.3→91.1 for [2H5] 2AG, m/z 352.3→66.1 for [2H4] AEA, The 

Analytes were quantified using MassHunter Workstation LC/QQQ Acquisition and MassHunter 

Workstation Quantitative Analysis software (Agilent Technologies). Levels of analytes in the samples 

were measured against standard curves.  

Real-time PCR analysis 

RNA extraction and real-time PCR was conducted as previously described (24) using predesigned 

mouse Tbp (QT00198443), Timp1 (QT00996282), Fn1 (QT00135758), and Ccl2 (QT00167832) 

primers were purchased from Qiagen. 

 

Fibrosis quantification by hydroxyproline measurements  

Lung fibrosis was quantified biochemically by measuring hydroxyproline (Hyp) content of lung extract 

using LC-MS/MS as previously described (34). 

 

Statistical Analysis  

Statistical analysis was performed by unpaired two-tailed Student’s t test or by one-way ANOVA, as 

appropriate and indicated in figure legends. P < 0.05 was considered significant. 
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Results 

AEA Levels are Increased in Serum of HPS-1 Patients With or Without PF, but not in IPF 

Patients 

We analyzed serum endocannabinoid levels in healthy normal volunteers (NVs), HPS-1 patients with or 

without PF, IPF patients, and HPS-3 patients without PF (Table 1, Figure 1). IPF patients served as 

positive controls for pulmonary fibrosis, whereas HPS-3 subjects were used as nonfibrotic HPS controls 

because HPS-3 patients do not develop PF (35). AEA levels were significantly elevated only in serum of 

HPS-1 patients with and without PF, but not in IPF patients, healthy volunteers, or HPS-3 patients 

without PF (Fig. 1A). Interestingly, 2AG levels remained unchanged across all groups (Fig. 1B). This 

pattern of AEA elevation in HPS-1 patients suggests specific alteration in their endocannabinoid profile.  

 

Increased anandamide levels in serum from HPS-1 patients are negatively correlated with 

pulmonary function tests 

In this study cohort, mean FVC was 76 % predicted in HPS-1 patients with HPSPF, which is consistent 

with their diagnosis of PF. Analyses of PFTs showed that FVC, TLC and DLCO were significantly 

reduced in HPSPF patients compared to healthy volunteers (Figure 1C-E). To assess a relationship 

between AEA levels and PFT decline in HPS-1 patients, we analyzed the correlation between serum 

levels of AEA and pulmonary function parameters among HPS-1, and HPSPF patients (Figure 1F-H). 

Analyses of PFTs showed that FVC, TLC and DLCO were significantly reduced in HPSPF patients 

compared to healthy volunteers. Circulating AEA levels were negatively correlated with PFT parameters 

such as FVC and TLC in human subjects (Figure 1F-H), suggesting that higher concentrations of 

circulating AEA may contribute to the fibrogenic process in lungs of HPS-1 patients.  

 

We used another group of patients as a validation cohort, comprised of 40 subjects including NV or 

patients with HPS-1 without PF, HPSPF, HPS-3 or HPS-5, or IPF (Table 1, Figure 2). In the validation 

cohort, the mean FVC values were 97.8% predicted in the HPS-1 patients without PF and 79.5% 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.16.24307300doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.16.24307300


 

  

predicted in the HPSPF patients. Consistent with the study cohort, circulating AEA levels were higher in 

the HPS-1 patients with or without PF in this validation cohort. However, this increase was only 

statistically significant in the HPSPF patients (Figure 2A). Notably, increased AEA levels were 

negatively correlated with PFT parameters (Figure 2B-D), which validated the observations from the 

study cohort (Figure 1). 

 

Identification of Circulating AEA as an Early Disease Prognostic Biomarker in HPSPF 

In both the study and the validation sample sets, the circulating AEA levels exhibited a higher trend in 

HPS-1 patients without PF compared to the NV. Since AEA levels were negatively correlated with 

pulmonary function decline among HPS-1 subjects, this suggests that AEA could be an early disease 

biomarker with the increase in HPS-1 subjects at early subclinical stage of PF. HPS-1 patients develop 

progressive PF with age. Early, subclinical interstitial lung disease can be diagnosed by HRCT lung 

scans in adults with HPS-1 prior to respiratory symptoms (35). Therefore, we measured circulating AEA 

levels in the eight HPSPF subjects with progressive disease who had serial blood collections, PFT 

measurements and HRCT scan over a 5 to 14 years duration of follow up. In this progression cohort, age 

and circulating AEA levels were increased with the progressive PF in HPS-1 patients (Figure 3A, 3B). 

Data from three representative patients in the progression cohort show worsening of bilateral ground 

glass and/or reticulations (Figure 4A-C). The Patient 1 progressed from minimal HPSPF with a FVC of 

90% predicted and DLCO of 83% predicted to severe HPSPF with FVC of 43% predicted and DLCO of 

20% predicted over 10 years from mid-40’s to mid-50’s (Figure 4A and 4D). The Patient 2 progressed 

from mild to moderate HPSPF with a decline in FVC from 84 % predicted to 57% predicted in 6 years 

from mid-40’s to late 40’s (Figure 4B and 4E). The Patient 3 progressed from minimal to severe HPSPF 

(Figure 4C) with a decline in FVC from 101% to 50% in 10 years from mid-30’s to mid-40’s (Figure 

4F). In parallel to the progression of HPSPF in the three patients, the circulating AEA levels were also 

increased with age and declining pulmonary function (Figure 4D-F). This suggests that circulating AEA 
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levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF, and 

implies its utility as a prognostic marker.  

 

Circulating AEA Levels Increased at Subclinical Fibrotic Stage in Bleomycin-Induced HpsPF 

Model Using Pale Ear Mice 

Next, we analyzed the serum of pale ear (Hps-1ep/ep) mice after bleomycin-induced PF (HpsPF) (Figure 

5A), to determine whether circulating AEA increased similarly as in human HPSPF. In this HpsPF 

model, 8 days after osmotic minipump implantation and bleomycin administration, gene expression for 

the fibrogenic marker Col1a was significantly increased, although no quantifiable fibrosis was observed 

biochemically or histologically in the previous study (24). This suggests that Day 8 post bleomycin 

could represent the fibrosis initiation phase in this model since there was no quantifiable fibrosis despite 

the remarkable increase in the gene expression of fibrosis. Fibrosis was evident 42 days after initial 

bleomycin treatment (24). Notably, the endocannabinoid/CB1R system was overactivated with 

bleomycin-induced HpsPF in pale ear mice in lungs, as also observed in human HPSPF patients (24), 

suggesting translational relevance of this model to investigate endocannabinoids. Therefore, this model 

could also be instrumental to evaluate the status of circulating AEA in subclinical and clinical stages of 

HPSPF. Same as the previous study, there was no quantifiable fibrosis based on hydroxyproline 

measurement in lungs at Day 8 post bleomycin (Figure 5B), despite a significant increase in the gene 

expression of fibrotic markers Timp1 and Fibronectin 1 (Figure 5C) and inflammatory markers Ccl2 

(Fig.5d). Similar to results for HPS-1 and HPSPF patients (Figure 1 and 2), serum AEA levels were 

significantly increased in pale ear mice as early as 8 days after initial bleomycin exposure and remained 

elevated until Day 42 (Figure 5E). Furthermore, it was previously reported that expression of AEA and 

CB1R was similarly increased in the lungs of HpsPF mice 8 days after the bleomycin exposure (24). 

These findings suggest that activation of CB1R in lungs may be involved in the fibrosis initiation and 

progression stages in HPSPF. Unlike the pale ear mice, the bleomycin challenge did not increase 
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circulating AEA level in wild-type mice (data not shown). This further demonstrates that circulating 

AEA could be a specific early prognostic blood biomarker for the fibroproliferative process in HPSPF. 

 

Increased Circulating AEA in the HpsPF Mouse Model was Completely Reversed by Peripheral 

CB1R Antagonist Zevaquenabant Treatment 

CB1R antagonism has been identified as a therapeutic strategy for HPSPF (24), IPF (23), and radiation-

induced PF (36). Recently, zevaquenabant, a clinical stage hybrid inhibitor of CB1R and iNOS, emerged 

as a candidate drug for HPSPF, since zevaquenabant treatment attenuated fibrosis progression in 

bleomycin-induced PF in pale ear mice (HpsPF) (24). It is important to mention that starting 

zevaqeunabant administration at the subclinical fibrotic stage (Day 8 post bleomycin) completely 

reversed the elevated circulating AEA levels (Fig. 5E) and fibrosis (Fig. 5B) in pale ear mice. As 

previously reported, this zevaquenabant treatment regimen also reversed the increased levels of AEA 

and CB1R expression in lungs (24). All these findings demonstrate the target engagement of 

zevaqeunabant for the inhibition of the endocannabinoid/CB1R system. Accordingly, circulating AEA 

levels could also be investigated as a surrogate peripheral blood marker to monitor the therapeutic 

efficacy of peripheral CB1R antagonists such as zevaquenabant in a prospective clinical trial in HPSPF 

(Figure 5F). 

 

Discussion 

 

PF development in HPS-1 patients is universal and closely associated with age. Typically, upon onset, 

PF in HPS-1 patients advances rapidly, with end stage disease in HPSPF patients occurring 

approximately 3 years after clinical diagnosis (37). Blood biomarkers capable of accurately detecting 

subclinical PF and predicting onset of clinical disease are crucial for identifying patients at risk of the 

disease progression. Such biomarkers could be instrumental in facilitating early therapeutic 

interventions, potentially delaying or even preventing PF onset in these patients. Our current study 
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indicates that circulating AEA could serve as an early disease biomarker of PF in HPS patients. Previous 

studies have shown that increased AEA in tissues leads to a positive feed-forward loop via 

overactivation of CB1R (38). In various cases where AEA and CB1R are overactivated, both genetic 

deletion and pharmacological inhibition of CB1R not only attenuated CB1R overactivation but also 

reversed pathologically increased AEA levels and provided therapeutic benefit (23, 24). In this study, 

treatment with the hybrid CB1R/iNOS antagonist zevaquenabant successfully attenuated the elevated 

AEA levels in the pale ear mice, confirming CB1R target engagement and efficacy in bleomycin-

induced PF in (Figure 5). Therefore, circulating AEA could also serve as a potential surrogate marker in 

the clinical trials investigating peripheral CB1R antagonists such as zevaquenabant or monlunabant.  

While HPSPF and other progressive pulmonary fibrotic diseases such as IPF share similar disease 

manifestations, there are notable differences between these disorders. HPS-1 PF generally affects 

middle-aged adults, whereas IPF impacts older adults (35). Although, pirfenidone is an approved anti-

fibrotic medication for IPF, its efficacy in HPSPF remains inconclusive (29, 39, 40). Recognizing 

unique features in the pathological processes and pathways of these conditions, therefore, is key to 

optimizing anti-fibrotic efficacy and develop patient stratification strategies for therapeutic interventions 

for HPSPF. Notably, increased AEA levels were observed in the BALF of human IPF (25) and HPSPF 

(24) subjects, indicating dysregulated endocannabinoid/CB1R signaling involving fibrotic process in the 

lung microenvironment in PF. Our study found that elevated circulating AEA is a distinctive 

characteristic of HPS-1 patients, absent in IPF (Figure 1, 2). Therefore, the distinct observation between 

HPSPF and IPF in circulating peripheral AEA levels suggests that a source of AEA in serum may not be 

a spill over from fibrotic lung microenvironment as it is only seen in HPSPF. Another distinctive feature 

between HPSPF and IPF is an age dependent increase in the circulating AEA level, which was seen only 

in HPSPF but not in IPF patients. However, given the limited sample size of IPF patients in this study, 

further research is needed to evaluate endocannabinoids as blood biomarkers in IPF and other 

progressive fibrotic lung diseases. 
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Finally, our findings (Figure 1, 2) show that circulating AEA levels begin increasing with fibrotic 

processes in lungs even at the subclinical stages of HPSPF. Interestingly, in longitudinal HPSPF 

progression monitoring study, serum AEA levels almost doubled with the progression of fibrosis as 

evident from FVC values dropped from ~90% predicted to ~50% predicted values (Figure 4D-F). This 

trend was also observed in our preclinical study in the mouse model of HpsPF, where circulating AEA 

levels were significantly elevated in pale ear mice before fibrosis was evident at Day 8 post bleomycin, 

and remained elevated until Day 42 (Figure 5), at which point there is established fibrosis and a 

significant decline in PFTs (24). Since these elevated AEA levels are negatively correlated with PFTs in 

HPS-1 subjects (Figure 1, 2), both human and animal data support the use of circulating AEA levels as 

potential biomarkers for both subclinical and overt HPSPF. Taken together, these data indicate that AEA 

could serve as a diagnostic and prognostic biomarker for pulmonary fibrosis, including HPSPF, and 

warrant further investigations into endocannabinoid levels as exploratory endpoints in clinical trials 

targeting progressive fibrotic lung diseases. 
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Figure Legends                                             
 
Figure 1: Increased level of Anandamide in serum of HPS1 patients was negatively correlated with 

pulmonary function test parameters.  

Levels of endocannabinoid AEA (A) and 2AG (B) in serum from normal volunteers (NV), HPS-1 

without fibrosis, patients with HPSPF, HPS-3 patients and IPF patients. Pulmonary function tests (PFTs) 

in the same groups. FVC = forced vital capacity (C), TLC = total lung capacity (D), DLCO = diffusion 

capacity (E). Correlation with PFTs and AEA in serum in HPS-1 and HPSPF (F, G, H), HPS1: blue 

symbol, HPSPF: red symbol. Correlation was calculated by using Pearson correlation coefficients. Data 

represent mean + S.E.M. from 12 NV, 11 HPS-1, 40 HPSPF, 10 HPS-3, and 10 IPF subjects for serum 

and PFTs. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple comparisons test for 

endocannabinoids and PFT. *(P ≤ 0.05), **(P ≤ 0.01), ***(P ≤ 0.001), ****(P ≤ 0.0001). 

 

Figure 2. Level of AEA in serum and its correlation with PFTs in the validation cohort subjects. 

(A)  

Levels of AEA in serum from the patients in a validation cohort consist of normal volunteers (NV), 

HPS-1 without fibrosis, patients with HPSPF, HPS-3 or HPS-5 patients and IPF patients. Correlation 

with AEA and PFTs FVC (B), TLC (C), DLCO (D) in serum in HPS-1 and HPSPF subjects, HPS1: blue 

symbol, HPSPF: red symbol. Correlation was calculated by using Pearson correlation coefficients. Data 

represent mean + S.E.M. from 5 NV, 10 HPS-1, 10 HPSPF, 10 HPS-3, HPS-5, and 5 IPF subjects for 

serum and PFTs. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple comparisons 

test for endocannabinoids. * (P < 0.05) indicates significant difference from the NV group. 

 

Figure 3. Both circulating AEA and age increase while pulmonary function decline in HPSPF. (A) 

Distribution of age with FVC (A) and DLCO (B) measurements is shown for a progression cohort. 

Distribution of circulating AEA level with FVC (C) and DLCO (D) measurements is displayed. Eight 
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HPS-1 subjects with diagnosis of HPSPF were studied longitudinally to assess progression of pulmonary 

fibrosis for an interval ranging from 5 to 12 years. 

 

Figure 4. Time dependent changes in circulating AEA levels in HRCT guided progression of 

HPSPF.  

Representative HRCT images in HPS patient 1 (A), HPS patient 2 (B), HPS patient 3 (C) who had 

progressive HPSPF. Age dependent changes in AEA levels in serum in HPS patient 1 (D), HPS patient 2 

(E), HPS patient 3 (F).  

 

Figure 5. MRI-1867 treatment completely reversed bleomycin induced increase in circulating 

AEA level in HpsPF mouse model. (A) Schematic presentation of bleomycin-induced pulmonary 

fibrosis model in pale ear mice (HpsPF). Daily oral MRI-1867 treatment at 10 mg/kg dose started at Day 

8 and continued until Day 42 post bleomycin. (B) Hydroxyproline levels in lungs. Gene expression of 

(C) fibrotic markers Timp1 and Fn1, and (D) inflammatory marker Ccl2 in lungs. (E) Levels of AEA in 

serum samples of pale ear mice. (F) Summary scheme depicting the circulating AEA as a biomarker and 

surrogate marker in HPSPF. Data represent mean + S.E.M. n = 6 mice for control (Ctrl, pale ear mice 

infused with saline instead of bleomycin), n = 4 HpsPF mice with bleomycin+vehicle at Day 8, n = 11 

HpsPF mice with bleomycin+ vehicle at Day 42, n = 11 HpsPF mice with bleomycin+MRI-1867 at Day 

42. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple comparisons test. *(P ≤ 

0.05), **(P ≤ 0.01). 
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Table 1. Human Subject Characteristics for Serum Samples in the Study Cohort 
  

NV (n = 12) 

 

 

HPSPF (n = 40) 

 

HPS-1 (n = 11) 

 

HPS-3 (n = 9) 

 

IPF (n = 10) 

 

Age (yrs) 

 

 

35.2 ± 3.3 

 

45.5 ± 1.5 

 

30.4 ± 3.1 

 

33.3 ± 5.1 

 

61.7 ± 2.2 

 

Gender (M/F) 

 

 

8 / 4 

 

 

16 / 31 

 

 

4 / 7 

 

 

1 /8 

 

 

7 /3 

 

FVC (% 

predicted) 

100.5 ± 3.23 75.5 ± 2.8 99.3 ± 2.8 98.6 ± 3.1 87.9 ± 3.6 

Data represent mean ± SEM. NV, normal volunteer; HPSPF, Hermansky-Pudlak syndrome pulmonary 
fibrosis; IPF, idiopathic pulmonary fibrosis; M, male; F, female; FVC, forced vital capacity 
 
 
Table 2. Human Subject Characteristics for Serum Samples in the Validation Cohort 
  

NV (n = 5) 

 

 

HPSPF (n = 10) 

 

HPS-1 (n = 10) 

 

HPS-3 and 

HPS-5 (n = 10) 

 

IPF (n = 5) 

 

Age (yrs) 

 

 

41.6 ± 8.28 

 

43.7 ± 2.00 

 

26.0 ± 2.60 

 

34.8 ± 5.83 

68.8 ± 4.62 

 

Gender (M/F) 

 

 

2/3 

 

8/2 

 

5/5 

 

1/9 

 

3/2 

FVC (% 

predicted) 

99.2 ± 4.60 79.5 ± 6.24 97.8 ± 3.17 98.5 ± 3.42 84.6 ± 12.94 

Data represent mean ± SEM. NV, normal volunteer; HPSPF, Hermansky-Pudlak syndrome pulmonary 
fibrosis; IPF, idiopathic pulmonary fibrosis; M, male; F, female; FVC, forced vital capacity 
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