## 1 Determinants of HIV infection among pregnant women in

## 2 Cameroon: A contribution toward the elimination of

## **vertical transmission in low- and middle-income countries**

Justin Ndié<sup>1\*</sup>, Jean Pierre Yves Awono Noah<sup>1</sup>, Francis Ateba Ndongo<sup>1</sup>, Joseph Fokam<sup>3,9\*</sup>, Alice
Ketchaji<sup>4</sup>, Rogacien Kana Dongmo<sup>1</sup>, Christian Noël Bayiha<sup>2</sup>, Richard Tchapda<sup>11</sup>, Tatiana
Avang Nkoa Palisson<sup>1</sup>, Martial Gaël Bonyohe<sup>1</sup>, Caroline Teh Monteh<sup>1</sup>, Njamsnhi Yembe
Wepnyu<sup>1</sup>, Félicité Naah Tabala<sup>1</sup>, Hernandez Lélé Siaka<sup>2</sup>, Carelle Djofang Yepndo<sup>4</sup>, Audrey
Raïssa Djomo Nzaddi<sup>3</sup>, Maurice Rocher Mbella<sup>4</sup>, Marie Micheline Dongmo<sup>1</sup>, Gildas
Nguemkam<sup>1</sup>, Ngo Issouck<sup>10</sup>, Nelly Monkam<sup>2</sup>, Leopoldine Madjo Oumbe<sup>4</sup>, Clifford Moluh<sup>8</sup>,
Paul Tjek<sup>5</sup>, Vittorio Colizzi<sup>9</sup>, Carlo-Federico Perno<sup>-9</sup>, Giulia Cappelli<sup>9</sup>, Nicaise Ndembi<sup>12</sup>,

11 David Kob<sup>9</sup>, Gregory-Edie Halle Ekane<sup>7</sup>, Basile Keugoung<sup>8</sup>, Alexis Ndjolo<sup>9</sup>, Serge Clotaire

12 Billong<sup>6</sup>, Céline Nkenfou<sup>9</sup>, Jérôme Ateudjieu<sup>1</sup>, Anne Cécile Zoung-Kanyi Bissek<sup>1</sup>

- 13 <sup>1</sup> Division of Operational Research in Health
- 14 <sup>2</sup> Health Projects Implementation Unit -BID
- 15 <sup>3</sup> Central Technical Group NACC, Cameroon
- <sup>4</sup> Department of Disease Control, Epidemics and Pandemics, Cameroon
- <sup>5</sup> Family Health Department, Cameroon
- 18 <sup>6</sup> National Onchocerciasis Control Program, Cameroon
- <sup>7</sup> University of Buea, Cameroon
- 20 <sup>8</sup> UNICEF-Cameroun
- <sup>9</sup> CIRCB Yaounde, Cameroon
- <sup>10</sup> Littoral Regional Public Health Delegation, Cameroon
- 23 <sup>11</sup> Yaounde Central Hospital, Cameroon
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
   NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
   \*Correspondence: Justin Ndié (ndjust2002@yahoo.fr) and Joseph Fokam (joseph.fokam@cnls.cm)

## 26 Abstract

Background: The risk of HIV transmission during antenatal care (ANC) in Cameroon remains
a concern. According to recent studies, the prevalence of HIV in the country is around 4.5%,
which increases the likelihood of vertical transmission.

Objective: To identify the determinants of HIV infection among pregnant women attending
antenatal clinics (ANC) in Cameroon and to estimate HIV seroprevalence.

Methods: A cross-sectional study was conducted among ANC attendees aged ≥15 years from September 2022 to June 2023 in 324 health facilities in 08 regions of Cameroon (Adamaoua, Yaounde, East, Far-North, Douala, North, West, South). Sociodemographic and clinical data were collected using questionnaire. HIV screening was performed according to the national algorithm. Estimates of HIV seroprevalence and identification of its determinants using multivariable logistic regression (95% CI) were performed with Excel and SPSS 22 software.

**Results:** Overall, 10674 pregnant women were enrolled, with median [IOR] age 25 years [21– 38 30]; 40.0% at a secondary educational level; 44.1% married monogamously; 46.3% 39 multiparous; 38.8% in the second guarter of pregnancy and 16.5% reporting at least one 40 abortion. Overall HIV seroprevalence was 2.6% [95%CI: 2.33; 2.93]. Significantly higher 41 prevalence was found with the regions of Adamaoua (aOR 3.78 [95%CI: 1.87-7.67], p<0.001), 42 East (9.38 [5.6-15.67], p<0.001), North (3.07 [1.74-5.42], p<0.001), South (2.93 [1.66-5.16]; 43 p<0.001); lack of education (2.08 [1.06-4.06], p=0.032), primary education (2.44 [1.32-4.50], 44 45 p=0.004) and secondary education (2.29 [1.28-4.08], p=0.005) were significantly associated with HIV infection, while monogamous marriage (0.33 [0.22-0.51], p<0.001), the absence of 46 abortion (0.59 [0.37-0.98], p=0.036) and large multiparous (0.38 [0.17-0.82]; p=0.015) were 47 protective. 48

49 Conclusion: Despite the overall low-prevalence among pregnant women at national-level,
50 several factors are associated with HIV in ANC, the absence or low-level of education, being

elderly (>30 years), singleness, history of abortion and low parity predicted the HIV status
during ANC. Thus, public health interventions towards these at-risk target groups will help to
reduce new infections among pregnant women, hence contributing to achieve eMTCT in
Cameroon.

55 Keywords: HIV, pregnant women, eMTCT, seroprevalence, determinants, Cameroon

# 56 Introduction

HIV infection is still prevalent in pregnant women and remains a major public health concern
across several low-and middle-income countries (LMICs). Of note, about 1.5 million pregnant
women are living with HIV worldwide (1,2), sub-Saharan Africa is home to two-third of cases
worldwide (3), with prevalence varying between 5% and 42% among pregnant women (4).

Pregnant women living with HIV are at high risk of vertical transmission to their infants during pregnancy, childbirth or breastfeeding (5). Of relevance, in the absence of any intervention, between 20% and 45% of infants could contract HIV, with an estimated risk of 5-10% during pregnancy, 0-20% during labour and delivery and 5-20% during breastfeeding (4–9). Furthermore, without treatment, half of all HIV-infected children will die before their second birthday, thereby stressing the need to consider the elimination of HIV vertical in high priority countries, including Cameroon (4).

Despite a 50% decline in HIV prevalence from 5.5% in 2005 (10) to 2.7% in 2018 (11) in the general population, the burdens of HIV in specific populations including pregnant women remain high in Cameroon. Although HIV prevalence among pregnant women fell from 7.6% in 2009 to 4.26% in 2019 in Cameroon, some geographical regions still stand at higher risks (i.e. South with 8.46%), underscoring the need for regular surveillance to ensure evidence-based public health actions for eliminating HIV vertical transmission (12). Furthermore, HIV prevalence among pregnant women in Cameroon is similarly distributed, ranging from 5.58%

in urban areas to 5.87% in rural settings according to reports of the sentinel surveillance surveyof 2019 (13,14).

Several factors contribute to the dynamics of this infection in pregnant women in these 77 Cameroonian settings, among which being single as marital status, multiparity, age and living 78 in specific regions were significantly associated risk of contracting HIV infection (14). Thus, 79 controlling these drivers of HIV infection among pregnant women is an essential component in 80 achieving the global effort in eliminating paediatric HIV by 2030. However, with population 81 dynamics and behavioural changes overtime, it is of paramount importance to generate update 82 83 evidence for strategic information toward priority interventions at the public health level. Therefore, our study objective was to update HIV epidemiology and identify determinants of 84 infection among pregnant women attending antenatal clinics in Cameroon. 85

#### 86 Methods and materials

#### 87 **Ethical considerations**

Ethical approval was obtained from the National Ethics Committee for Human Health Research (reference number N°2022/08/1478/CE/CNERSH/SP) and an Administrative Research Authorization (reference number N° 631-26-22) was obtained. Written informed consent was obtained from study participants. Furthermore, parental or guardian consent has been obtained for each pregnant woman under the age of 21. It should be noted that the legal age of majority in Cameroon is 21.

#### 95 Study design

A national cross-sectional study was carried out between September 2022 and June 2023
among pregnant women receiving antenatal care (ANC) in 324 facilities in eight regions of
Cameroon: Adamaoua, East, Far North, North, West, South, Yaounde and Douala. Yaounde

and Douala are major cities comparable to other regions of the country due to their
demographic weight. The health facilities were selected on the basis of their monthly ANC
weight.

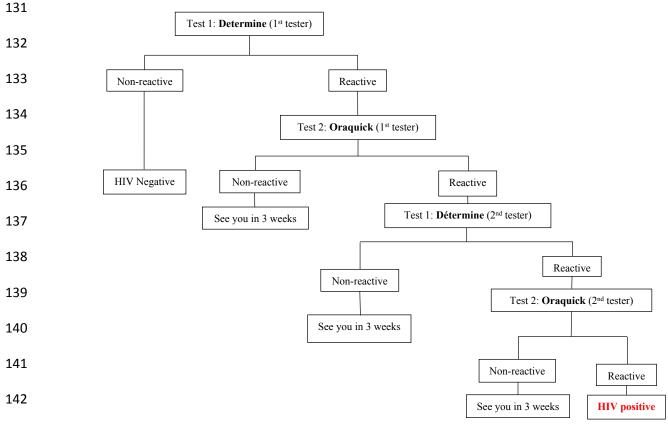
#### 102 Study population

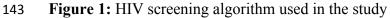
103 The study population consisted of pregnant women aged 15 and over, who consented to 104 participate in the study and were receiving antenatal and maternity care. In addition, they had to 105 be of unknown HIV status or have been declared HIV-negative for at least three months. 106 Pregnant women receiving antiretroviral treatment and/or presenting with an acute illness likely 107 to interfere with the study process were not included.

## 108 Sample size and sampling

The sample size was calculated using the WHO expert formula (Adequacy of sample size in health surveys) and taking into account the HIV prevalence of pregnant women observed in previous studies at national level (13,15). Accordingly, the sample size was estimated at 10573 pregnant women.

#### 113 Data collection and HIV testing procedure


114 Two HIV tests were used according to national guidelines (national HIV screening algorithm):
115 Determine (Abbott Laboratories, IL, USA) and Oraquick.


Data collection was carried out by health workers (Nurses and Midwives) in the antenatal and 116 maternity consultation departments of the health facilities selected for the study. They were 117 trained for 03 days in the use of Determine and Oraquick for HIV screening and in the study 118 methodology. Testing took place at the entry point (antenatal and maternity clinics) of the 119 120 health facilities selected for the study. The number of pregnant women to be recruited at each health facility was based on the average number of antepartum consultations per month. 121 Pregnant women were recruited by voluntary sample until the size of the workforce per site 122 123 was reached. When a pregnant women arrived at the ANC or maternity ward, the site's trained

124 provider introduced himself to her, checked her eligibility, sent her the information leaflet and

asked for her informed consent.

Once the participants had provided informed consent, pre-test counselling was conducted, after which HIV testing of pregnant women was performed in accordance with the national algorithm (Figure 1). Pregnant women who tested positive by the national HIV screening algorithm were managed by the aforementioned health facility in accordance with the guidelines for HIV management in Cameroon.





144 **Data management** 

Data were collected on a specific register developed for the purpose of the study. Collected data were then entered using CS Pro 7.7.3 and analysed using SPSS 22. Numerical variables were described using the median with the interquartile range (IQR), and categorical variables were described using proportions. Multivariate logistic regression was used to identify the determinants of HIV seroprevalence. The variables included in the multivariate regression

- 150 were: region, age, level of education, marital status, age of pregnancy, number of pregnancies
- and history of abortions. Indeterminate results interpreted by healthcare staff were excluded
- 152 from the model. *HIV seroprevalence* was defined as the proportion of pregnant women who
- tested positive by the HIV screening algorithm.

# 154 **Results**

#### 155 Sociodemographic characteristics of pregnant women

Of 10,673 pregnant women tested, the median age was 25 (21 - 30) and the age group most represented was 25-30 (31.3%). 44.1% were in a monogamous marriage, 46.3% of pregnant women were multiparous, 38.8% of pregnant women were in the 2nd trimester of pregnancy and 16.5% of pregnant women had declared that they had already had at least one abortion.

**Table I:** Sociodemographic characteristics of pregnant women

| Sociodemographic characteristics | N= 10,673         |      |  |  |
|----------------------------------|-------------------|------|--|--|
| Region                           | not               | %    |  |  |
| Adamaoua                         | 740               | 6.9  |  |  |
| East                             | 838               | 7.9  |  |  |
| Far North                        | 2091              | 19.6 |  |  |
| North                            | 2054              | 19.2 |  |  |
| West                             | 110               | 1.0  |  |  |
| South                            | 732               | 6.9  |  |  |
| Yaounde                          | 2173              | 20.4 |  |  |
| Douala                           | 1935              | 18.1 |  |  |
| Median age (IQR)                 | 25 years (21 – 30 |      |  |  |
| Under 20                         | 1687              | 15.8 |  |  |
| 20 - 25 years old                | 3121              | 29.3 |  |  |
| 25 - 30 years old                | 3336              | 31.3 |  |  |
| 30 - 35 years old                | 1649              | 15.5 |  |  |
| Over 35 years old                | 859               | 8.1  |  |  |
| Educational level                |                   |      |  |  |
| Never schooled                   | 2149              | 20.6 |  |  |
| Primary                          | 2729              | 26.2 |  |  |
| Secondary 1st cycle              | 2644              | 25.3 |  |  |
| Secondary 2nd cycle              | 1529              | 14.7 |  |  |
| Superior                         | 1384              | 13.3 |  |  |
| Marital status                   |                   |      |  |  |
| Monogamous bride                 | 4679              | 44.1 |  |  |
| Polygamous Bride                 | 1474              | 13.9 |  |  |
| Cohabitation                     | 2325              | 21.9 |  |  |

| Bachelor                                 | 2132     | 20.1      |
|------------------------------------------|----------|-----------|
| Number of pregnancies                    |          |           |
| Nulliparous                              | 3160     | 30.9      |
| Primiparous                              | 2344     | 22.9      |
| Pauciparous                              | 3019     | 29.5      |
| Multiparous                              | 1184     | 11.6      |
| Large multiparous                        | 528      | 5.2       |
| Gestational age (in weeks of amenorrhea) | 24 weeks | (16 – 32) |
| 1st trimester of pregnancy               | 1452     | 14.1      |
| 2nd trimester of pregnancy               | 3986     | 38.8      |
| 3rd trimester of pregnancy               | 4835     | 47.1      |
| History of abortion                      |          |           |
| No abortion                              | 8478     | 83.5      |
| 01 abortion                              | 1105     | 10.9      |
| 02 abortions and more                    | 566      | 5.6       |

161

#### 162 Seroprevalence of HIV infection among pregnant women

163 Overall, HIV seroprevalence among pregnant women was 2.6%, 95% CI [2.33; 2.93].

164 **Table II:** Seroprevalence of HIV infection among pregnant women

| Seroprevalence of HIV infection among pregnant | N=10   |      |             |
|------------------------------------------------|--------|------|-------------|
| women                                          | Ν      | %    | 95% CI      |
| HIV diagnosis using the national algorithm     |        |      |             |
| Negative                                       | 10 394 | 97.4 | 97.1 - 97.7 |
| Positive                                       | 279    | 2.6  | 2.33 - 2.93 |

165

### 166 *Factors associated with HIV seroprevalence among pregnant women*

| 167 | The regions of Adamaoua (aOR (95% CI): (3.78 (1.87-7.67); p<0.001), East (9.38 (5.6-15.67);        |
|-----|----------------------------------------------------------------------------------------------------|
| 168 | p< 0.001), North 3.07 (1.74-5.42); p<0.001), South (2.93 (1.66-5.16); p<0.001), non-schooling      |
| 169 | in the pregnant women (2 .08 (1.06-4.06); $p=0.032$ ), the level of primary education (2.44 (1.32- |
| 170 | 4.50); p=0.004), the level of secondary education (2 .29 (1.28-4.08); p=0.005), nulliparity (2.67  |
| 171 | (1.21-5.87); p=0.015), primiparity (2.72 (1.27-5 .79); p=0.010), pauciparity (2.63 (1.27-5.79);    |
| 172 | p=0.007) and multiparity (2.14 (1.03-4.45); p=0.041) were significantly associated with HIV        |
| 173 | infection. On the other hand, monogamous marriage (0.33 (0.22-0.51); p<0.001), the absence         |
| 174 | of notion of abortion among the pregnant women (0.59 (0.37-0.98); p=0.036) were associated         |
| 175 | with a reduced risk of HIV infection.                                                              |

| 176 | Regions aOR [CI 95%] Adamaoua 3.78 [1.87-7.67]; p<0.001, East (9.38 [5.6-15.67]; p<0.001,   |
|-----|---------------------------------------------------------------------------------------------|
| 177 | North 3.07 [1.74-5.42]; p<0.001, South 2.93 [1.66-5.16]; p<0.001, non-enrolment among the   |
| 178 | pregnant women 2.08 [1.06-4.06]; p=0.032, primary education level 2.44 [1.32-4.50]; p=0.004 |
| 179 | and secondary education 2.29 [1.28-4.08]; p=0.005 were significantly associated with HIV    |
| 180 | infection. On the other hand, monogamous marriage status 0.33 [0.22-0.51]; p<0.001, the     |
| 181 | absence of any notion of abortion in the pregnant women 0.59 [0.37-0.98]; p=0.036 and large |
| 182 | multiparous 0.38 [0.17-0.82]; p=0.015 were associated with a reduced risk of HIV infection. |

**Table III:** Determinants of seroprevalence of HIV infection among pregnant women

|                                | HIV diagnosis |          | Univariable analysis |       |                   | Multivariate analysis |        |                 |
|--------------------------------|---------------|----------|----------------------|-------|-------------------|-----------------------|--------|-----------------|
|                                | Negative      | Positive | B(SE)                | Р     | OR(95% CI)        | B( <i>SE</i> )        | Р      | aOR (95% CI     |
| Region                         |               |          |                      |       |                   |                       |        |                 |
| Adamaoua                       | 79.7%         | 2.3%     | 0.471(0.19)          | 0.129 | 1.6(0.87;2.94)    | 1.33***(0.36)         | 0.001  | 3.78(1.87;7.67  |
| East                           | 91.2%         | 8.8%     | 1.89***(0.23)        | 0.001 | 6.59(4.24; 10.27) | 2.238***(0.26)        | 0.001  | 9.38(5.6;15.66  |
| Far North                      | 97.8%         | 2.2%     | 0.45(0.24)           | 0.063 | 1.57(0.98;2.51)   | 1.16***(0.31)         | 0.001  | 3.2(1.74;5.84)  |
| North                          | 97.6%         | 2.4%     | 0.51*(0.24)          | 0.033 | 1.66(1.04;2.66)   | 1.121***(0.29)        | 0.001  | 3.07(1.74;5.42  |
| West                           | 97.3%         | 2.7%     | 0.64(0.62)           | 0.293 | 1.91(0.57, 6.38)  | 0.834(0.76)           | 0.270  | 2.30(0.52;10.12 |
| South                          | 96.0%         | 4.0%     | 1.03***(0.27)        | 0.001 | 2.81(1.66;4.76)   | 1.073***(0.29)        | 0.0001 | 2.93(1.66;5.16  |
| Yaounde                        | 98.5%         | 1.5%     | 0.18(0.26)           | 0.946 | 1.018(0.61;1.69)  | 0.029(0.27)           | 0.917  | 1.03(0.60, 1.76 |
| Douala                         | 98.6%         | 1.4%     |                      |       | 1                 |                       |        | 1               |
| Age                            |               |          |                      |       |                   |                       |        |                 |
| Under 20                       | 97.3%         | 2.7%     | -0.278(0.186)        | 0.246 | 0.76(0.47;1.21)   | -1.192***(0.32)       | 0.001  | 0.30(0.16;0.57  |
| 20 - 25 years old              | 97.8%         | 2.2%     | -0.485*(0.223)       | 0.029 | 0.615(0.39;0.95)  | -1.083***(0.28)       | 0.001  | 0.34(0.19, 0.58 |
| 25 - 30 years old              | 97.8%         | 2.2%     | -0.481*(0220)        | 0.029 | 0.618(0.40, 0.95) | -0.822***(0.25)       | 0.001  | 0.44(0.27;071   |
| 30 - 35 years old              | 96.3%         | 3.7%     | 0.06(0.227)          | 0.793 | 1.06(0.68, 1.66)  | -0.058(0.25)          | 0.814  | 0.94(0.58, 1.82 |
| Over 35 years old              | 96.5%         | 3.5%     |                      |       | 1                 |                       |        | 1               |
| evel of education              |               |          |                      |       |                   |                       |        |                 |
| Out of school                  | 97.5%         | 2.5%     | 0.79** (0.29)        | 0.006 | 2.20(1.25; 3.87)  | 0.732*(0.34)          | 0.032  | 2.08(1.06;4.06  |
| Primary                        | 96.8%         | 3.2%     | 1.02***(0.27)        | 0.001 | 2.78(1.63;476)    | 0.892*(0.31)          | 0.004  | 2.44(1.32;4.50  |
| Lower secondary                | 96.6%         | 3.4%     | 1.10(0.27)           | 0.001 | 3.01(1.76;5.15)   | 0.828*(0.29)          | 0.005  | 2.29(1.28;4.08  |
| Secondary <sup>2nd</sup> cycle | 98.4%         | 1.6%     | 0.31(0.25)           | 0.34  | 1.36(0.72;2.57)   | 0.130(0.34)           | 0.704  | 1.14(0.58;2.22  |
| Superior                       | 98.8%         | 1.2%     |                      |       | 1                 |                       |        | 1               |
| Aarital status                 |               |          |                      |       |                   |                       |        |                 |
| Monogamous bride               | 98.0%         | 2.0%     | -0.489**(0.122)      | 0.002 | 0.613(0.45, 0.84) | -1.094***(0.21)       | 0.001  | 0.33(0.22, 0.51 |
| Polygamous Bride               | 97.4%         | 2.6%     | -0.208(0.203)        | 0.307 | 0.813(0.55, 1.21) | -0.969***(0.26)       | 0.001  | 0.38(0.23, 0.64 |
| Cohabitation                   | 96.7%         | 3.3%     | -0.10(0169)          | 0.951 | 1.01(0.72, 1.41)  | -0.441*(0.19)         | 0.021  | 0.64(0.44, 0.94 |
| Bachelor                       | 96.8%         | 3.2%     |                      |       | 1                 |                       |        | 1               |
| Gestational age                |               |          |                      |       |                   |                       |        |                 |
| 1st trimester of pregnancy     | 96.8%         | 3.2%     | 0.331(0.178)         | 0.063 | 1.39(0.98, 1.97)  | 0.559*(0.19)          | 0.004  | 1.75(1.19;2.57  |
| 2nd trimester of pregnancy     | 97.1%         | 2.9%     | 0.226(0.135)         | 0.095 | 125(0.96; 1.63)   | 0.311*(0.15)          | 0.034  | 1.37(1.02;182   |
| 3rd trimester of pregnancy     | 97.7%         | 2.3%     |                      |       | 1                 |                       |        | 1               |
| Parity                         |               |          |                      |       |                   |                       |        |                 |
| Primiparous                    | 97.7%         | 2.3%     | 0.033(0.322)         | 0.919 | 1.03(0.55, 1.94)  | 0.017(0.20)           | 0.93   | 1.02(0.68;1.52  |
| Pauciparous                    | 97.1%         | 2.9%     | 0.244(0.312)         | 0.434 | 1.28(0.69;2.35)   | -0.014(0.21)          | 0.95   | 0.99(0.65;1.49  |
| <i>r</i>                       |               |          |                      |       | -()               |                       |        |                 |

|         | (which was not certifie | d by peer re |      |                |       | International license |              | preprint in p | erpetuity.       |
|---------|-------------------------|--------------|------|----------------|-------|-----------------------|--------------|---------------|------------------|
|         | Large multiparous       | 97.7%        | 2.3% | 0.33(0.34)     | 0.33  | 1.39(0.72;2.68)       | -0.98*(0.40) | 0.015         | 0.38(0.17;0.82)  |
|         | Nulliparous             | 97.8%        | 2.2% |                |       | 1                     |              |               | 1                |
| History | of abortion             |              |      |                |       |                       |              |               |                  |
|         | No abortion             | 97.6%        | 2.4% | -0.485*(0.229) | 0.034 | 0.62(0.39, 0.96)      | -0.519*(25)  | 0.036         | 0.59(0.37, 0.98) |
|         | 01 abortion             | 97.2%        | 2.8% | -0.337(0.28)   | 0.225 | 0.71(0.41, 1.25)      | -0.259(0.29) | 0.379         | 0.77(0.43, 1.37) |
|         | 02 abortions and more   | 96.1%        | 3.9% |                |       | 1                     |              |               | 1                |

medRxiv preprint doi: https://doi.org/10.1101/2024.05.15.24307434; this version posted May 16, 2024. The copyright holder for this preprint

184 1: reference category; B(ES): regression coefficient (standard error); P: significance; \*: significant at 5%; \*\*: significant at 1%; aOR: adjusted
 185 Odds Ratio

## 186 **Discussion**

Evidence on HIV infection and its predictors among pregnant women is key to ensuring an 187 HIV free new generation of children beyond 2030. Most importantly, LMICs like Cameroon 188 require such epidemiological surveillance to set-up priority interventions with impact at 189 country-level. In the present study, HIV seroprevalence among pregnant women was 2.6% 190 IC95% [2.33; 2.93]. These results are similar to the last national HIV prevalence rate (2.7%) 191 conducted in 2018 (11). Similarly, our findings are in close alignment with those of previous 192 studies conducted in Burkina Faso (2.16%) and Mali (2.85%) (16,17). The present prevalence 193 is significantly lower compared to the 2016 and 2019 sentinel surveys with 5.75% and 4.26% 194 respectively among pregnant women (12,13), including the results of studies which reported 195 HIV prevalences of 5.70% (95% CI: 4.93-6.40), 6% (3.0-10.2%) and 7.8% respectively among 196 pregnant women in Cameroon (18-20). Furthermore, the respective prevalence rates of 9.2% 197 198 and 7.22% reported in the countries of Chad and Nigeria are also of relevance (21,22). Our findings therefore reflect the declining trend of HIV among pregnant women in Cameroon 199 (7.6% in 2009 to 2.9% in 2016 (19,23) and from 3.4% in 2018 to 2.1% in 2022 (24-26). This 200 declining prevalence is the result of progress and strategies implemented by Cameroon in 201 recent years to strengthen HIV prevention among women, who are disproportionately affected 202 by HIV. These include the integration of reproductive health and maternal, newborn, child and 203 adolescent health services/HIV/PMTCT, decentralisation of services and delegation of tasks, 204 family-based HIV testing, implementation of option B+, contact tracing, implementation of 205 206 Users Fees and HIV self-testing for partners of pregnant women (24).

The spatial distribution of HIV among pregnant women shows regional disparities varying 207 from 2.2% in the Far North to 8.8% in the East and similarly low prevalence in the country 208 major cities of Yaoundé (1.5%) and Douala (1.4%) (11). In similar surveys, regional variations 209 210 from 0.7% in the Far North to 11.8% in the South, as well varying trends between urban and rural settings (14,19). These regional and urban disparities show that prevention activities and 211 priority interventions achieved the expected goals more easily in the major cities, likely due to 212 accessibility to several channels and means of information and communication. In addition, the 213 educational level and the presence of community-based organisations in these major cities also 214 215 contribute to strengthening HIV prevention, raising awareness and involving pregnant women and their partners in healthy behavioural factors. Henceforth, these results suggest 216 217 strengthening strategies through targeted and differentiated priority HIV prevention 218 interventions in regions, also supported by previous the Demographic and Health Survey (11).

219 Regarding drivers of HIV infection, single pregnant women were more likely to be infected with HIV than married or cohabiting women. These results are similar to previous reports 220 (14,27), likely due to the fact that unmarried women are more likely to have several sexual 221 222 partners thus increasing the risk of infection. Also, their economic vulnerability of most single women also exposes them to transactional sex (28). In this study, the risk of HIV infection 223 increased with age. Indeed, pregnant women aged 30 and over were more likely to be infected 224 with HIV than younger women. These results are comparable to those reported in the study by 225 Anoubissi and al (14). These results are consistent with the distribution of HIV infection in the 226 227 general population and suggest that younger women are better at implementing HIV prevention measures than older women. Lower level of education was significantly associated with a two-228 folds risk of acquiring HIV infection, as previously reported similarly reported in Cameroon 229 and elsewhere (18,29). Thus, HIV prevention should prioritise women with low educational 230 level, as they appear to poorly assimilate and implement HIV preventive measures. Gestational 231 age, parity and history of abortion were significantly associated with HIV infection. Indeed, 232

pregnant women in their 1<sup>st</sup> or 2<sup>nd</sup> trimester were almost 2 times more likely to be infected with 233 HIV than those in their 3<sup>rd</sup> trimester. Similarly, nulliparous, primiparous, pauciparous or 234 multiparous pregnant women were almost 2 times more likely to be infected with HIV than 235 large multiparous women. While suggesting further investigation on this area, Rindev Davis et 236 al showed that primiparous women were associated with a slightly lower prevalence of HIV 237 testing (aPR 0.97, 95% CI 0.95, 0.99) than nulliparous women (30). Furthermore, pregnant 238 women who had no abortions were 41% less likely to be infected with HIV than those who had 239 had two or more abortions. Abortions generally traumatise and cause cervical and vaginal 240 241 lesions, which probably increase the risk of contracting STIs, including HIV.

242 The potential limitations of this study would be the inability to detect cases of early infection,

which would have been handled by performing nucleic acid testing or p24 antigen detection.

However, this might have limited inference on the present evidence.

## 245 **Conclusion**

Despite the overall low-prevalence among pregnant women at national-level (2.6%), there are target population still experiencing higher risk of infection within the frame of an ongoing pregnancy, which include the absence or low-level of education, being elderly (>30 years), singleness, history of abortion and reporting low parity during ANC. Thus, public-health interventions towards these at-risk target groups will further limit events of new HIV infections among pregnant women, hence contributing to achieve eMTCT in Cameroon and other LMICs sharing similar epidemiological and programmatic features.

# 253 Acknowledgments

We would like to thank all the participants in the study for their contributions. We would also like to express our gratitude to Dr. Bacha Abdelkader for his collaboration and commitment in the implementation of the study. We would also like to thank the Cameroon Ministry of Public Health, UNICEF Cameroon and the Health Project Implementation Unit of the Islamic Development Bank for providing the necessary and accurate resources.

# 259 **References**

| 260 | 1. | Wijesooriya NS, Rochat RW, Kamb ML, Turlapati P, Temmerman M, Broutet N, et al.          |
|-----|----|------------------------------------------------------------------------------------------|
| 261 |    | Global burden of maternal and congenital syphilis in 2008 and 2012: a health system      |
| 262 |    | modelling study. Lancet Glob Health. 2016 Aug;4(8):e525–33.                              |
| 263 | 2. | UNAIDS. Global AIDS Update [Internet]. 2016. Available from:                             |
| 264 |    | http://wwwunaidsorg/en/resources/documents/2016/Global-AIDS-update-2016                  |
| 265 | 3. | UNAIDS. Global AIDS Progress Report. 2017.                                               |
| 266 | 4. | WHO. Strategic framework for the elimination of new HIV infections among children in     |
| 267 |    | Africa by 2015. Africa Regional Office. Brazzaville; 2013.                               |
| 268 | 5. | Ministry of Health (MINSANTE), Division of Operational Research in Health (DROS).        |
| 269 |    | Assessment of the impact of HIV on the population in Cameroon (CAMPHIA) 2017-2018:       |
| 270 |    | Final report. Yaoundé: MINSANTE-DROS; 2020.                                              |
| 271 | 6. | De Cock KM, Fowler MG, Mercier E, De Vincenzi I, Saba J, Hoff E, et al. Prevention of    |
| 272 |    | Mother-to-Child HIV Transmission in Resource-Poor Countries: Translating Research Into   |
| 273 |    | Policy and Practice. JAMA. 2000 Mar 1;283(9):1175.                                       |
| 274 | 7. | WHO. Antiretroviral drugs for treating pregnant women and preventing HIV infection in    |
| 275 |    | infants. Recommendations for a public health approach. WHO Press; 2010.                  |
| 276 | 8. | Ciaranello AL, Perez F, Keatinge J, Park JE, Engelsmann B, Maruva M, et al. What Will It |
| 277 |    | Take to Eliminate Pediatric HIV? Reaching WHO Target Rates of Mother-to-Child HIV        |
| 278 |    | Transmission in Zimbabwe: A Model-Based Analysis. Binagwaho A, editor. PLoS Med.         |
| 279 |    | 2012 Jan 10;9(1):e1001156.                                                               |

| 280 | 9.  | Takah NF, Kennedy ITR, Johnman C. The impact of approaches in improving male partner    |
|-----|-----|-----------------------------------------------------------------------------------------|
| 281 |     | involvement in the prevention of mother-to-child transmission of HIV on the uptake of   |
| 282 |     | maternal antiretroviral therapy among HIV-seropositive pregnant women in sub-Saharan    |
| 283 |     | Africa: a systematic review and meta-analysis. BMJ Open. 2017 Nov;7(11):e018207.        |
| 284 | 10. | National Institute of Statistics (INS), ICF International. Cameroon Demographic and     |
| 285 |     | Health Survey and Multiple Indicators 2011. Yaoundé, Cameroon: Carverton, Maryland,     |
| 286 |     | USA: INS and ICF International; 2011.                                                   |
| 287 | 11. | INS, MoH and ICF. Cameroon Demographic and Health Survey 2018. Yaounde,                 |
| 288 |     | Cameroon and Rockville, Maryland, USA; 2020.                                            |
| 289 | 12. | NACC. 2019 annual report on activities to combat HIV, AIDS and STIs [Internet].         |
| 290 | ,   | Yaounde; 2019. Available from:                                                          |
| 291 |     | https://drive.google.com/file/d/1bhrNghpxvaFnU5cLucY_0wk9zZZlolhZ/view                  |
| 292 | 13. | NACC. Sentinel surveillance of HIV and Syphilis among pregnant women attending          |
| 293 | ]   | prenatal consultations in Cameroon in 2016. Yaounde: NACC; 2017.                        |
| 294 | 14. | Anoubissi JDD, Gabriel EL, Kengne Nde C, Fokam J, Tseuko DG, Messeh A, et al. Factors   |
| 295 |     | associated with risk of HIV-infection among pregnant women in Cameroon: Evidence from   |
| 296 |     | the 2016 national sentinel surveillance survey of HIV and syphilis. Ciccozzi M, editor. |
| 297 |     | PLOS ONE. 2019 Apr 12;14(4):e0208963.                                                   |
| 298 | 15. | Lemeshow S. Adequacy of sample size in health studies. No Title. 1990;                  |
| 299 | 16. | Ky A, Ba I, Diallo I, Diendéré A, Toguyeni L, Tamini S, et al. HIV infection among      |
| 300 |     | pregnant women seen in prenatal consultations in three (3) health centers in Bobo-      |

301 Dioulasso and associated risk factors.

- 302 17. Telly N, Ballo T, Sangho O, Kayentao K, Traore S, Traore B, et al. Factors associated with
- HIV infection and/or syphilis in the sentinel surveillance study among pregnant women in
  antenatal clinics in Mali. Rev Malienne Sci Technol. 2020;1(24).
- 18. Billong SC, Fokam J, Billong EJ, Nguefack-Tsague G, Essi MJ, Fodjo R, et al.
  Epidemiological distribution of HIV infection among pregnant women in the ten regions of
  Cameroon and strategic implications for prevention programs. Pan Afr Med J. 2015;20:79–
  79.
- 309 19. Dionne-Odom J, Mbah R, Rembert NJ, Tancho S, Halle-Ekane GE, Enah C, et al. Hepatitis
- B, HIV, and Syphilis Seroprevalence in Pregnant Women and Blood Donors in Cameroon.
- 311 Infect Dis Obstet Gynecol. 2016;2016:1–8.
- 20. Billong SC, Fokam J, Anoubissi JDD, Kengne Nde C, Toukam Fodjo R, Ngo Nemb M, et
  al. The declining trend of HIV-Infection among pregnant women in Cameroon infers an
  epidemic decline in the general population. Heliyon. 2020 Jun;6(6):e04118.
- 21. Hota M, Yandai F, Moussa A, Moustapha A, Mbanga D, Otchom B. Prevalence and
  transmission of human immunodeficiency virus from mother to child in N'Djamena. Int J
  Biol Chem Sci. 2019;13(4):2192–9.
- 22. Ozim CO, Mahendran R, Amalan M, Puthussery S. Prevalence of human
  immunodeficiency virus (HIV) among pregnant women in Nigeria: a systematic review and
  meta-analysis. BMJ Open. 2023;13(3):e050164.
- 23. Kengne-Nde C, De Dieu Anoubissi J, Loni-Ekali G, Nguefeu-Nkenfou C, Moussa Y,
  Messeh A, et al. Highlighting a population-based re-emergence of Syphilis infection and
  assessing associated risk factors among pregnant women in Cameroon: Evidence from the
  2009, 2012 and 2017 national sentinel surveillance surveys of HIV and syphilis. Peters RP,
- editor. PLOS ONE. 2020 Nov 13;15(11):e0241999.

- 24. NACC. NACC Annual Report 2020. Yaoundé-Cameroon: MoH-NACC; 2021.
- 25. NACC. NACC Annual Report 2021. Yaoundé-Cameroon: MoH-NACC; 2022.
- 26. NACC. 2022 annual report of HIV activities. Yaoundé-Cameroon: MoH-NACC; 2023.
- 27. Mabaso M, Sokhela Z, Mohlabane N, Chibi B, Zuma K, Simbayi L. Determinants of HIV
- infection among adolescent girls and young women aged 15–24 years in South Africa: a
- 2012 population-based national household survey. BMC Public Health. 2018
  Dec;18(1):183.
- 28. Dellar RC, Dlamini S, Karim QA. Adolescent girls and young women: key populations for
  HIV epidemic control. J Int AIDS Soc. 2015;18:19408.
- 29. Schumann H, Rubagumya K, Rubaihayo J, Harms G, Wanyenze RK, Theuring S. The
  incidence of HIV and associated risk factors among pregnant women in Kabarole District,
  Uganda. PLoS One. 2020;15(6):e0234174.
- 338 30. Davis R, Xiong X, Althabe F, Lefante J, Cafferata ML, Mwenechanya M, et al. Factors
- associated with HIV and syphilis screenings among pregnant women at first antenatal visit
- in Lusaka, Zambia. BMC Res Notes. 2020;13:1–7.