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Abstract

The recent COVID-19 epidemic demonstrated the need and importance of epidemic

models as a tool for policy-making during times of uncertainty, allowing the decision-

makers to test different intervention techniques and scenarios. Furthermore, tools such as

large-scale contact tracing became technologically feasible for the first time. While large-

scale agent-based simulations are nowadays part of the toolboxes, good analytical models

allow for much faster testing of scenarios. Unfortunately, good models that consider con-

tact tracing and quarantine, and allow for different degree distributions do not exist. To

overcome these shortcomings of existing models we propose a new simple compartmental

model that integrates quarantine and contact tracing into the SIR compartmental models

with arbitrary degree distribution of nodes to better understand the dynamics of the disease

under various parameters of intervention and contagion. Consequently, we analytically

derive the epidemic threshold as a function of the degree distribution and the model param-

eters when both quarantine and contact tracing are used. Simulation results demonstrate

and quantify the benefits of quarantine and contact tracing and show the effectiveness of

such measures over a large range of epidemic parameters.
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Introduction

The outbreak of COVID-19 affected people around the world and provided health, social, and

economic challenges [1]. Estimating the impact of the disease [2,3] and use of mitigation mea-

sures [4, 5] can help shape the effect on the population and combat the outbreak.

Epidemiology is the field of science for mathematical modeling for such problems [6,7]. When

researching the field of epidemiology, we can see two distinct approaches: agent-based simu-

lation [8, 9] and compartment modeling [10–12]. The advantage of agent-based simulation is

that you can tailor the epidemic to a specific case by simulating different disease parameters

on a certain population on the individual level. However, there is a severe limitation with the

agent-based simulations. This approach is computationally expensive and time-consuming, as

discussed in [13]. This makes it difficult to conclude anything general regarding the epidemic

in a given population without simulating the model for many repetitions. The compartmental

approach proposes compartmentalizing the population in different states and devising ordinary

differential equations to describe at what rate individuals travel between different compart-

ments [14]. The compartment models offer an easy, computationally inexpensive way to model

the propagation of the disease and provide insight for future scenarios, allowing quick decision-

making.

The most popular compartmental model is the SIR model, it divides the population into three

models S—susceptible, I—infected, and R—recovered. Examples of other models include SIS

(susceptible—infected-susceptible) [15] where infected individuals become susceptible again

after some time, SIRQ (susceptible—infected—recovered—quarantined) [16] which incorpo-

rates quarantine of infectious individuals. Usually, when such models are used, it is assumed

the population is a well-mixed one. The issue with such an assumption is that it doesn’t de-

scribe reality [17]. To resolve this a degree-based approach is used [18,19], and it assumes that

vertices with the same degree behave similarly, in [12] we see that this approximation is a good

one. [20–22] solve the case of the SIR model with degree distribution, where [22] specifically

explores the subject on a more complex network.

In the recent COVID-19, we saw that implementing contact tracing and isolation techniques

could be used to control the outbreak [23], [24], [25], [26], [27], [28], that is why in our research,

we focused on incorporating quarantine and contact tracing into the classic SIR compartmental

model under any arbitrary degree distribution. This grows more relevant in time as improve-
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ments in technology can help make contact tracing easier [29]. Some papers try to solve this

problem in the agent-based approach [30], [31], [27], while others used compartment models

but only using fully-mixed models [32], [33]. Our model enriches the SIR model by changing

S, and I’s compartments to two compartments each (Not quarantined and quarantined states for

each previous state) and add additional transitions between states. Papers [30], [34], [32], [33]

are closest to our model. The model in [33] is fully mixed and does not address any social

networks. [30] quantifies the network effects of contact tracing using configuration models,

but doesn’t provide the equations of the model for further research. In addition, [30] and [34]

assume a different tracing process – the tracing occurs immediately as an infected individual

enters quarantine. The rate of contact tracing differs in several methods of tracing, as can be

seen in [29], also the delay highly affects the impact of contact tracing [35]. In our model,

we assume there is a delay to contact tracing similar to [32]. In our research, we simplify and

provide easier equations to work with than in [32]. We devise a simple, equation-based way to

quantify the effect of contact tracing and isolation on epidemic spread. For the case of a regular

graph, we provide an analytical solution to reduce the equations to a single equation to solve to

further simplify the calculation. In addition, we show that the regular graph case is similar to

Erdős–Rényi. This important result means that any degree distribution that can be approximated

as Erdős–Rényi and only one equation needs to be solved. Moreover, we can clearly see in the

results the validity of our model and the effectiveness of tracing and quarantine measures over

a large range of epidemic parameters. In the future, our model can be a foundation for other

models incorporating any additional measures of epidemic control.

Results

In this paper, we extend the classical SIR models with arbitrary degree distribution [12], [18,19],

to the case where quarantine and contact tracing are available measures to limit the spread of

the epidemic. These measures have been widely applied during the recent pandemic [36–39],

however, we were unable to find simple compartmental models incorporating these measures.

Our main results include the development of the compartmental model incorporating both quar-

antine and contact tracing, for an arbitrary degree distribution model. The model is depicted in

Fig. 1. For this model, we derive a simple closed-form formula for the epidemic threshold.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.15.24307402doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.15.24307402


S S

I I

R

S S

I I

NQ

NQ

Q

Q

1

1 1

1

Quarantine
End

Contact
TracingInfection

Contact
Tracing

Symptoms

NQ

NQ

Q

Q

K

K K

K

Quarantine
End

Contact
TracingInfection

Contact
Tracing

Symptoms

Recovery

Recovery Re
co
ve
ry

Re
co
ve
ry

Fig. 1: An illustration of the SIRCQ model proposed in this paper. For each degree k, we have four possible

compartments (Sk
NQ, S

k
Q, I

k
NQ, I

k
Q), whereas the recovered compartment R is for all degrees.

Then we significantly simplify the equations in the case of a contact graph with a fixed degree

of all nodes. This generalizes the classical SIR model, where each node can be connected to all

other nodes. We show, by simulations, that this simplification provides an excellent approxima-

tion for the Erdős–Rényi family of random graphs [40], [41].

To validate our theoretical results, we performed extensive comparisons with agent-based mod-

els for both scale-free degree graphs and regular graphs. First, we compared the temporal epi-

demic evolution, and then we evaluated the proportion of infected people under various model

parameters. We also validate the formula for the epidemic threshold in both cases. The results

show good agreements between theory and simulation and validate our results.
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SIRCQ model

We begin with a detailed description of the proposed model. Note that the interplay between

contact tracing and quarantine is complex and is further complicated by the stochastic nature of

contact tracing and the variability in symptom onset. Our model aims to capture these dynamics

to provide insights into the effectiveness of quarantine and contact tracing as strategies to con-

trol the spread of infectious diseases. The model takes the classical SIR compartmental model

with degree distribution and splits each susceptible (Sk) and infected (Ik) compartment into

two compartments each, one with quarantined individuals and another with non-quarantined

individuals. In total, we have five distinct compartments for each degree in the contact graph:

susceptible individuals who are quarantined (Sk
Q), susceptible individuals who are not quaran-

tined (Sk
NQ), infected individuals who are quarantined (IkQ), infected individuals not quarantined

(IkNQ), and recovered individuals (R). Fig. 1 depicts the transitions between compartments.

While transitions are made between compartments of each degree, the transition rate is de-

termined by the cumulative amount of infected individuals in all infected compartments. The

dynamics of the model are governed by a set of differential equations that account for the arbi-

trary degree distribution of the contact network, representing the heterogeneity in the number

of contacts per individual. For each degree k, there are five equations corresponding to the five

compartments. These equations represent the net inflow of individuals to the corresponding

compartment and are coupled through the total number of infected individuals.

We will start describing the transitions in the compartments with the infection process, which

moves individuals from Sk
NQ to IkNQ. Newman [12] presents the Susceptible — Infectious —

Recovered (SIR) model with degree-based distribution. The excess degree distribution is used

in order to describe the infection process. We will use a similar process for our model. The

reason excess degree distribution is used is that a susceptible vertex (A) can be infected by

an infected neighbor (B) only if B has another infected neighbor (C) who is not susceptible.

Thus, to get the infection probability we need to consider the excess degree distribution of B,

so that we don’t include A. In short, the infection rate of each susceptible individual depends

on 3 parameters: the probability of infection upon contact, the degree of the individual, and the

probability that their contact/neighbor is infected, which as we mentioned above is determined

by the excess degree of the contact.

Symptomatic transfer to quarantine is another feature of our model, where individuals in the
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IkNQ compartment are moved to the corresponding IkQ compartment based on the onset of symp-

toms. This process considers the delay between infection and the onset of symptoms, which

plays a significant role in the disease dynamics. In our model, symptoms are assumed to follow

a geometrical probability distribution over the course of the infection. This process considers

the delay between infection and the onset of symptoms, which plays a significant role in the

disease dynamics.

Contact tracing is modeled as a mechanism that transitions individuals from the Sk
NQ to the

corresponding Sk
Q compartment, and from the IkNQ to the corresponding IkQ compartment, upon

identification of their contact with a known infected individual, which means the traced indi-

vidual has to be from IQ. The efficiency of the contact tracing process is a critical parameter,

influencing the rate at which individuals are quarantined and thereby affecting the spread of

the infection. We parameterize the efficiency of contact tracing as the rate of contact tracing,

which is assumed to follow a geometrical probability distribution from the time an individual

enters the IkQ compartment. This can represent different contact-tracing mechanisms, such as

electronic contact tracing and epidemiological investigations [29, 35]. Similarly to infection,

contact tracing is affected by the excess degree distribution (which is a function of all infected

compartments) as the infected and quarantined individuals had to be traced from another neigh-

bor, who is in quarantine, and is not necessarily of the same degree.

The recovery process is modeled through a transition from both IQ and INQ compartments to

the R compartment, using a geometrical probability distribution similar to the symptoms’ onset.

The recovery signifies the development of immunity or the end of the infectious period.

The combination of all this information is depicted in Fig. 1, we can see all the compartments

for each degree and all the possible transitions mentioned above. This model provides a quick

and valuable tool for public health officials and policymakers to evaluate the implications of

different intervention strategies, offering a more nuanced understanding of epidemic control in

the face of uncertainty and incomplete information. The implications of our findings are partic-

ularly relevant for the strategic design of measures to mitigate the spread of future epidemics.

Detailed derivation of these equations is given in the methods section.
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Epidemic threshold of SIRCQ model

Our main theoretical result is the computation of the epidemic threshold for the SIRCQ model

in two cases: Arbitrary degree distribution and for the special case of a regular graph. The

computation utilizes the technique of [42] by defining the next-generation transmission and

transition matrices to calculate R0. For arbitrary degree distribution, the epidemic threshold is

growing linearly with the infection parameter and the mean degree of a neighbor, also known

as the mean excess degree and inversely proportional to the sum of the inverse of the mean time

for the appearance of symptoms and the recovery rate. The detailed calculation is given in the

Methods section under “Calculation of the epidemic threshold for arbitrary degree distribution”.

The mean degree of a neighbor is the important parameter, similar to [12] for the degree-

based SIR. As is expected, contact tracing does not affect the epidemic threshold, but rather

reduces the spreading rate when the epidemic evolves. The logic behind it is that when everyone

is virtually susceptible and there are no infected people in quarantine, contact tracing is not yet

effective and does not determine the disease outbreak. We also provide a simpler derivation for

the case of a k-regular graph. This generalizes the standard SIR case by limiting the number of

contacts of each person to a specific number.

Comparison of the compartment model and agent-based model

To validate our model we compare the numerical solution of the compartmental model equa-

tions with an agent-based model (ABM). The results show good agreement between the mod-

els, which verifies our equations. Fig. 2 compares the temporal behavior of the two models for

power law distributed degrees of the nodes. The minimal degree was 8 and the mean degree was

40. This generates a highly heterogeneous degree distribution. The disease parameters are de-

termined by the mean transition time between compartments that are geometrically distributed.

The probability of infection per contact (β) was selected to be 0.02, the recovery rate (γ) was

chosen to be 0.14 (7 days), the contact tracing rate (pct) was selected to be 0.5 (2 days), the rate

of return of susceptible individuals from quarantine (θs) was chosen to be 0.07 (14 days), and

the rate of symptoms appearance (psymptoms) was selected to be 0.25 (4 days).

Fig. 2a shows the relative population of the susceptible compartment as a function of time in

Newman’s model (no quarantine and no contact tracing), The reproduction number in this case

is R0 ≈ 40. If we add the symptoms’ onset and contact tracing we get Fig. 2b. We can clearly
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see different behavior in the susceptible population, the proportion of infected people in the

population after the epidemic ends (r∞) is lowered from 0.86 to 0.012. This directly expresses

the power of quarantine and contact tracing, showing how important these measures are.

Fig. 2c and Fig. 2d show the relative infected population as a function of time. In all the

results in Fig. 2 we can see a clear agreement between the results of the agent-based and com-

partmental models. The compartmental model is close to the median of the agent-based model

and falls well within the 10%− 90% confidence interval.

Similarly, Fig. 3 presents the same results for regular graphs. In this case, there is also a

clear agreement between the results of the agent-based and compartmental models. This further

enhances the validity of our results by showing that the compartmental model agrees with the

agent-based model for two significantly different degree distributions.
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Fig. 2: Comparison of the compartment model and agent-based model in the power law case. The sub-

figures are susceptible in Newman’s model (a) susceptible in the SIRCQ model (b), infected and non-quarantined

(c), and infected and quarantined (d). The range is between 0 and 1 because we normalize by the population. The

parameters of the epidemic are: β = 0.02, γ = 0.14, pct = 0.5, θs = 0.07, psymptoms = 0.25. For (d) symptoms and

contact tracing are zero (pct = 0, psymptoms = 0).
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Fig. 3: Comparison of the compartment model and agent-based model in the regular-graph case. The

sub-figures are susceptible in Newman’s model (a) total susceptible in the SIRCQ model (b), infected and non-

quarantined (c), and infected and quarantined (d). The range is between 0 and 1 because we normalize by the

population. The parameters of the epidemic are: β = 0.002, γ = 0.14, pct = 0.5, θs = 0.07, psymptoms = 0.25. For

(d) symptoms and contact tracing are zero (pct = 0, psymptoms = 0). The degree was chosen to be 281, the same

as the mean excess degree in the power-law case.
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Fig. 4: Epidemic threshold expressed with r∞ as a function of β in a power law degree distribution(a) and

regular-graph degree distribution(b).

Experimental validation of the formula for R0

The next result validates our theoretical computation of the epidemic threshold. We compare

the computed epidemic threshold and the numerical results of the compartmental model. Fig.

4 depicts r∞ versus the infection parameter (β) for power law and regular graphs, respectively,

with all other epidemic parameters constant in different scenarios. We observe a good agree-

ment between the theoretical epidemic threshold and the beginning of an exponential growth of

the total number of infected people as a function of the infection parameter. In Fig. 4a, since the

excess degree is 281, R0 = 1 for β ≈ 0.0014 when quarantine is used and β ≈ 0.0005 without

quarantine. For the regular graph result, we chose the degree to be the same as the excess degree

of the power law graph to have the same thresholds. We can see this result in Fig. 4b.
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The effects of contact tracing and isolation on the number of infected cases
in the population

Our next result studies the impact of contact tracing on the total infected population. We show

that accelerating the contact tracing can significantly reduce the total number of infected people.

Fig. 5 and Fig. 6 present different scenarios for power law and regular graphs, respectively. Fig.

5a and Fig. 6a show the SIR model with the same degree distribution but without quarantine

or contact tracing [43] where there are only three compartments. The range of the infection

parameter β was selected such that r∞ covers the interval from 0 to 0.95 in this model. We

used the same infection parameters with various contact tracing and quarantine parameters to

evaluate the gain of contact tracing and quarantine as compared to this model. Figures 5b and

6b present a different scenario for symptoms-based quarantine only, we can see a significant

reduction in the total infection population by up to 30% for the highest probability of infection.

The remaining sub-figures consider the effect of adding contact tracing on top of symptoms-

based quarantine. We can see a significant reduction in the total infected population, further

improving upon the symptoms-based quarantine. In addition, in every scenario, there is a good

agreement between the ABM and the compartment model, further validating our model. An

important advantage of the compartmental model is that the calculation of these results is 3

orders of magnitude faster compared to the ABM model.
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Fig. 5: Comparison of r∞ as a function of β between agent and compartment in a power law degree

distribution. There are 4 sub-figures for different scenarios. Fig. (a) is for No quarantine and no tracing (SIR model

with degree distribution), Fig. (b) is for symptom-based quarantine only (pct = 0), Fig. (c) is for quarantine and

tracing of pct = 0.5, Fig. (d) is for quarantine and tracing of pct = 0.9.
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Fig. 6: Comparison of r∞ as a function of β between agent and compartment in a regular-graph degree

distribution. There are 4 traces for different scenarios. Fig. (a) is for No quarantine and no tracing (SIR model with

degree distribution), Fig. (b) is for symptom-based quarantine only (pct = 0), Fig. (c) is for quarantine and tracing

of pct = 0.5, Fig. (d) is for quarantine and tracing of pct = 0.9. The degree of the graph is 281, as the mean excess

degree of the power-law case.
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Comparison between Erdős–Rényi and regular graphs

The differences in the epidemic dynamics between the regular graph and the power law graph

are significant. Intuitively, regular graphs represent a case where the variation of the degrees

is small. This suggests that the results for regular graphs should be a good approximation to

the family of Erdős-Renyi graphs. Our final result is the comparison between Erdős–Rényi

and regular graphs. Indeed the results show good agreement over a wide range of parameters.

This result is very important because it means that our simplification of the regular graph to a

single equation is valid for a wide range of degree distributions which include the Erdős–Rényi

graphs. Any degree distribution that can be represented as an Erdős–Rényi graph (or even

families where the degree distribution is relatively concentrated) can have a simple approximate

solution by numerically solving a single equation with a closed form algebraic solution for

the other equations instead of solving numerically 5×K equations where K is the number of

different degrees of nodes. This result is not surprising, as Erdős–Rényi has a rather small

variance and is concentrated around the mean. The degree of the regular graph was chosen as

the mean of the Erdős–Rényi degree distribution so that we have Erdős–Rényi with n as the

population size and p = k/n where k is the degree of the k-regular graph. In Fig. 7 we see the

results, we can see that both the agent-based and the compartmental models of Erdős–Rényi are

approximately equal to the k-regular graph results.
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Fig. 7: Comparison of r∞ as a function of degree between Erdős–Rényi and regular graph degree distribu-

tions. We have four traces of Erdős–Rényi, three of which are agent-based simulations and one is compartment-

based. We can clearly see that the compartment solution of Erdős–Rényi agrees with the agent-based solution

and that the Erdős–Rényi compartment solution is almost identical to the regular graph compartment solution. We

chose β = 0.0015 to make sure R0 > 1 for all degrees in the range.
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Discussion

We introduced a novel compartmental model that includes contact tracing and quarantine under

an arbitrary degree distribution. We calculated the epidemic threshold in the general case as

well as for regular graphs. Moreover, we developed a way to reduce the complexity of the solu-

tion for regular graphs to the numerical solution of a single equation. This model allows a much

faster evaluation of the impact of contact tracing and quarantine under various models. Since

the solution is 3-4 orders of magnitude faster than the ABM even for populations up to 100,000,

the acceleration would be more significant when we try to evaluate the impact of the measures

on a state level. Hence, the model provides an important tool for policy making and testing

various measures under different situations. It also allows quick sensitivity analysis to the vari-

ous parameters, something that is much harder with agent-based models, and is important when

epidemic parameters are noisy estimates derived from real-time epidemic progression. Further-

more, deriving a simple formula for the epidemic threshold provides an even faster means of

estimating the impact of quarantine and contact tracing.

We demonstrated the clear impact of contact tracing on epidemic evolution. Isolation slows

the spread of the disease and contact tracing significantly enhances that effect. As a result r∞
drops.

In addition, we showed that the regular graph case has a good agreement with Erdős–Rényi

graphs, which can be used for an entire family of degree distributions. We can further generalize

this to a larger family of degree distributions, where the degree variation is small. For example,

degree distributions that can be approximated by a two-degree model can be represented by 10

differential equations.

In the future, this model can be a foundation for more complex models, as this model intro-

duces a simple way to incorporate contact tracing into compartmental models.

Methods

SIRCQ model development

We now derive the SIRCQ model equations. For each degree, the standard compartments are

used for non-quarantined people with degree k and denoted by Sk
NQ, I

k
NQ. For each degree k we
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add two new compartments for people in quarantine. One for susceptible and quarantined (Sk
Q)

and the other for infected and quarantined IkQ. We note that susceptible and quarantined move

back to the susceptible and non-quarantined after a certain time, while infected and quarantined

move to the recovered compartment (R). Each of these transitions has its own rate. The model

is depicted in Fig. 1.

To describe the model, we use the following notation: pk is the probability that a vertex has

degree k, qk that the excess degree is k, xk is the part of the population in the compartment x,

where x is one of the super compartments (i.e, including all degrees) (snq - susceptible and not

quarantined, sq - susceptible and quarantined, inq - infected and not quarantined, iq - infected

and quarantined, r - recovered), normalized by the population size of degree k. For example,

s5nq is the proportion of susceptible and not quarantined individuals with degree 5 out of all

degree 5 population. β is the probability of infection per contact, γ is the recovery rate, v is the

probability that a neighbor vertex is infected and not quarantined (regardless of its degree), v̂ is

the probability that a neighbor vertex is infected and quarantined, pct is the contact-tracing rate,

psymptoms is the symptoms appearance rate, and θs is the rate of exiting quarantine.

The equations for the model are:

dsknq
dt

= −βkvsknq − pctkv̂s
k
nq + θss

k
q , (1)

dskq
dt

= pctkv̂s
k
nq − θss

k
q , (2)

diknq
dt

= βkvsknq − pctkv̂i
k
nq − psymptomsi

k
nq − γiknq, (3)

dikq
dt

= pctkv̂i
k
nq + psymptomsi

k
nq − γikq , (4)

drk

dt
= γ(iknq + ikq). (5)

We will now derive these equations similarly to the model of [43]. We begin with the

derivation of [12] and modify it to include the new compartments. The equations in [12] are

expressed using only 3K compartments (sk - susceptible, ik - infected, rk - recovered). Using

the notations above the equations in [12] are defined as follows:

dsk

dt
= −βkvsknq, (6)
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dik

dt
= −βkvsknq − γik, (7)

drk

dt
= γik. (8)

v(t) = Σ∞
k=0qki

k
nq(t). (9)

In this model, we have only two transitions: infection (from s to i) and recovery (from i to

r). In the SIRCQ model, we have a few more transitions: infection (from snq to inq), recovery

(from inq or iq to r), quarantine from symptoms (from inq to iq), contact tracing (from inq to

iq or from snq to sq), and exit from quarantine (from sq to snq). The compartments and the

transitions are described in Fig. 1.

In the SIRCQ model the equations (6-9), are modified since the infection can occur only

between non-quarantined vertices (sknq and iknq), Hence we obtain:

dsknq
dt

= −βkvsknq, (10)

diknq
dt

= −βkvsknq − γiknq, (11)

drk

dt
= γ(iknq + ikq). (12)

v(t) = Σ∞
k=0qki

k
nq(t), (13)

We now include the effect of symptoms. Symptoms occur only in infected people and only

transfers people from IkNQ to IkQ. Therefore, equation (11) becomes:

diknq
dt

= −βkvsknq − γiknq − psymptomsi
k
nq, (14)

and the new compartment satisfies:

dikq
dt

= psymptomsi
k
nq − γikq , (15)

Finally, we address the transition probabilities of the contact tracing. Let us define pct as

the rate of contact tracing, i.e. the rate of identifying contacts between quarantined people and

others. This implies that the contact tracing results in transitions from Sk
NQ to Sk

Q and from

IkNQ to IkQ. Hence it adds a positive term to Sk
Q, I

k
Q and a negative term to Sk

NQ, I
k
NQ. Note that
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contacts with infected neighbors of any degree impact the contact tracing, and this results in a

non-linear term that depends on v̂ which is defined as the expected excess degree

v̂ = Σ∞
k=0qki

k
q(t). (16)

Finally, we arrive at the equations of the model:

dsknq
dt

= −βkvsknq − pctkv̂s
k
nq + θss

k
q , (17)

dskq
dt

= pctkv̂s
k
nq − θss

k
q , (18)

diknq
dt

= βkvsknq − pctkv̂i
k
nq − psymptomsi

k
nq − γiknq, (19)

dikq
dt

= pctkv̂i
k
nq + psymptomsi

k
nq − γikq , (20)

drk

dt
= γ(iknq + ikq). (21)

k-regular graph case

Our system of equations (17-21) does not address the special case of k-regular graph which is

in between the classical SIR model and the full arbitrary degree-distribution cases. This specific

case is useful, when we know the average number of contacts per person, a parameter which can

significantly improve the classical SIR model. In a k-regular graph all vertices have the same

degree. Thus, the probability that a neighbor is infected and quarantined or infected and not

quarantined is iq and inq, respectively. In addition, instead of 5×K equations (where K is the

number of different degrees of nodes), we now only have five equations. Thus, the equations

become:
dsnq
dt

= −βkinqsnq − pctkiqsnq + θssq, (22)

dsq
dt

= pctkiqsnq − θssq, (23)

dinq
dt

= βkinqsnq − pctkiqinq − psymptomsinq − γinq, (24)

diq
dt

= pctkiqinq + psymptomsinq − γiq, (25)
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dr

dt
= γ(inq + iq). (26)

We now show that for k-regular graphs, the system (22)-(26) can be reduced into a single

equation, as follows:

Theorem 1. Solving the system (22)-(26) is equivalent to solving the equation

dm(iq)

dt
= −βkg(iq)− pctkiqm(iq) + θsf(iq), (27)

where:

m(iq) =
1

βk

d2iq
dt2

+ γ diq
dt

diq
dt

+ γiq
−

pct
diq
dt

βkpctiq + βpsymptoms

+
psymptoms

βk
+

pctiq
β

+
γ

βk
, (28)

f(iq(t)) = e−θst

∫ t

0

eθstkpctiq(t
′)m(t′)dt′, (29)

g(iq(t)) = i0e
∫ t
0 (βkm(t′)−psymptoms−kpctiq(t′)−γ)dt′ , (30)

with the initial conditions: snq(0) = 1−i0, inq(0) = i0, iq(0) = 0, sq(0) = 0, r(0) = 0. All other

compartments can be algebraically derived from iq(t): snq(t) = m(iq(t)), sq(t) = f(iq(t)),

snq(t) = g(iq(t)) and r(t) = 1− snq(t)− sq(t)− inq(t)− iq(t).

Note that (27) still needs to be solved numerically. However, solving a single differential

equation is significantly simpler than solving a system of 5 non-linear differential equations.

Proof. To prove the theorem we can first solve the ODE (24) for inq with the initial condition

inq(0) = i0 obtaining:

inq(t) = i0e
∫ t
0 (βksnq(t′)−psymptoms−kpctiq(t′)−γ)dt′ . (31)

We now substitute equation (31) with inq in equation (25). We do this in order to find a solution

for snq so that snq = f(iq):

diq
dt

= (psymptoms + kpctiq)i0e
∫ t
0 (βksnq−psymptoms−kpctiq−γ)dt′ − γiq. (32)

We isolate the exponent and use the natural logarithm on both sides:
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ln

(
diq
dt

+ γiq

(psymptoms + kpctiq)i0

)
=

∫ t

0

(βksnq − psymptoms − kpctiq − γ)dt′. (33)

We now derive both sides and isolate snq to get:

snq(t) =
1

βk

(
d2iq
dt2

+ γ diq
dt

diq
dt

+ γiq
−

kpct
diq
dt

kpctiq + psymptoms

+ psymptoms + kpctiq + γ

)
. (34)

Afterward, we solve the ODE in equation (23) for sq with the initial condition that sq(0) = 0:

sq(t) = e−θst

∫ t

0

eθstkpctiq(t
′)snq(t

′)dt′. (35)

Since we can express snq, sq, inq as functions of iq, we can substitute equations (35, 34, 31)

to equation (22) to get an ODE of iq. In order to simplify the equation, we will use the following

notations:

w(iq(t)) =
d2iq(t)

dt2
+ γ diq(t)

dt
diq(t)

dt
+ γiq(t)

−
kpct

diq(t)

dt

kpctiq(t) + psymptoms

.

The ODE equation of iq is:

1

βk

dw(iq(t))

dt
+

pct
β

diq(t)

dt
= −

(
i0e

∫ t
0 w(iq(t′))dt′ +

pctiq(t)

β

)
(w(iq(t)) + psymptoms + kpctiq(t) + γ)

+ θse
−θst

∫ t

0

eθst
′ pct
β
iq(t

′) (w(iq(t
′)) + psymptoms + kpctiq(t

′) + γ) dt′. (36)

Once we solve the ODE of iq numerically, we can calculate the rest of the compartments

using equations (35, 34, 31).

Calculation of the epidemic threshold with an arbitrary degree distribution

Theorem 2. The epidemic threshold is R0 =
βk1

psymptoms+γ
.

Proof. We use the next generation matrix method from [42] to calculate R0.The infectious

relevant compartments are iknq and ikq . Their subsystem of equations is:

diknq
dt

= βkvsknq − pctkv̂i
k
nq − psymptomsi

k
nq − γiknq, (37)

dikq
dt

= pctkv̂i
k
nq + psymptomsi

k
nq − γikq , (38)
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for 1 ≤ k ≤ n, where v(t) = Σ∞
k=0qki

k
nq(t) and v̂(t) = Σ∞

k=0qki
k
q(t).

The DFE (disease-free equilibrium) of our system of equations (17–21) is {e1, e1. . . , e1}︸ ︷︷ ︸
K

,

where K is the number of the degrees and e1 = (1, 0, 0, 0, 0). Meaning sknq = 1, skq = iknq =

ikq = rk = 0 for all k.

We will first derive equations 37, 38 by ik̃nq for each 1 ≤ k̃ ≤ K:

diknq
dt

= βqk̃k̃s
k
nq − (pctk̃v̂ − psymptoms − γ)δ(k̃ − k), (39)

dikq
dt

= (pctk̃v̂ + psymptoms)δ(k̃ − k), (40)

where δ(k̃ − k) = 1 for k = k̃ and δ(k̃ − k) = 0 otherwise. Equations 39, 40 represent 2K

equations for (2 for each k̃).

We will do the same derivation but by ikq this time:

diknq
dt

= −pctqk̃k̃i
k
nq, (41)

dikq
dt

= pctqk̃k̃i
k
nq − γδ(k̃ − k). (42)

Afterward, we will substitute the DFE and represent equations 39, 40, 41, 42 in a matrix

form for all K degrees.

The K × 2K Jacobian matrix is represented as:

J =


d

di1nq
(
di1nq

dt
)|DFE · · · d

diKnq
(
di1nq

dt
)|DFE

d
di1q

(
di1nq

dt
)|DFE · · · d

diKq
(
di1nq

dt
)|DFE

... . . . ...
... . . . ...

d
di1nq

(
diKnq

dt
)|DFE · · · d

diKnq
(
diKnq

dt
)|DFE

d
di1q

(
diKnq

dt
)|DFE · · · d

diKq
(
diKnq

dt
)|DFE

 . (43)

If we compute J we get:

J =

[
A− (psymptoms + γ)I O

psymptomsI −γI

]
, (44)

where I and O are the identity and zero matrix of order K, respectively, and the matrix A is:

A =


βq1 · · · βqK

... . . . ...

Kβq1 · · · nβqK

 . (45)
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The Jacobian matrix is decomposed into a transmission matrix F and transition matrix V:

F =

[
A O

O O

]
(46)

V =

[
(psymptoms + γ)I O

−psymptomsI γI

]
. (47)

The inverse of the transition matrix is:

V −1 =

[
1

psymptoms+γ
I O

psymptoms

psymptoms+γ
I 1

γ
I

]
.

Next, we find the spectral radius of the next generation matrix FV −1:

ρ(FV −1) = ρ

(
1

psymptoms + γ
A

)
=

1

psymptoms + γ
ρ(A).

Using Lemma 3 we obtain:

R0 = ρ(FV −1) =
β

psymptoms + γ
ΣK

k=1kqk.

Finally, we get:

R0 =
βk1

psymptoms + γ
, (48)

where k1 is the mean excess degree.

Lemma 3. The spectral radius of A is Σn
k=1kqk.

Proof. Let the vectors a,b be defined by:

a =


1

2
...

K

 ,b =


βq1

βq2
...

βqK

 .

We can clearly see that A = abT . The matrix A has rank 1 since all the rows of A’s are linearly

dependent. Hence there is a single positive eigenvalue which is a since

Aa = (abT )a = a(bTa) = λa, (49)

where λ = ΣK
k=1kβqk is the positive eigenvalue. Because A has only a single non-zero eigen-

value, λ is also the maximal eigenvalue and thus the spectral radius.
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Calculation of the epidemic threshold for k-regular graph. In the k-regular case the epi-

demic threshold can be derived in a simpler more intuitive way by considering equation (24).

An epidemic is spreading only when the factor βksnq − psymptoms − kpctiq − γ is positive. In

early phase of the epidemic snq ≈ 1 and iq ≈ 0, therefore, equation (24) becomes:

dinq
dt

= (βk − psymptoms − γ)inq > 0. (50)

Thus an outbreak occurs when

R0 =
βk

psymptoms + γ
> 1. (51)

We can also use the next-generation matrix method to get the same result, where the regular

graph case is easier than the general degree distribution.

Numerical solution of the equations

In order to solve the differential equations numerically, we used the explicit Runge-Kutta method

of order 5(4) [44] as our integration method. We used a single vector of all compartments for

the calculation, i.e.:

{s1nq, s2nq. . . , sKnq, s1q, s2q. . . , sKq , i1nq, i2nq. . . , iKnq, i1q, i2q. . . , iKq , r1, r2. . . , rK}

with the initial conditions:

∀k : sknq = snq(0), s
k
q = sq(0), i

k
nq = inq(0), i

k
q = iq(0), r

k = r(0)

The initial conditions stay the same for each degree to get the correct initial condition for the

corresponding compartment. For example, for susceptible and not quarantined:

snq(t = 0) = Σkpksnq(0) = snq(0)Σkpk = snq(0)

Agent-based model

In order to verify the model, we developed simulations of an agent-based model. The simulation

results are then compared to the predicted results of the SIRCQ model.

Population network: In our simulations, we use a population of n = 105 and a configuration
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model to attach the proper degree distribution to the vertices upon each realization. We used

random graphs with a power law degree distribution as well as regular graphs with varying

degrees. The reasoning for using a power-law degree distribution is that many real networks,

such as contact networks, have been shown to exhibit scale-free properties as mentioned in [45].

Regular graphs are special cases with a single degree. This model generalizes the classical SIR,

where each node has only a relatively small number of possible contacts.

The probability P (k) that a node is connected to k other nodes follows a Power-law:

P (k) ∼ k−α (52)

where α is usually ranging between 2 ≤ α ≤ 3. We used the following parameters:

α Degree Range

2 [8, 1506]

We chose a small α and the degree range to have a slower and more realistic fade of degrees.

Epidemic parameters: The parameters we chose for the epidemic unless noted otherwise are

γ psymptoms θs

0.14 0.25 0.07

The reason we chose these parameters is to have a mean time of recovery of 7 days, mean

time of symptoms appearance of 4 days and quarantine time of 14 days. Because the rates of

γ, psymptoms, θs act like a geometric distribution, the rates need to be 1/(mean time).
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