
Time-Lapse Quantitative Analysis of Drying Patterns and Machine

Learning for Classifying Abnormalities in Sessile Blood Droplets

Anusuya Pal1,∗ Miho Yanagisawa2,3,4, and Amalesh Gope5

1 Graduate School of Arts and Sciences, The University of Tokyo,

Komaba 4-6-1, Meguro, Tokyo, 153-8505, Japan

2 Komaba Institute for Science, Graduate School of Arts and Sciences,

The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan

3 Graduate School of Science, The University of Tokyo,

Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan

4 Center for Complex Systems Biology,

Universal Biology Institute, The University of Tokyo,

Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan

5 Department of Linguistics and Language Technology,

Tezpur University, Tezpur, Assam, 784028, India

1

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.15.24307398doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.05.15.24307398
http://creativecommons.org/licenses/by-nd/4.0/


Abstract

When a colloidal droplet dries on a substrate, a unique pattern results from multi-facet phenom-

ena such as Marangoni convection, capillary �ow, mass transport, mechanical stress, colloid-colloid,

and colloid-substrate interactions. Even under uniform conditions (surface wettability, humidity,

and temperature), slight di�erences in the initial colloidal composition alter the drying pattern.

This paper shows how the evolving patterns during drying in the sessile droplets depend on the

initial composition and are crucial for assessing any abnormalities in the blood. To do so, texture

statistics are derived from time-lapse images acquired during drying, and di�erent traditional ma-

chine learning are applied. In addition, a neural network analysis is performed on both images

and their texture statistics. As the drying phenomena are correlated with the varying composi-

tion, these methods exhibit excellent performance in distinguishing blood abnormalities with an

F1 score of over 97%. This indicates that analysis of time-lapse images during drying and their

texture statistics, rather than conventional analysis using images at the �nal dry state, are crucial

for classi�cation. Our results highlight the potential of droplet drying as a low-volume, accurate,

and simple screening tool for detecting the type and stage of any disease in bio-�uid samples, such

as blood, urine, and saliva.

Drying droplet, Blood, Textural analysis, Machine learning, Pattern dynamics, Diagnostic tool

I. INTRODUCTION

When colloidal droplets on a solid substrate are evaporated (dried) under uniform condi-

tions (droplet size, shape, composition, surface properties, temperature, and relative humid-

ity), a unique pattern appears [1]. This uniqueness is due to multi-facet phenomena such

as Marangoni convection, capillary �ow, mass transport, mechanical stress, colloid-colloid,

and colloid-substrate interactions within the droplet as it dries [2]. So far, diverse patterns

have been reported not only for colloids such as from polymers [3�7], to liquid crystals [8, 9];

but also for �uids containing various biological colloids such as from DNA [10�12], collagen

[13, 14], and microtubules [15], to proteins [16, 17], all the way to microbes such as bacteria

[18, 19], algae [20], and nematode worms [21]. These previous reports show that the patterns
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of such droplets are extremely sensitive not only to how they are dried but also to the initial

state of the �uids before drying.

During drying, the evolving patterns strongly depend on many factors such as spreading

and wetting [22], substrate roughness [23], substrate temperatures [24], relative humidity

[25], impact energy [26], and initial contact angles [27]. In recent years, attempts to use

dried blood patterns to aid in crime scene investigation have attracted attention [28, 29].

It has also been suggested that the patterns in dried blood change depending on the state

of the matrix contained in the blood, for example, blood plasma with [30] and without

clotting factors [31]. Even at the laboratory level, variations in the patterns are observed

when adding bu�er [32] or deionized water [33], altering the composition of the blood. As

the physical understanding of the drying patterns of bio-�uids, including blood, plasma,

urine, saliva, etc., advances, it will be possible to estimate their states from the drying

patterns, which is expected to contribute signi�cantly to detecting various diseases [34�36]

and bio-medicine.

A challenge in achieving the above goals is the classi�cation of dry droplets with complex

compositions. In most cases, the shape, size, counts, composition, and morphology of the

bio-�uid components vary, depending on the stage and the type of the disease. Until now,

patterns have been analyzed using machine learning algorithms (ML) and neural networks

(NN) [37�40]. The conventional analysis target is the images or just data in the form of

contact angle, relative humidity, and temperature taken in the �nal drying stage. Therefore,

some problems demand a substantial number of samples, and the diagnostic methods based

on dried droplets, as discussed in [2, 41], are still in their nascent stages due to individual

variations and their unsuitability for combining samples from multiple patients. As a result,

there is an urgent need to identify more e�cient strategies to translate this technology

into clinical applications, thereby amplifying its potential to positively impact public health

outcomes.

This paper presents an innovative analysis method by combining time-lapse images of

evolving patterns during the drying process, quantitative image textural analysis, and data-

driven approaches, such as traditional ML and NN. This approach holds the potential to

unlock new insights and facilitate more accurate pattern recognition, o�ering promising

avenues for advancements in data science. This method makes it possible to classify drying

patterns with high accuracy even when the amount of �uid is less, compared to conventional
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analysis that uses only images of the �nal dried states. Although our analysis is based

on an arbitrary classi�cation of blood abnormalities in a bio-mimetic sense, the textural

statistics can di�erentiate the biophysical changes within the blood components during the

drying process. Therefore, this study is an innovative and valuable approach to identifying

di�erent bio-�uids of unknown compositions, with the hope of classifying diseased samples by

correlating the drying patterns and varying �uid components. Furthermore, our approach to

distinguishing between di�erent types of blood cells or detecting abnormal cell morphology

indicative of disease involves biotechnological techniques (microscopy and image analysis)

with data science (time-lapse pattern recognition) to develop diagnostic tools. Figure 1

illustrates a schematic depicting the fusion of drying experiments and ML methodologies to

classify di�erent abnormalities in human blood.

II. EXPERIMENTAL METHODS

A. Samples

The human blood (Catalog number 7203706) was acquired from Lampire Biological Lab-

oratories, USA, and contained Na-Citrate anticoagulant. The company strictly followed the

informed written consent from all participants and the necessary FDP rules and regulations.

Therefore, approval from a national or institutional ethics board and the committee was not

required before this multi-disciplinary research. The study employed 1x phosphate bu�er

saline (PBS, BP243820, Fisher BioReagents, USA) and de-ionized water (Millipore, with a

conductivity of 18.2 MΩ.cm).

B. Sample preparations

To modify the concentration of whole blood (initially at 0% by volume), we employed

a dilution strategy involving the addition of 1x PBS and de-ionized water. Notably, 1x

PBS contained a composition of 0.137 M NaCl, 0.0027 M KCl, and 0.119 M phosphates

while maintaining a consistent pH within the range of 7.3 − 7.5. Diverse blood samples

were prepared to cover a spectrum of concentrations, ranging from 12.5 to 75% (by volume).

Importantly, all experimental procedures were executed soon after sample preparation. This

rapid processing ensured that lysis of various blood components did not transpire before the
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initiation of the drying process. A total of eleven blood samples was prepared, encompassing

various compositions: healthy (0 (v/v)%), blood mixed with PBS (12.5, 25, 50, 62, and 75

(v/v)%), and blood mixed with water (12.5, 25, 50, 62, and 75 (v/v)%). Each of these

samples, with a volume of approximately ∼1µL, was carefully pipetted onto a microscopic

coverslip (Catalog number 48366-045, VWR, USA). This action resulted in circular droplets,

each droplet radius of ∼1 mm. All experimental procedures were carried out under standard

ambient conditions, characterized by a room temperature of ∼25◦C, and an RH of ∼50%.

To ascertain the reproducibility of our �ndings, each experiment was conducted in triplicate.

C. Image acquisition

The drying process of blood droplets was observed using bright �eld microscopy (Am-

scope, USA) with a 5× objective lens. A digital camera (8-bit, MU300, Amscope, USA)

was connected to the microscope for time-lapse image capture at two-second intervals af-

ter droplet deposition. Images were captured at a resolution of 3664 × 2748 pixels. The

lamp intensity remained constant throughout the drying process to minimize background

�uctuations. A calibration slide was used to convert pixels to real-space length scales. All

images were transformed into 8-bit grayscale images for improved visualization. Typically,

the time-lapse sequence, spanning two seconds per interval, yielded 400-600 images captur-

ing the entire drying process for a droplet with a radius of ∼1 mm, the volume of ∼1µL,

dried under ambient conditions of T ∼25◦C and RH ∼50%.

D. Image processing

The ImageJ software [42] was utilized to select a circular region of interest (ROI) using the

oval tool. Gray values in the 8-bit images ranged from 0 to 255. Textural features, including

�rst-order statistics (FOS) and gray-level co-occurrence matrix (GLCM) attributes, were

extracted. FOS parameters encompassed mean, standard deviation, kurtosis, and skewness

of the droplet. GLCM parameters encompassed angular second moment, contrast, correla-

tion, inverse di�erence moment, and entropy. GLCM parameters were computed using the

Texture Analyzer plugin in ImageJ [1]. Mathematical de�nitions for each feature are detailed

in the supplementary section. Nine textural parameters were used as features in traditional
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ML, and arti�cial neural network approaches for classifying distinct blood samples.

E. Machine learning (ML)

Approximately 550 images were captured throughout the drying process for each blood

sample. The total number of images (dataset) ∼ 6 × 103. Consequently, we generated an

equivalent number of datasets, as we extracted FOS and GLCM textural features from each

image. This dataset can be denoted as D = (x1, y1), (x2, y2), . . . (xn, yn), with n representing

the total dataset size (approximately 550). Each x comprises a feature vector consisting

of nine elements: mean, standard deviation, kurtosis, skewness, angular second moment,

contrast, correlation, inverse di�erence moment, and entropy. Correspondingly, y designates

the corresponding class, encompassing 11 distinct types of blood samples. All ML implemen-

tations within this study are supervised learning. The dataset (D) was divided randomly

into two mutually exclusive groups: Dtrain and Dtest. Di�erent ML algorithms were assessed

using Dtrain and subsequently tested for performance on Dtest. Data manipulation was ex-

ecuted using Python's Pandas (version 0.24.2) and Numpy (version 1.16.4). The dataset

was split into Dtrain and Dtest using the train_test_split() function from the scikit-learn

library [43]. A test_size of 0.3 was employed, indicating that 70% of D was designated as

the training set, while the remaining 30% served as the testing set.

1. Traditional ML

Five distinct traditional ML algorithms were employed in this study: Decision Tree (DT),

Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and

Naive Bayes (NB). Implementing these algorithms was facilitated through the Scikit-Learn

library [43], which o�ers a Python interface for traditional ML methods. Prior to applying

any ML technique, the data is scaled. Random Forest (RF) is built upon Decision Trees

(DT). Each individual tree in the ensemble predicts outcomes, and a majority vote deter-

mines the �nal class prediction. RF employs bagging and feature randomness during tree

construction, resulting in an uncorrelated forest of multiple trees. The RF classi�er was

instantiated using RandomForestClassi�er from the sklearn.ensemble module. In our im-

plementation, n_estimators was set to 400. Tree node splitting was determined based on
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Shannon entropy criteria. The RF architecture is depicted in Figure S1 of the supplemen-

tary section. Decision Trees (DT) follow a branching approach to illustrate possible decision

outcomes. We utilized the DecisionTreeClassi�er with criterion = `entropy'. This classi-

�er was imported from sklearn.tree. K-Nearest Neighbors (KNN) uses a distance metric

to classify data points. The KNeighborsClassi�er was employed with parameters such as

n_neighbors set to 5, weights as `distance', and metric as `minkowski'. These settings were

imported from sklearn.neighbors. Support Vector Machine (SVM) is based on identifying a

hyperplane and support vectors closest to the hyperplane to separate di�erent classes. We

used the SVC() function from sklearn.svm for the analysis. Naß̈ve Bayes (NB) leverages

Bayes' Probability Theorem to compute the probability of data belonging to a speci�c class.

We imported GaussianNB() from sklearn.naive_bayes for classi�cation purposes.

2. Neural Networks (NN)

This study employed two types of neural networks: Arti�cial Neural Networks (ANN)

and Convolutional Neural Networks (CNN). The primary distinction between these two

lies in the data input format. While the data was directly utilized as input for ANN,

the images were fed into the CNN architecture directly. To implement both ANN and

CNN, we utilized Keras in conjunction with the TensorFlow library [44]. Neural networks,

whether ANN or CNN, operate on the concept of arti�cial neurons, which loosely mimic the

neurons in the human brain. These networks establish probabilistic-weighted connections

between inputs and output classes. The architecture of these networks is constructed and

manipulated to predict output classes based on the inputs. Throughout the training process,

the network's weighted connections are adjusted, aiming to achieve increasingly accurate

output predictions. Training concludes after a su�cient number of iterations. Both ANN

and CNN were developed using the Sequential() model from Keras. This involved the

incorporation of layers such as Dense, ReLU Activation, and Dropout. The output layer

consisted of a Dense layer and a Softmax Activation layer. The model was compiled using

parameters including optimizer = adam', loss = categorical_crossentropy', and metrics =

`accuracy'. Detailed information regarding the architectures of both ANN and CNN can be

found in the supplementary section.
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3. Evaluation of ML

Various metrics were employed to assess the e�cacy of ML models in classifying blood

samples. These metrics encompass: (i) 10-fold Cross-Validation: A 10-fold cross-validation

procedure was applied, involving dataset shu�ing and division into ten groups. Each group

was utilized as a test set, while the remaining nine served as the training set. The ML

model was �tted on the training data, evaluated the test data, and derived an evaluation

score. This process was repeated for all ten groups, enabling a comprehensive compari-

son. The KFold function from sklearn.model_selection was employed for this purpose. (ii)

Confusion Matrix: The confusion matrix provides a matrix that contrasts actual and pre-

dicted values. This m × m matrix, where m denotes the number of classes (in this case,

11), showcases the relationship between true and predicted class labels. Diagonal elements

correspond to correct predictions, while o�-diagonal elements denote misclassi�cations. The

confusion_matrix function from sklearn.metrics was employed. Typically, these matrix val-

ues are normalized and presented as a color map within the range of 0 to 1. (iii) Accuracy,

Precision, Recall, and F1-Score: A series of classi�cation metrics were computed, where ac-

curacy represents the proportion of correctly predicted instances out of the total occurrences.

Precision, Recall, and F1-score were also calculated. Mathematically, Precision = TP
(TP+FP )

,

Speci�city = TN
(TN+FP )

, Sensitivity = Recall = TP
(TP+FN)

, and F-1 Score = (2×Precision×Recall)
(Precision+Recall)

.

Here, True Positives (TP) indicate correctly predicted positive instances, False Positives

(FP) represent incorrect positive predictions, True Negatives (TN) signify accurate nega-

tive predictions, and False Negatives (FN) correspond to inaccurate negative predictions.

The accuracy_score and classi�cation_report functions from sklearn.metrics were utilized

to compute these metrics. Of note, the F1-score, which balances precision and recall, was

employed for comparing ML performance.
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III. RESULTS AND DISCUSSIONS

A. Visual inspection and textural analysis of the blood drying droplets

1. Physics of evolving patterns in blood with and without abnormalities

The displayed images in Figure 3(I-II) are cropped from the original ones for improved

visualization. We present time-lapse images depicting the drying process of a blood droplet

(I) with no abnormalities and (II) with abnormalities (+ PBS) at a concentration of 12.5%

(v/v). During the initial stages of the drying process, the behavior of the blood+PBS droplet

closely resembles that of healthy blood. The �rst image was captured within 50-60 seconds

after the droplet was deposited onto the coverslip (substrate). Initially, the droplet displays a

uniformly dark texture with no noticeable changes. As time advances, a �uid front gradually

advances from the periphery toward the center. The white dashed arc line illustrates this

uniform front movement [see the blue panels of Figure 3(I-II)]. As the front progresses, a

smooth gray texture appears behind it, forming a dark peripheral band (highlighted with

orange arrows). Concurrently, the dark texture in the central region (indicated by a white

dashed circular line) begins to lighten. Once the front vanishes, it becomes evident that two

distinct regions exist� one is the central, and the other is the ring region.

As the drying progresses, di�erences between the two droplets are introduced, especially

in the middle stage (depicted in green). Notably, at 12.5%, a dendritic structure begins

to develop in the center of the droplet [see the red ovals in Figure 3(II)]. This growth

distinguishes the drying process from that of healthy blood. Crack propagation initiates

from the transition region of the central and ring regions, with white and yellow arrows

indicating the direction of the cracks and symmetric stress �elds, respectively. This is not

found in healthy blood. In terms of the cracks, The white arrows sketch the propagation

of the radial cracks, while σl and σr demonstrate the symmetric stress �elds of these cracks

(depicted with yellow arrows).

In contrast to the cracks in the central region of the healthy blood droplet [see Figure 3(I)],

the cracks propagate toward the periphery. Unlike drying a healthy blood droplet, some

cracks in blood+PBS propagate towards the central region, while others extend towards

the periphery. Over time, cracks propagating towards the central region merge with the

dendritic structure. In addition, the texture of the crack domains gets darkened only in the
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healthy blood [see the green dotted oval lines in Figure 3(I)].

Similar to the healthy blood droplet, we observe the branching and widening of radial

cracks in the blood+PBS at 12.5% [see the yellow dashed rectangles in Figure 3(I-II)] as the

�nal stage of the drying process. These visual observations provide valuable insights into

the similarities and di�erences in the events occurring during the drying process in blood

droplets with and without abnormalities. This suggests that the middle stage is the most

salient stage of the unique pattern formation in such droplets.

2. Texture analysis at di�erent concentrations of abnormalities

Figure 2(I-II) showcases sequential image snapshots of blood drying droplets, depicting

their initial, middle, and �nal stages when di�erent volumes of (I) water and (II) PBS are

added at the initial concentrations ranging from 12.5% to 75% (v/v). This sums up to

eleven di�erent types of abnormalities in the blood. Each image is timestamped relative to

the total drying duration (tf ). Here, we aim to comprehend the overall dynamics of blood

samples, focusing on spatial and temporal behaviors critical for pattern emergence.

The initial image is captured approximately 50 − 90 seconds after droplet deposition,

corresponding to around 0.06 − 0.08tf [refer to the bottom panel of Fig. 2(I-II)]. Initially,

these images display a uniform dark texture. During this stage, droplet height and contact

angle decrease [33]. The dominance of outward capillary �ow over surface tension-induced

Marangoni �ow leads to the movement of blood particles toward the periphery of the droplet.

In the subsequent middle stage, there is a shift in the �uid front from the periphery toward

the center of the droplet. This behavior is consistent with the drying process observed

in other bio-colloids [16, 17]. As water evaporates and the droplet remains pinned to the

substrate, mechanical stress accumulates. To relieve this accumulated stress, cracks start

to initiate and propagate within the droplet. These cracks can appear in both radial and

orthoradial directions. The middle panel of Fig. 2(I) visually represents these cracks forming

within the droplet. The initiation and propagation of cracks can result from the complex

interplay between drying-induced stresses, capillary forces, and the biophysical properties

of the drying blood droplet. In the �nal stage, distinct patterns manifest as image textures

change both spatially and temporally. For instance, at 12.5% (v/v), an inhomogeneous

texture appears at the central region (visible at 0.71tf ), eventually covering the entire droplet
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by the end of the drying process. When comparing textures of blood droplets at 12.5 and

75% (v/v), the level of inhomogeneity di�ers signi�cantly. While 12.5% (v/v) exhibits dark

and light gray patches, 75% (v/v) displays an overall lighter gray shade. Additionally, the

central region expands as concentration increases from 12.5 to 75% (v/v). The type of cracks

also varies: 12.5% (v/v) presents large radial and chaotic cracks in the central region, while

75% (v/v) features fewer radial cracks around the peripheral ring and none in the central

region [refer to the top panel of 12.5 to 75% (v/v) in Fig. 2(I)].

Blood droplets containing PBS exhibit behaviors akin to blood+water in the initial and

�rst middle stages [refer to bottom and middle panels of Fig.2(II)]. However, the most

interesting observations occur in the �nal stage of drying. At a concentration of 12.5% (v/v)

of PBS, dendrite-like structures form in the central region of the droplet. In the case of blood

droplets with concentrations ranging from 12.5 to 50% (v/v) of PBS, radial and orthoradial

cracks develop. Surprisingly, no radial cracks are observed at a concentration of 62% (v/v)

of PBS. Instead, a distinctive ring-like pattern emerges in the central region. Finally, at

75% (v/v) of blood+PBS, the central region of the droplet exhibits a heterogeneous and

grainy texture without substantial cracks [refer to the top panel of Fig. 2(II)]. For 25 and

50% (v/v), entire droplets are light gray, with some dark textures at peripheral rings and

crack linings. Textures become homogeneous and grainy for 62 and 75% (v/v).

Figure 2(III-IV) provides insight into the textural variation in blood droplets with and

without abnormalities. The �rst-order statistics (FOS) encompass parameters like mean,

standard deviation, skewness, and kurtosis of the droplet. On the other hand, the gray-level

co-occurrence matrix (GLCM) incorporates features like angular second moment, contrast,

correlation, inverse di�erence moment, and entropy. These textural statistics are extracted

from time-lapse images captured during drying for di�erent blood abnormalities (+ water

and + PBS) and healthy blood (without any abnormalities). A distinctive pattern is evident

in all these textural statistics as they vary with normalized time ( t
tf
). Notably, during

the middle stage of the drying process, most of these statistical features exhibit dynamic

behaviors characterized by peaks and dips, which are absent in the initial and �nal drying

stages. The textural statistics presented in Figure 2(III-IV) vividly depict variations on both

spatial and temporal scales. For instance, the temporal variation of the mean statistical

feature of the droplet showcases a slow initial increase, followed by a rapid rise, a gradual

decrease, and eventual saturation. On a spatial scale, during the initial drying stage, the
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mean values of blood droplets with 0 to 25%(v/v) concentration exhibit a range between

15-25 a.u., whereas it's 50-80 a.u. for droplets with 50 to 75%(v/v) concentration. In the

�nal drying stage, the mean values range between 40 − 60 a.u. for 0 to 25%(v/v), 60 − 80

a.u. for 50 to 62%(v/v), and surpass 80 a.u. for droplets with 12.5% (v/v) concentration.

The FOS and GLCM statistics observed for blood+PBS [Figure 2(IV)] exhibit similar

patterns capturing both temporal and spatial variations, comparable to those observed in

blood+water droplets [Figure 2(III)]. However, the behavior of the droplets at both 0 and

75%(v/v) concentrations is distinct and noteworthy. These observations are consistent with

previous �ndings in the realm of bio-colloids [45, 46], indicating the broader applicability of

the observed phenomena. Regardless of whether water or PBS is added, the drying process

follows a consistent pattern in terms of its stages: an initial stage ( t
tf

∼ 0.06−0.5), a middle

stage (∼ 0.5 − 0.8), and a �nal stage (∼ 0.8 − 1.0). Interestingly, blood+PBS droplets

maintain their dynamic behavior from the middle stage to the �nal stage ( t
tf

∼ 0.8 − 1.0),

as depicted in Figure2(IV). In contrast, blood+water droplets exhibit their most dynamic

behavior during the middle stage ( t
tf

∼ 0.5 − 0.8) of the drying process, as illustrated in

Figure 2(III). This suggests that the presence of salts in the PBS solution has a retarding

e�ect on the process of pattern formation compared to the behavior observed when only

water is present. Microstructural analysis through scanning electron microscopy provides

additional insight into the distribution of blood components and PBS salts within the drying

droplet setting. The morphology of the cellular components is also found to be changed

due to di�erent initial compositions. Further details regarding blood+PBS droplets with

concentrations of 12.5 and 75% (v/v) are provided in Figures S2-S3 of the supplementary

section.

The interesting point of this analysis is that the spatial and temporal dynamics of di�erent

image textures are able to capture the bio-physical changes within the blood droplets with

respect to the di�erent abnormalities. For instance, the initial stage is dominated by the �ow

and transport of the blood components, whereas the middle stage illustrates the mechanical

stress induced by the drying process through the crack formation. Finally, the last stage

depicts the aggregation of the blood components and provides us with clues about the dried

patterns. It is also to note that the composition of the blood components with and without

abnormalities are di�erent and are well captured by the middle stage of the drying process.

For instance, healthy blood contains cellular components with approximately 500 × 104 of
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RBCs, 1 × 104 of WBCs, and 40 × 104 of platelets. A decrease of about a factor of 10

occurs when the abnormality of blood+water is at 75% (v.v). This suggests that these

statistical features (both temporal and spatial) potentially carry information that allows for

the classi�cation of the blood samples.

B. Machine learning (ML) for classifying di�erent abnormalities in drying blood

droplets

The steps to implement di�erent MLs for classifying di�erent abnormalities (types and

concentrations) are detailed in the supplementary section.

1. MLs for identifying di�erent types of blood abnormalities

The normalized confusion matrix provides a comprehensive view of how well each ML

performs in classifying the blood samples into healthy, blood+water, and blood+PBS cate-

gories. The performance evaluation includes (i) NB: The accuracy is around 58% for healthy

blood, 39% for blood+water, and 87% for blood+PBS. The misclassi�cations are mainly

between blood+PBS and healthy blood or blood+water. NB performs relatively poorly

compared to other ML. (ii) SVM: After SVM replaces NB, the performance improves. The

accuracy is around 74% for healthy blood, 84% for blood+water, and 100% for blood+PBS.

SVM performs better than NB but still has room for improvement, especially in classifying

blood+water. (iii) KNN: It performs better than both NB and SVM. It achieves accuracy

ranging from 90% to 99% across all classes, demonstrating relatively minimal misclassi�ca-

tion. (iv) DT: The accuracy is between 97% and 100% for all classes. DT performs well in

accurately classifying the blood samples into their respective categories. (v) RF: It achieves

similar accuracy as DT, ranging from 97% to 100%. RF shows the best performance, with

minimal o�-diagonal values in the normalized confusion matrix.

The average F1-score, a balanced metric considering precision and recall, is calculated

for each ML. The hierarchy of performance based on F1-scores is: NB (63.7%) < SVM

(90.8%) < KNN (97.8%) < DT (99.3%) < RF (99.7%). The F1-scores indicate that all

ML can e�ectively di�erentiate between the blood samples with and without abnormalities

using the extracted drying features. In fact, the di�erent types of blood abnormalities, i.e.,
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+ water and + PBS, could also be identi�ed. It's important to note that these results are

based on the testing data using a train-test split approach. To ensure the robustness of

these MLs, 10-fold cross-validation is performed, which provides a more reliable assessment

of their performance. The cross-validation results show that all ML algorithms maintain

similar performance trends, with minor variations in accuracy scores. Both DT and RF

demonstrate excellent performance, with accuracy above 99%, making them equally strong

candidates for predicting the di�erent blood sample categories. Therefore, while all the

evaluated ML can di�erentiate between blood samples with and without abnormalities, DT

and RF stand out as the best performers, o�ering accurate classi�cation across the tested

categories. Cross-validation reinforces their reliability and consistency in prediction [see

Figure S4 in the supplementary section].

2. Best feature selection and ML performance in classifying blood samples

Now that we have established the capability of ML to categorize these blood samples based

on their FOS+GLCM statistical parameters, our next objective is to investigate whether all

these features are necessary. This entails analyzing the e�ectiveness of utilizing FOS, GLCM,

or their combination. To address this, we applied ML to diverse blood samples, which include

healthy blood (0 (v/v)%), blood+water (12.5, 25, 50, 62, and 75 (v/v)%), and blood+PBS

(12.5, 25, 50, 62, and 75 (v/v)%). First-order statistics (FOS) comprise mean, standard

deviation, kurtosis, and skewness. Additionally, we incorporated gray-level co-occurrence

matrix (GLCM) parameters such as angular second moment, contrast, correlation, inverse

di�erence moment, and entropy. We worked with eleven blood samples, considering four FOS

features, �ve GLCM features, and nine features from the combined FOS+GLCM approach.

In Figure 5(I), the F1-scores are presented, comparing the performance of the RF when

using FOS, GLCM, and FOS+GLCM features. Notably, employing GLCM features re-

sults in improved RF predictions for most blood samples, except for those at concentrations

of 75 (v/v)% (+ water), 12.5, and 25 (v/v)% (+ PBS). Particularly, RF exhibits better

predictive power when both FOS and GLCM features are combined instead of using them

individually. Nonetheless, there are instances, such as at concentrations of 62 and 75 (v/v)%

(regardless of + water and + PBS), where the distinction between GLCM and the combined

FOS+GLCM features is less signi�cant. On average, the F1-scores are ∼95% for FOS
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features, ∼97% for GLCM features, and ∼99% for the combined approach. This analysis

suggests that either FOS or GLCM alone can e�ectively serve as feature vectors for RF

implementation in this classi�cation task. However, incorporating both FOS and GLCM

as features enhances the F1-score. This improvement amounts to ∼2% compared to using

GLCM alone and ∼4% compared to using FOS alone. Since the performance of any ML

hinges on the quantity and nature of features, it's crucial to ascertain whether RF's perfor-

mance remains superior to other ML approaches, as seen in the previous case. In Figure S5 of

the supplementary section, we showcase the average F1-scores for all traditional ML, includ-

ing NB, SVM, KNN, DT, and RF, when applied to FOS, GLCM, and FOS+GLCM features.

On average, all MLs exhibit enhanced classi�cation performance when FOS+GLCM features

are employed as the feature vector, whereas RF consistently outperforms the other ML.

To identify the key features crucial for this classi�cation task, we executed an iterative

procedure of excluding features and evaluating the RF classi�er on the data collected during

the drying process [see Figure 5(II)]. In the context of including all features without any

exclusion, we denote this as - 0. Any omitted feature is represented as - feature. For

instance, if the standard deviation (SD) is omitted, it's indicated as - SD. When employing

all features (- 0), the RF classi�er achieves an F1-score of ∼99.3%. Upon removing the

angular second moment (ASM) from the feature set, the RF's performance remains largely

una�ected, yielding an F1-score of ∼99.2%. Similar resilience in performance is observed

when excluding Skewness (- Skew) or Kurtosis (- Kur) from the feature set, resulting in F1-

scores of ∼99.1% for both cases. Similarly, this trend holds for - COR (removing correlation)

and - CON (removing contrast), yielding an F1-score of ∼99.0%.

Intriguingly, when the Mean is removed from the feature set, the RF classi�er exhibits im-

proved performance compared to using all features together. This enhancement corresponds

to a ∼0.16% increase in performance when comparing - 0 and - MEAN con�gurations. This

counterintuitive observation suggests a negative contribution of the Mean feature to the

classi�cation task. This could be attributed to Mean values not e�ectively capturing �ner

nuances, displaying a consistent trend across nearly all blood samples [see Figure 2(III)-

(IV)], unlike the other features. Upon excluding the inverse di�erence moment (IDM) from

the feature set, the RF's F1-score drops to ∼98.98%, indicating a decrease of ∼0.40%. Elim-

inating the entropy feature (- ENT) results in an F1-score of ∼98.91%, indicating a ∼0.45%

decline compared to - 0 con�guration. However, when the SD is removed from the fea-
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ture set, the RF's performance decreases signi�cantly to ∼98.60%, resulting in a decline of

∼0.76% based on the F1-score. This suggests that SD contributes signi�cantly to the overall

feature set. In summary, the hierarchy for feature importance can be delineated as follows:

SD > entropy > IDM > contrast > correlation > kurtosis = skewness > ASM > mean.

Nonetheless, the analysis also implies that SD, entropy, and IDM share equal importance,

as their absence reduces approximately ∼1% in RF's performance.

It's important to recognize that GLCM captures spatial relationships among pixels us-

ing second-order statistics within a de�ned neighborhood, while FOS employs histograms

to represent statistical feature distributions. The mathematical de�nitions of each feature

are described in the supplementary section. Within FOS, mean and SD are straightforward

to comprehend. Mean represents the average gray level intensity value within the Region

of Interest (ROI), while SD quanti�es the extent of variation around this mean. Skewness

gauges the asymmetry of the pixel value distribution around the mean, and Kurtosis mea-

sures the distribution's peakiness within the ROI. A higher kurtosis indicates a distribution

with greater mass towards the histogram's tails [1, 47].

For a better understanding, an algorithmic illustration is displayed of how SD is de-

termined for a droplet (ROI), and how SD correlates directly with system complexity [see

Figure 5(III)]. Low complexity or low heterogeneity is translated as low SD or entropy value

(indicating high homogeneity). It is depicted in the initial stage of the drying process [see

Figure 2(III-IV)], or the �rst image of Figure 5(III) indicates an ROI with a limited range of

gray level values. Conversely, high complexity or high heterogeneity is re�ected as a high SD

or entropy value (indicating low homogeneity). It is shown in the �nal stage of the drying

process [see Figure 2(III-IV)], implying signi�cant variations and patterns within the ROI

of the last image in Figure 5(III) (similar to what is observed in other systems, see [47]).

Additionally, IDM values are in�uenced by the image's dynamics� a low IDM value arises

from static variations in the ROI, while a relatively higher value arises when substantial dy-

namics occur, potentially peaking in the middle stage of the drying process [see Figure 2(III-

IV)]. Meanwhile, ASM gauges ROI homogeneity, yielding low values for a homogenous ROI

with few gray levels. Contrast emphasizes local intensity variation, while correlation quan-

ti�es pixel correlation across the entire ROI [1]. Consequently, it becomes evident that the

mean, kurtosis, skewness (from FOS statistics), ASM, contrast, and correlation (from GLCM

statistics) alone lack the depth required for traditional ML to classify distinct blood sam-
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ples e�ectively. Contrastingly, SD (from FOS statistics), IDM, and entropy (from GLCM

statistics) prove pivotal for ML to distinguish between various blood samples. This under-

scores the importance of these features in capturing the necessary information for accurate

classi�cation.

3. Performance of Neural Network in classifying blood samples

To assess whether comparable performance can be achieved using neural networks (NN)

to classify these blood samples, we have adopted two di�erent approaches: traditional ML

and NN. The inputs consist of images, and a convolution neural network (CNN) is directly

employed. Simultaneously, textural features (FOS and GLCM) are extracted and used in

RF and arti�cial neural networks (ANN). The input, analysis, and goal to predict the eleven

blood sample classes are shown in Figure 6(I).

The performance evaluation of CNN, RF, and ANN based on the F1-score is depicted

in Figure 6(II-III). However, before delving into this, it's crucial to ascertain the presence

of under�tting or over�tting issues in these NN implementations. Like other traditional

ML, ANN and CNN are trained on a training dataset. Its suitability can be gauged by

its performance on validation (testing) dataset�data that has not been encountered during

training. Figures S6-S7 in the supplementary section illustrate the loss and accuracy curves

as functions of epochs. The loss curve re�ects the reduction of noise signals during training,

and its progression is smooth without noticeable spikes or �uctuations. Accuracy also tends

to saturate as epochs increase. The convergence of training and validation curves without

divergence indicates the absence of under�tting or over�tting issues. This suggests that

these neural networks can predict the eleven blood sample classes.

The normalized confusion matrix for CNN, RF, and ANN is presented in Figure S8 of the

supplementary section. These results indicate that CNN misclassi�es only one class with

∼1% error. Notably, ∼99% of the 75 (v/v)% blood+water samples are accurately predicted,

with 1% being misclassi�ed with the 12.5 (v/v)% blood+PBS. RF exhibits misclassi�cations

in predicting healthy blood [0 (v/v)%], 25, and 62 (v/v)% blood+PBS. Interestingly, ANN

performs worse than CNN and RF, with misclassi�cations in healthy blood, 62 (v/v)%

blood+water, and 25, 50, and 75 (v/v)% blood+PBS. This pattern is consistent when the

F1-scores for each class are visualized in a bar plot in Figure 6(II). The hierarchy CNN
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TABLE I. Summary of recent studies employing diverse machine learning (ML) techniques to clas-

sify patterns observed in drying droplet con�gurations. Abbreviations used include P: Performance,

PCA: Principal Component Analysis, CNN: Convolution Neural Network, LDA: Linear Discrimi-

nant Analysis, NB: Naive Bayes, DT: Decision Trees, RF: Random Forest, ANN: Arti�cial Neural

Network, DD: Droplet Diameter, CA: Contact Angle, RH: Relative Humidity. It provides insights

into the e�cacy and applicability of these ML approaches in analyzing complex patterns.

System Data or Images Un- or supervised Types ML P (%) Year Reference

Tap water Images of dried samples Unsupervised Traditional PCA 80 2019 [48]

Supervised Neural network CNN

Blood Images of dried samples Unsupervised Traditional PCA & LDA 95 2020 [39]

Blood & Urine Images of dried samples Supervised Transfer learning ResNet-18 95-98 2024 [49]

Cerebrospinal �uid Images of dried samples Unsupervised Traditional PCA 82 2022 [50]

Peptide solutions Images of dried samples Supervised Transfer learning NasNet-Large 99 2022 [51]

Leaf extracts Images of dried samples Supervised Transfer learning DenseNet121 56-66 2022 [40]

Milk Images from drying stages Supervised Neural network CNN 85 2022 [52, 53]

Methanol Data of DD, CA, RH Supervised Traditional NB 75

Supervised Traditional DT 96 2021 [54]

Blood Images throughout drying Supervised Neural network CNN 99.88 2023 This work

Data from images Supervised Neural network ANN 97.74

Supervised Traditional RF 99.53

Other bio-colloids Data from images Supervised Traditional RF 97-99

> RF > ANN in predicting blood samples is upheld in most scenarios. However, in the

case of blood+water, both RF and CNN or RF and ANN perform similarly. Consequently,

it's challenging to de�nitively state which approach is superior for this classi�cation task

[illustrated by the average F1-score in the radial plot in Figure 6(III)]. We can infer that

both traditional and neural network ML approaches are equally e�ective for predicting blood

samples, yielding F1-scores of over ∼97%.
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C. Competitiveness of the proposed method compared to the state of the art

The current landscape of healthcare systems calls for two critical aspects: �rstly, gaining

insights into the biophysical and biochemical properties of �uids to foster a fundamental

and quantitative understanding related to patient health, and secondly, leveraging these

insights in conjunction with image recognition techniques to develop simpli�ed diagnostic or

screening methods capable of detecting diseases at an early stage. This foresees a potentially

life-saving innovation that enables swift and e�cient diagnoses in critical scenarios. However,

disease diagnosis in the context of drying droplet patterns poses a signi�cant challenge due

to the diversity of diseases and human samples involved.

Table I o�ers a comprehensive assessment of various MLs applied to diverse colloidal

systems in drying droplet con�gurations. This table underscores the competitiveness of the

proposed method when compared to state-of-the-art approaches. The investigated systems

encompass bio-�uids, tap water, milk, and more. Notably, blood samples are correlated

with di�erent physiological states of cyclists [39], and cerebrospinal �uid samples are linked

to healthy individuals and Alzheimer's Disease (AD) patients [50]. Their dried patterns

are classi�ed using Principal Component Analysis (PCA), an unsupervised ML. Addition-

ally, peptides (Aβ) associated with AD are classi�ed based on their primary and secondary

structures using transfer learning (NasNet-Large) from dried droplets, achieving 99% ac-

curacy [51]. Similarly, transfer learning , ResNet is used on the images acquired from the

dried droplets of blood and urine, di�erentiating healthy and patients su�ering from bladder

cancer [49].

Other examples include milk, where contamination, coagulation, and decay are identi�ed

[52, 53] and tap water. The diverse �ngerprints of these dried droplet patterns are identi�ed

using CNN [48]. The plant extracts in which di�erent textures are classi�ed using transfer

learning (DenseNet� a densely connected pre-trained CNN) [40]. Traditional ML approaches

(DT and NB) are used in methanol drying droplets to estimate drying stages using data

related to droplet base diameter, contact angle, and relative humidity [54]. Importantly, all

these studies (except [54]) involve (i) the acquisition of images via optical microscopy and

(ii) the implementation of neural networks and PCA on these acquired images.

The illustration of the drying droplets, pattern recognition, and the application of ML

with respect to the existing literature is exhibited in Figure 7(I-II). We also explore varied

19

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.15.24307398doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.15.24307398
http://creativecommons.org/licenses/by-nd/4.0/


avenues for incorporating ML techniques [indicated by the gray arrows], wherein images

are transformed into analyzable data through image processing techniques. The textu-

ral attributes, speci�cally �rst-order statistics (FOS) and gray-level co-occurrence matrix

(GLCM), serve as fundamental features. These features are then subjected to di�erent tra-

ditional ML, [such as Decision Tree (DT), Random Forest (RF), Support Vector Machine

(SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB)] using the data derived from

textural analysis. This study presents a proof-of-concept, demonstrating an impressive accu-

racy range of 97−99%, by synergizing simple drying experiments with ML methodologies to

investigate evolving patterns during the drying process of human blood containing di�erent

types of abnormalities. Consequently, this study answers that drying pattern dynamics and

ML e�ectively di�erentiate between blood samples with and without abnormalities.

Furthermore, in this current study, the fusion of spatial and temporal features during

droplet drying is shown. It o�ers several advantages: (i) Enhanced precision in classifying

these patterns; (ii) Eliminating the time-consuming and labor-intensive task of depositing

20-50 droplets to build image datasets for di�erent diseases; and (iii) Overcoming the chal-

lenge of obtaining a su�cient volume of diseased blood for making 20-50 droplets, which is

signi�cantly more than the 3-5 droplets required. Notably, the time-lapse images captured

at two-second intervals can swiftly generate 400-600 images for the entire drying process of

a droplet with a radius ∼1 mm, volume of ∼1 µL, dried at ambient temperature of about

25◦C and RH ∼ 50%. Evaluating the performance of each ML, this study stands as the �rst

to employ (i) images acquired during the drying process, (ii) data extraction using textural

statistics (FOS and GLCM) closely related to di�erent drying process events, (iii) use of

both images and data in traditional and NN-based ML, and (iv) achieve a high performance

exceeding 97%. However, neural network-based ML typically demands substantial data,

high GPU capabilities, and advanced hardware, whereas, for low-resource scenarios, RF can

be employed as a traditional ML using textural features.

The approach of utilizing these textural features within a drying droplet context is ad-

vantageous, as these features are unique and are directly related to the variations in blood

compositions, o�ering biophysical insights to be used as a futuristic quantitative tool in

implementing any data-driven approaches.

To ascertain the versatility of this approach, RF is implemented on other bio-colloidal

systems using FOS+GLCM textural statistics, yielding F1-scores of 97−99% (see Figure S9
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and Table S1 in the supplementary section). It's imperative to compare the performance of

each ML method while applied to other bio-colloidal systems, as the e�cacy of traditional

or NN-based ML hinges on data quality and quantity, as well as feature vector composition.

Prior approaches may have struggled to translate e�ectively due to the necessity of involving

multi-scale experimental tools, image processing techniques, machine learning, and connect-

ing with di�erent bio-�uid abnormalities or diseases in patients. Thus, this study aims to

establish an interdisciplinary approach to bio-mimetic drying droplets, where abnormalities

are simulated by adding water and phosphate bu�er saline and progress toward realizing a

diagnostic marker.

IV. CONCLUSIONS

In this study, we show how the initial composition of bio-�uids in�uences the dynamics of

pattern formation during the drying process. The composition of the blood samples is varied

by adding water and bu�er, and the time-lapse images are captured using optical microscopy.

An e�cient classi�cation method is proposed by analyzing these evolving drying patterns

rather than the dried patterns that have mostly been done so far. In addition, the highlight

of the paper is the quantitative image analysis, where the textural statistics are derived

from the time-lapse images, capturing the morphology di�erences among di�erent blood

abnormalities. Five di�erent traditional machine learning and arti�cial neural networks

were implemented on the textural data, whereas convolution neural networks were directly

applied to the images. An accuracy of more than 97% is achieved in classifying eleven

di�erent blood samples. This means that the time series of the drying process is essential,

not just the traditional �nal dried state. An additional bene�t of using this time series is

that the amount of solution used in the experiment can be minimized. Bio-�uids such as

blood, plasma, urine, and saliva have signi�cant individual di�erences and are not suitable

for mixing samples from multiple patients. This method, i.e., drying pattern dynamics and

machine learning, therefore, represents a revolutionary advance in the potential for disease

diagnosis to identify and classify diseases from small amounts of raw bio-�uids obtained from

a single patient, advancing the �elds of data science, biotechnology, and colloidal physics

improving public health.
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FIG. 1. Illustration of innovative analysis to classify di�erent abnormalities in human blood by com-

bining time-lapse images of evolving patterns during the drying process, quantitative image textural

analysis, and data-driven approaches, such as traditional machine learning (ML) and Neural Net-

works (NN). Our study breaks new ground by utilizing the evolving dynamics of pattern formation

during drying as a unique �ngerprint, moving beyond focusing solely on dried morphologies. The

combination of drying pattern dynamics and ML helps us �nd a low-volume, rapid, accurate, and

cost-e�ective screening tool for diverse samples.
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FIG. 2. Time-lapse images capturing the drying process of blood droplets containing di�erent

abnormalities by varying volumes of added (I) Water and (II) Phosphate Bu�ered Saline (PBS),

ranging from 12.5 to 75%(v/v). The 0%(v/v) corresponds to the drying of a healthy blood droplet,

m. The �nal drying time, denoted as tf , signi�es the point when no further visible changes occur

in these droplets. The timestamp on each image is relative to tf . The scale bar of 0.2 mm is

indicated in white color at the conclusion of the 75%(v/v) stage. Textural statistics comprising

�rst-order statistics (FOS) and gray-level co-occurrence matrix (GLCM) are assessed from images

captured at di�erent concentrations, ranging from 12.5 to 75%(v/v). This assessment is plotted

as a function of the normalized time ( t
tf
) for (III) Added water and (IV) Added PBS. The FOS

encompasses mean, standard deviation, skewness, and kurtosis, while the GLCM entails angular

second moment, contrast, correlation, inverse di�erence moment, and entropy. Distinct stages

of the drying process� initial, middle, and �nal� are represented by blue, green, and red colors,

respectively.
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FIG. 3. Time-lapse images of the blood droplets during the drying process (I) without any abnor-

malities and (II) with abnormalities (+ PBS) at 12.5% (v/v). The blue panel shows the deposited

droplets, the formation of the peripheral band (depicted with orange arrows), and the movement

of the �uid front. The green panel exhibits that the front moves uniformly from the periphery of

the droplet (white dashed arc lines). The texture in the central region becomes lighter, outlined

with a white dashed circle. The white arrows sketch the propagation of the radial cracks, while σl

and σr demonstrate the symmetric stress �elds of these cracks (depicted with yellow arrows). This

panel emphasizes the di�erences between healthy and non-healthy blood. The green dotted oval

line shows the texture change in the domains created by these radial cracks in the healthy blood.

The red ovals mark the appearance of the dendrite structure in the central region of blood+PBS.

The yellow dashed rectangles portray the widening of these radial cracks as the �nal stage of the

drying process. The scale bar corresponds to 0.2 mm. Distinct stages of the drying process� initial,

middle, and �nal� are represented by blue, green, and red colors, respectively. The gray arrows in

(I-II) display the drying progression.
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FIG. 4. Normalized confusion matrix illustrating the performance of various ML: (I) Naß̈ve Bayes

(NB), (II) Support Vector Machine (SVM), (III) K-Nearest Neighbors (KNN), (IV) Decision Tree

(DT), and (V) Random Forest (RF). These MLs are employed to classify healthy blood droplets and

blood droplets with added water or phosphate bu�er saline (PBS). (VI) The radial plot depicting

the average F1-score in percentage provides a comparative assessment of each ML's performance.
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FIG. 5. (I) Bar plots presenting F1-scores (in percentage) that o�er a comparative analysis of

random forest (RF) performance across di�erent feature sets: (a) First-order statistics (FOS),

(b) Gray-level co-occurrence matrix (GLCM), and (c) Combined FOS+GLCM. (II) Radial plots

illustrate the average F1-score (in percentage) when individual features are omitted during RF

implementation. Here, excluded features are denoted as `- feature'. The notation `- 0' signi�es

the inclusion of all features. The abbreviations SD, ENT, IDM, CON, COR, SKEW, KUR, and

ASM correspond to standard deviation, entropy, inverse di�erence moment, contrast, correlation,

skewness, kurtosis, and angular second moment, respectively. (III) Algorithmic depiction of SD

computation of an image, highlighting the correlation between image SD and the system's com-

plexity as drying progresses. The SD of the droplet is directly linked to the escalating complexity,

with values ascending from ∼5 to ∼21 arbitrary units (a.u.).
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FIG. 6. (I) Illustration of two distinct approaches: Approach 1: Direct utilization of images as

inputs into a convolution neural network (CNN). Approach 2: Leveraging traditional ML, employing

random forest (RF) and arti�cial neural networks (ANN). These models are based on the �rst-

order statistics (FOS) and gray-level co-occurrence matrix (GLCM) features extracted from images

using image processing techniques. The objective is to predict classes encompassing various blood

compositions: healthy blood (0 (v/v)%), blood+water (12.5, 25, 50, 62, and 75 (v/v)%), and

blood+PBS (12.5, 25, 50, 62, and 75 (v/v)%). (II) Bar plots showcasing the performance evaluation

of CNN, RF, and ANN for each class. (III) Radial Plot illustrating the average F1-score (in

percentage) across all classes.
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FIG. 7. (I) Comparative overview of drying experiments between our proposed method and previ-

ous literature. Our approach captures the entire drying evolution, spanning from droplet deposition

to the fully dried states. In contrast, existing literature either utilizes data from the contact angle

setup or images from optical microscopy at speci�c stages. (II)(a)-(b) Our technique employs time-

lapse images, capturing the dynamic evolution, while prior studies depict images at isolated stages

(middle or �nal) of the drying process. The depiction of the ML implementation is denoted by white

(representing prior literature) and gray (indicating our approach) arrows. Our proposed method-

ology converts images into data, employs image processing techniques for quantifying temporal

textural parameters [�rst-order statistics (FOS) and gray-level co-occurrence matrix (GLCM)], and

subsequently selects pertinent features. Various traditional ML are utilized [Decision Tree (DT),

Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naß̈ve

Bayes (NB)]. In contrast to previous approaches, our method competes by implementing traditional

ML on data and employing Neural Networks (NN) separately for images and data.
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