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Abstract  

Numerous research groups worldwide have focused on postmortem imaging to bridge the resolution gap 

between clinical neuroimaging and neuropathology data. We developed a standardized protocol for brain 

embedding, imaging, and processing, facilitating alignment between antemortem MRI, postmortem MRI, and 

pathology to observe brain atrophy and structural damage progression over time. Using 7T postmortem ex vivo 

MRI, we explore the potential correlation of amygdala and hippocampal atrophy with neuropathological burden 

in both Down syndrome (DS) and Alzheimer’s disease (AD) cohorts. Using 7T postmortem ex vivo MRI scans 

from 66 cases (12 DS and 54 AD) alongside a subset of antemortem scans (n=17), we correlated manually 

segmented hippocampal and amygdala volumes, adjusted for age, sex, and ApoE4 status, with pathological 

indicators such as Thal phase, Braak stage, limbic-predominant age-related TDP-43 encephalopathy (LATE) 

stage, hippocampal sclerosis (HS), and Lewy body (LB) stage. A significant correlation was observed between 

postmortem and antemortem volumes for the hippocampus, but a similar trend observed for the amygdala did 

not reach statistical significance. DS individuals exhibited notably smaller hippocampal and amygdala volumes 

compared to AD subjects. In DS, lower hippocampal and amygdala volumes correlated with more severe 

Braak stage, without significant associations with Thal phase. LATE and HS pathologies were uncommon in 

DS cases but trended toward smaller hippocampal volumes. In AD, lower hippocampal volume associated with 

dementia duration, advanced Thal phase, Braak stage, LATE stage, and HS presence, whereas reduced 

amygdala volume correlated mainly with severe LATE stage and HS, but not with Thal or Braak stages. No 

significant LB correlation was detected in either DS or AD cohorts. Hippocampal volume in AD appears 

influenced by both AD and LATE pathologies, while amygdala volume seems primarily influenced by LATE. In 

DS, smaller hippocampal volume, relative to AD, appears primarily influenced by tau pathology.  
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Introduction 

Addressing the resolution gap between 1 mm clinical neuroimaging data and 0.05 mm neuropathology 

data poses a significant challenge. To bridge this gap, numerous research groups worldwide have focused on 

postmortem imaging. Over the past years, our team has developed a standardized protocol for brain 

embedding, imaging, and processing. Additionally, we have designed a 3D-printed brain container with tailored 

cutting guides for postmortem imaging [1-3]. Utilizing both first [4-6] and second [7, 8]  generation of Tic-Tac-

Toe head coil radiofrequency system for magnetic resonance imaging (MRI) at 7 Tesla (7T), we have 

successfully scanned over a hundred brains, generating a substantial volume of high-resolution postmortem 

imaging data within the University of Pittsburgh. 

Postmortem MRI can be conducted in situ or ex vivo. While in situ imaging allows automated image 

processing, logistical challenges make it impractical. Ex vivo imaging has been approached in various ways, 

with some studies dissecting the brain into parts [9] or attempting extremely long acquisition times [10]. 

However, these approaches are impractical for larger cohorts. Researchers who conducted brain imaging 

directly without any embedding medium [11] or in fluids [9, 10, 12-15] may encounter challenges related to 

immobilizing the tissue during imaging and aligning the images. Research has shown that agar gel, in contrast 

to formalin and phosphate-buffered saline, offers superior signal-to-noise and contrast-to-noise ratios as an 

embedding medium, while also providing stability to the brain [16, 17].  

Limbic-predominant age-related TDP-43 encephalopathy (LATE) pathology is a common concurrent 

neurodegenerative pathology in AD brains, typically initiating in the amygdala before spreading to the 

hippocampus and neocortex. In radiology-to-pathology correlation studies, LATE pathology at the time of 

autopsy was associated with smaller amygdala [18] and hippocampal [19] volumes at the time of prior 

antemortem MRI. Whether similar associations exist in DS, the most common genetic cause of AD, remains 

unexplored. Investigating the underlying pathologies contributing to hippocampal and amygdala atrophy in DS, 

especially in a considerably younger population, could offer insights into early AD-related changes in this 

demographic. 

Our study aims to explore the potential correlation of amygdala and hippocampal atrophy with 

neuropathological burden in both DS and AD using 7T postmortem MRI. A comparative analysis of DS and AD 
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cohorts will help determine whether these observations are associated with AD pathology, LATE pathology, 

Lewy body (LB) pathology, or a combination thereof. 

Materials and methods 

Participants 

All brain donors were either participants in the University of Pittsburgh Alzheimer’s Disease Research 

Center (ADRC), the Ginkgo Evaluation of Memory Study (GEMS) long-term follow-up cohort, local brain 

donors to the Pitt Neurodegenerative brain bank or part of the Alzheimer Biomarkers Consortium — Down 

syndrome (ABC-DS) [20].  

The research protocol has been approved by the Committee for Oversight of Research and Clinical 

Training Involving Decedents at the University of Pittsburgh. It encompasses postmortem brains obtained from 

December 2019 to May 2023. Table 1 outlines the fundamental demographics, including age, sex, and race as 

well as ApoE4 carriership and last clinical diagnosis. The cohort comprises 12 individuals with DS and 54 with 

AD and related dementias, subsequently labeled as the AD group. Within the AD group, the breakdown 

includes 18 cases of AD only, 32 cases of AD + Dementia with Lewy bodies (DLB), 1 case of AD + Parkinson’s 

disease with dementia (PDD), 1 case of DLB, and 2 cases of primary age-related tauopathy (PART). Four 

individuals in this group were also given an additional diagnosis of argyrophilic grain disease. For DS cases, 

the most recent DS mental status examination (DSMSE) is available for 10 of the 12 individuals, with the 

examination conducted 2.0 ± 1.1 years before autopsy. In the Alzheimer’s disease group, 44 of the 54 

individuals had their most recent Mini-Mental state examination (MMSE) scores recorded 3.0 ± 2.6 years 

before death.  

Postmortem brain preparation 

For postmortem imaging, the fixed brain is embedded into a re-usable 3D printed container [3, 21] that 

fully fits one adult supratentorial hemisphere without cerebellum or brainstem. The container used in this study 

consists of four components: a screw cap, domed lid, a cutting guide for coronal slabs, and a container base. 

Utilizing a Fortus 450 3D printer (Stratasys, USA), we produce these containers using high-density filament 
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polycarbonate (Stratasys, USA). The cutting guides, spaced 0.5 mm apart, facilitate precise coronal brain 

cutting by neuropathologists.  

The average postmortem interval for this cohort is 10.5 hours in individuals with DS and 8.7 hours in 

those with AD (Table 1). Brain weight measurements were obtained fresh at the time of autopsy prior to 

dissection. The brainstem was separated at the midbrain level, and the forebrain hemispheres were bisected. 

The left hemisphere was then fixed in 10% formalin (AD cases) or 4% paraformaldehyde (DS cases) for a 

minimum of three weeks. To prepare the left hemispheres for imaging, the leptomeninges were removed from 

the cortical surface to minimize air bubble entrapment. We employed a mixture of 1.5% (w/v) agar (Millipore 

Sigma, A5431) and 30% sucrose (Fisher, S5-3) to embed the brain in our 3D-printed container. While 

submerging the brain in the container, we gently massaged it to release any remaining trapped air bubbles. 

Once the agar began to solidify, the container was sealed with a lid and placed inside the scanner's head coil 

for imaging. 

Neuroimaging 

Postmortem scans were performed using a 7T human MRI scanner (Siemens Magnetom, Germany) 

with both first [4-6] and second [7, 8] generation of Tic-Tac-Toe head coil radiofrequency system. Structural 

imaging included acquisition of both T1-weighted (T1w) MP2RAGE images at a resolution of 0.37 mm and T2-

weighted (T2w) SPACE images at a resolution of 0.41 mm, with detailed sequence parameters provided in 

Table 2. Ex vivo MP2RAGE and SPACE images were registered by rigid registration, and manual 

segmentation of the hippocampus and the amygdala was performed using ITK-SNAP [22]. To ensure 

accuracy, all segmentations were evaluated by two authors (J.J.L. and J.N.) before exporting the volumes.  

Antemortem MR scans were available for 1 DS and 16 AD cases and were retrieved from various 

studies and clinical radiology records. These scans utilized either a 3T Siemens scanner (Siemens, Germany) 

or a 3T GE scanner (GE Healthcare, USA). T1-weighted MPRAGE images were acquired with isotropic 

resolutions ranging from 0.8 to 1.2 mm and acquisition times ranging between 4 and 9 minutes. The interval 

between postmortem ex vivo and antemortem scans ranged from <1 to 11 years, with an average of 3.8 ± 3.5 

years. For antemortem MPRAGE images, hippocampus and amygdala segmentation was performed using 

FreeSurfer (version 7.3.1, http://surfer.nmr.mgh.harvard.edu/). The extracted antemortem hippocampal and 
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amygdala volumes were correlated with the ex vivo volumes, accounting for discrepancies in absolute values 

due to the scan-death interval and tissue shrinkage during fixation. 

Neuropathology 

Tissue sampling and staining included all brain regions recommended by the 2012 National Institutes of 

Aging – Alzheimer’s Association (NIA-AA) consensus criteria for the neuropathological evaluation of 

Alzheimer’s disease [23, 24]. Immunohistochemical staining for beta-amyloid was performed to generate Thal 

phases [25]. Phospho-Tau staining was performed to determine Braak stage [26]. Modified Bielschowsky 

stains were used to assess neuritic plaque density by Consortium to Establish a Registry for Alzheimer’s 

disease (CERAD) criteria [27] for the AD cohort. In the DS cohort, neuritic plaque scores were based on pTau 

stains. All cases were assigned ABC scores following the NIA-AA criteria, with details of antibodies provided in 

Table 3. 

TDP‐43 immunohistochemistry was carried out on sections from the amygdala, hippocampus‐mesial 

temporal cortex, and midfrontal neocortical regions. TDP-43 positive cases were given a diagnosis of Limbic-

Predominant, Age-Related TDP-43 Encephalopathy (LATE). Severity of LATE pathology was assessed by two 

different methodologies. First, LATE stage was determined following published guidelines by classifying cases 

based on brain region involvement into stage 1 (amygdala only), stage 2 (stage 1 + hippocampus and/or 

entorhinal/transentorhinal cortex) and stage 3 (stage 2 + midfrontal cortex) [28]. In addition, the severity of 

TDP-43 pathology in the following 5 regions was assessed on a semiquantitative scale (none=0, mild=1, 

moderate=2, severe=3): amygdala, CA1, dentate gyrus, entorhinal/transentorhinal cortex and midfrontal 

cortex. Stage 2 regions (CA1, dentate gyrus and mesial temporal cortex) were averaged before combining with 

amygdala and midfrontal cortex score for a final severity score (ranging from 0 to 9). Given the low frequency 

of TDP43 pathology in the DS cases, severity scores were only obtained for the AD cohort. 

Hippocampal sclerosis (HS) evaluation involved assessing two coronal sections, one from the anterior 

hippocampus and the other from the mid‐hippocampus at the level of the lateral geniculate body. Presence of 

hippocampal sclerosis was determined based on severe neuronal loss and gliosis in CA1 and/or subiculum, 

disproportionate to AD pathology in the same regions, while blinded to TDP pathology status [23, 29].  
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Lewy body (LB) stage included stage 0 (negative), stage 1 (olfactory bulb only and brainstem-

predominant), stage 2 (amygdala-predominant), stage 3 (limbic), and stage 4 (diffuse neocortical), according to 

published studies [30-32] and the fourth consensus report of the dementia with Lewy bodies consortium [33] 

(Table 1). 

Statistical analysis 

All statistical analyses were conducted using Prism (version 10.2.0.392) unless specified otherwise. 

Hippocampal and amygdala volumes were normalized to fresh brain weight and adjusted for age, sex, and 

ApoE4 carriership using MATLAB (version R2023a). Pearson’s correlation was employed to assess 

relationships between volume and neuropathological burden with significance set at p < 0.05. Unpaired t-tests 

were utilized to compare two different groups.  

Stepwise regression was conducted using SPSS (version 29.0.2.0) to explore which independent 

variables contribute the most to postmortem hippocampal and amygdala volumes. The hippocampal or 

amygdala volume (mm3) were the dependent variable; the independent variables included age, sex, ApoE4 

carrier status, postmortem interval, fresh brain weight, C score, Thal phase, Braak NFT stage, LATE stage, 

and LB stage. The adjusted R square, unstandardized coefficients, and associated p-values are reported. 

Results 

Postmortem-antemortem volume correlation  

The T1w and T2w images of each brain were registered and used for hippocampal and amygdala 

segmentation. Segmentations were created manually and quality-inspected (Figure 1A). Among all brains, 17 

had antemortem scans with an average postmortem-antemortem scan interval of 3.8 ± 3.5 years. Pearson 

correlation analysis revealed a significant positive correlation between the postmortem hippocampal volume 

and that of the antemortem scans (Pearson r = 0.6307, p = 0.0066) (Figure 1B). While a similar trend was 

observed for the amygdala, it did not reach significance (Pearson r = 0.4210, p = 0.1182) (Figure 1C). It is 

worth noting that there was one LATE case with a long scan interval of 11 years and a dramatic decrease of 

amygdala volume between antemortem and postmortem scans (from 2072 to 638 mm3) This outlier likely 

explains the worse correlation for amygdala compared to hippocampal volumes. Overall, these findings 
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indicate that despite the absence of intracranial volume or whole brain volume, the postmortem hippocampal 

volume derived from manual segmentation accurately represents the antemortem hippocampal volume. 

DS-AD volume comparison 

The average age of individuals with DS was approximately 20 years younger than those with AD, with 

more males and exclusively white participants (Table 1). Regarding ApoE4 carrier status, the majority of DS 

participants were non-carriers (69.2%), whereas almost an equal number of carriers (38.9%) and non-carriers 

(29.6%) were reported in the AD cohort. We were unable to obtain postmortem amygdala volumes in four AD 

cases due to poor delineation in the earliest scans when the protocol was still under development, resulting in 

an AD sample size of 50 for all amygdala volume analyses. Increased attention to removing entrapped 

intraventricular air bubbles in the temporal horn improved amygdala delineation in subsequent scans. When 

comparing hippocampal and amygdala volumes, individuals with DS had significantly lower hippocampal 

(p=0.0004, Figure 2A) and amygdala volumes (p=0.0002; Figure 2B) compared to AD cases, after adjusting 

for age, sex, and ApoE4 carriership.  

DS and AD volume-clinical correlation 

The most recent DSMSE was obtained on average 2 years prior to autopsy and most DS participants 

had already developed dementia (61.5%) based on the last clinical diagnosis; however, we had insufficient 

data to calculate dementia duration for this cohort. In DS, no correlation between DSMSE and hippocampal 

volume was detected (Pearson r=0.4508, p=0.2233) (Figure 3A), but a trend towards significance was 

observed in the amygdala (Pearson r=0.6243, p=0.0723) (Figure 3B).  

In the AD cohort, 66.7% were clinically diagnosed with probable AD, 18.5% with other forms of 

dementia, 9.3% with mild cognitive impairment (MCI), and 5.6% had no cognitive impairment. Mean dementia 

duration was 11 years. In AD, the hippocampal volume had an inverse correlation with dementia duration 

(Pearson r=-0.3996, p=0.0174), after adjusting for age, sex, and ApoE4 carriership (Figure 3C). However, this 

correlation did not reach significance in the amygdala (Pearson r=-0.2284, p=0.2086) (Figure 3D). The last 

MMSE, obtained 3.0 ± 2.6 years prior to autopsy (Table 1), did not show a significant correlation with 

hippocampal (Pearson r=0.08516, p=0.5826; Figure 3E) or amygdala (Pearson r=0.05097, p=0.7548; Figure 
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3F) volume. There was also no correlation between the last MMSE score and the MMSE-autopsy interval 

(Pearson r=0.1757, p=0.2597).   

Neuropathological burden in DS 

The distribution of Thal phase, Braak neurofibrillary tangle (NFT) stage, Lewy body (LB), Limbic-

Predominant Age-Related TDP-43 Encephalopathy (LATE), and hippocampal sclerosis (HS) has been 

summarized in Table 1. In the DS group, no significant correlations were detected between Thal phase and 

hippocampal or amygdala volume (Figures 4A and 4B), but lower hippocampal volume (Pearson r=-0.7481, 

p=0.0051) (Figure 4C) and amygdala volume (Pearson r=-0.6915, p=0.0127) (Figure 4D) correlated with more 

severe Braak NFT stage. In the two DS cases that exhibited LATE pathology and hippocampal sclerosis, 

trends toward smaller hippocampal and amygdala volumes were observed but not reaching significance 

(Figures 4E, 4F, 4G, and 4H). In the four DS cases that exhibited LB, two with amygdala-predominant LB and 

two with diffuse neocortical LB, no significant difference in hippocampal volume (p=0.5262) (Figure 4I) or 

amygdala volume (p=0.9124) (Figure 4J) was observed when compared to the non-LB group. 

Neuropathological burden in AD 

In AD, lower hippocampal volume correlated with more severe Thal phase (Pearson r=-0.4120, 

p=0.0020), Braak NFT stage (Pearson r=-0.3565, p=0.0081), LATE stage (Pearson r=-0.4170, p=0.0017), and 

was associated with the presence of HS (p<0.0001) (Figures 5A, 5C, 5E and 5G). Conversely, lower 

amygdala volume correlated with more severe LATE stage (Pearson r=-0.3390, p=0.0160) and was associated 

with HS (p=0.0139) but did not correlate with Thal phase (Pearson r=-0.1014, p=0.4833) or Braak stage 

(Pearson r=0.01762, p=0.9034) (Figures 5B, 5D, 5F and 5H). No significant correlation with LB stage was 

detected in the hippocampus (p=0.7953) or the amygdala (p=0.3684;(Figure 5I and 5J).   

We conducted stepwise regression analyses to determine the independent variables contributing to the 

variance in hippocampal and amygdala volumes, which were normalized to fresh brain weight and adjusted for 

age, sex, and ApoE4 status in AD. The stepwise regression revealed that C score and LATE stage are the 

predictors (Figure 6A). The C score accounted for 17.6% of the variance, followed by the LATE stage with an 

additional 8.1%, totaling 25.7% of the variance in postmortem hippocampal volume. In the case of postmortem 
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amygdala volume (Figure 6B), LATE stage emerged as the sole predictor in the stepwise regression model, 

accounting for 8.7% of the variance in amygdala volume. 

Discussion 

We implemented a postmortem ex vivo MRI protocol to investigate the correlation between 

hippocampal and amygdala volumes and neuropathological burden in neurodegenerative diseases. The 

significant correlation found between antemortem and postmortem hippocampal volumes suggests the 

reliability of manually segmented volumes, particularly in cases where intracranial or whole brain volume data 

is unavailable. While we observed a trend towards correlation between antemortem and postmortem volumes 

in the amygdala, this correlation did not reach significance, likely due to two primary reasons. Delineation of 

anatomic structures in the anterior medial temporal lobe was challenging in three early scans, while we were 

still refining the imaging protocol. Secondly, an outlier case with a scan interval of 11 years and severe 

amygdala volume loss over the years may have contributed to this lack of significance. 

In our analysis, we observed significantly smaller hippocampal and amygdala volumes in individuals 

with DS compared to those with AD, which is consistent with findings from previous studies [34-39]. 

Interestingly, research on children with DS revealed no differences in amygdala volumes between DS and 

control groups, but hippocampal volumes were notably smaller in the DS group [40]. This suggests that 

decreased hippocampal volumes in DS may also be attributed to early developmental differences in addition to 

neurodegenerative changes. Hippocampal volumes have been previously shown to correlate with cognitive 

measures (DSMSE scores) in DS cases [37]. While we observed trends in the same direction for both 

hippocampal and amygdala volumes, our analyses did not reach significance, likely due to the overall low 

number of cases in our DS cohort. In contrast, within our AD cohort, hippocampal volume exhibited an inverse 

correlation with dementia duration, a novel finding in our study and consistent with our previously reported 

association of hippocampal sclerosis and LATE pathology with duration of cognitive symptoms in a non-

overlapping cohort of cases [41]. However, we did not find a significant correlation between hippocampal or 

amygdala volume and the last MMSE score, even after adjusting for the MMSE-autopsy interval, contrary to 

findings in some prior studies [42-46], likely due to differences in sample size and group ratios. 
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Our neuropathological results showed that both hippocampal and amygdala volumes correlated with 

Braak NFT stage in the DS cohort, after adjusting for age, sex, and ApoE4 carriership. However, no 

correlations with Thal phase were detected. While LATE pathology was not common in the DS cohort, its 

frequency was consistent with findings from other studies in younger populations, reporting TPD43 pathology 

in 9-18% of DS, familial and early-onset sporadic AD cases [47-50]. Despite the low numbers, we observed a 

trend towards small hippocampal and amygdala volumes in the LATE-positive DS cases. Similar trends were 

observed for the two DS cases that exhibited HS. Interestingly, both HS cases in this cohort were negative for 

TDP43 pathology, which is consistent with other studies where half of the DS cases with HS were non-LATE 

cases [48, 49]. We also identified four DS cases with Lewy body pathology (30.8%), which falls within the 

published prevalence range of 8-50% [51, 52].  

In AD, our neuropathological findings are consistent with previous research, demonstrating an inverse 

correlation between hippocampal volume and the Thal phase [53, 54], Braak NFT stage [55-57], and LATE 

stage [43, 58, 59]. Notably, a study suggested that including the TDP-43 stage could explain approximately 3% 

of the variance in hippocampal volume [59]. Similarly, in our stepwise regression analysis, the LATE-stage 

accounts for 8.1% of the variance in the adjusted hippocampal volume and 8.7% of the variance in amygdala 

volume. As expected and consistent with previous findings, we observed lower hippocampal volumes in cases 

with HS compared to those without, [60] [61, 62]. Interestingly, TDP/HS pathology seems to have a stronger 

association with hippocampal volume than AD pathology in older individuals with AD [59]. Compared to that 

study with a mean age at death of around 90 years, the average age in our AD cohort was about a decade 

lower, which may explain why AD and LATE pathologies had comparable effect sizes in our cohort. 

Furthermore, we noted an association between amygdala volume and LATE stage. In our stepwise regression 

analysis, the LATE stage emerged as the sole predictor for postmortem amygdala volume. Regarding the 

contribution of LB, antemortem imaging studies have reported that less severe hippocampal atrophy is 

associated with dementia with LBs when compared to AD [63, 64]. We did not observe any significant 

differences in hippocampal or amygdala volume between LB and non-LB cases, nor did we find an association 

between volumes and LB stage. These results align with previous findings of comparable amygdala volumes 

between AD and DLB [46].  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.15.24307354doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.15.24307354


This exploratory study is limited by the small sample size, particularly affecting analyses of our DS 

cohort. Previous studies have indicated that female individuals with DS tend to experience longer durations of 

dementia [65] and exhibit higher tau burden in vivo [66], while males with DS and the ApoE4 allele display 

elevated white matter hyperintensity volumes in the occipital lobe [67]. Due to the small sample size of our DS 

cohort, we had to defer exploration of sex differences in neuropathological burden to follow-up studies when 

additional cases in the ABC-DS cohort will have come to autopsy. Despite this limitation, our study provides 

novel insights into differential impact of neurodegenerative pathologies on regional volumes between DS and 

sporadic AD cases.  

Conclusions 

Our 7T postmortem MRI protocol produced good alignment of postmortem volumes with antemortem 

findings and revealed correlations between volume measures and neuropathological burden. In AD, 

hippocampal volume is influenced by both AD and LATE pathologies, whereas amygdala volume appears to 

be influenced primarily by LATE. In DS, hippocampal volume is smaller than in AD and primarily influenced by 

tau pathology.  
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Figure 1. Postmortem-antemortem volume correlation. (A) Postmortem hippocampal and amygdala volumes, 
obtained from manual segmentations, are compared to a subset of cases with antemortem volumes acquired 
from FreeSurfer. (B) Significant correlation is observed between postmortem and antemortem hippocampal 
volumes. (C) However, the correlation between postmortem and antemortem amygdala volumes does not 
reach significance.   
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Figure 2. DS and AD volume comparison. (A) Individuals with DS display a significantly lower hippocampal 
volume than those with AD. (B) Similarly, the amygdala volume is significantly lower in the DS group. All 
volumes have been normalized to fresh brain weight and adjusted for age, sex, and ApoE4 carriership.   
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Figure 3. DS and AD volume-clinical correlation. (A) In DS, while no significant correlation between DSMSE 
and hippocampal volume is observed, (B) a notable trend towards significance is noted in the amygdala. (C) In 
AD, hippocampal volume shows an inverse correlation with dementia duration, (D) but no correlation is 
detected in the amygdala. (E) Last MMSE scores do not exhibit correlation with either hippocampal or (F) 
amygdala volume in AD. All volumes have been standardized to fresh brain weight and adjusted for age, sex, 
and ApoE4 carriership.  
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Figure 4. DS volume-neuropathology correlation. (A) No correlation is observed between hippocampal volume 

and Thal phase. (B) Similarly, no correlation is detected between amygdala volume and Thal phase. (C) Both 

hippocampal and (D) amygdala volumes correlate with Braak NFT stage. (E) Trends toward smaller 

hippocampal volume are observed in two DS cases with LATE pathology. (F) However, no significant 

difference is found in amygdala volume between LATE and non-LATE groups. (G) In two DS cases with HS, 

trends toward smaller hippocampal volume are noted, but (H) no significant difference is seen in amygdala 

volume. (I) No distinction is observed between LB and non-LB cases in terms of hippocampal volume, and (J) 

similarly, no difference is detected in amygdala volume. All volumes have been standardized to fresh brain 

weight and adjusted for age, sex, and ApoE4 carriership.   
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Figure 5. AD volume-neuropathology correlation. (A) The hippocampal volume exhibits correlations with Thal 
phase, (C) Braak NFT stage, (E) LATE stage, and (G) the presence of HS. (F) Additionally, the amygdala 
volume correlates with LATE stage and (H) the presence of HS. However, no significant correlations are 
detected between (B) Thal phase or (D) Braak NFT stage, or (J) LB pathology with the amygdala volume. (I) 
The hippocampal volume in the LB limbic subtype is significantly lower than in LB neocortical diffuse cases. All 
volumes have been standardized to fresh brain weight and adjusted for age, sex, and ApoE4 carriership.  
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Figure 6. In AD, stepwise regression shows that (A) both C score and LATE stage are the predictors 
accounting for 25.7% of the variance in adjusted hippocampal volume; and that (B) LATE stage is the only 
predictor in adjusted amygdala volume.   
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Table 1. Postmortem brain sample characteristics.  

 Down syndrome (n=12) Alzheimer’s disease (n=54) 

Demographic data 
Age (mean ± std) 60.5 ± 5.0 79.7 ± 12.1 
Sex female 41.7% 48.1% 
Race   

White 100% 96.3% 
Unknown - 3.7% 

Clinical data 
Last MMSE (mean ± std) 28.6 ± 21.0 (DSMSE) 16.5 ± 7.5 
MMSE-death interval, y (mean ± std) 2.0 ± 1.1 3.0 ± 2.6 
Dementia duration, y (mean ± std)  n/a  11.1 ± 4.3 
ApoE4 status    

Carriers 8.3% 38.9% 
Non-carriers 66.7% 29.6% 
Unknown 25.0% 31.5% 

Last clinical diagnosis   
No cognitive impairment 16.7% 5.6% 
Mild cognitive impairment  - 9.3% 
Alzheimer’s disease 66.7% 66.7% 
Other dementia - 18.5% 
Unknown 16.7% - 

Pathology data 
Postmortem interval, h (mean ± std) 10.5 ± 8.7 8.7 ± 5.5 
Fresh brain weight, g (mean ± std) 1073.7 ± 252.0 1164.0 ± 166.9 
Thal phase   

0 - 3.7% 
1 - 7.4% 
2 25.0% 1.9% 
3 16.7% 16.7% 
4 16.7% 9.3% 
5 41.7% 61.1% 

Braak NFT stage   
0 - 1.9% 
1 - 3.7% 
2 - 3.7% 
3 - 13.0% 
4 16.7% 13.0% 
5 16.7% 22.2% 
6 66.7% 42.6% 

LATE stage   
0 83.3% 57.4% 
1 - 11.1% 
2 16.7% 31.5% 

Hippocampal sclerosis 16.7% 16.7% 
Lewy body stage   

0 66.7% 35.2% 
1 - 13.0% 
2 16.7% 18.5% 
3 - 14.8% 
4 16.7% 18.5% 
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Table 2. Postmortem MRI sequence parameters at 7T.   
T1w MP2RAGE T2w SPACE T2* GRE 

Resolution (mm) 0.37  0.41 0.37 

Echo time (ms) 3.57  368 8.16 

Inversion time (ms) 514 & 2020 N/A N/A 

Repetition time (ms) 6000  3400 40 

Acceleration factor  2 1 2 

Number of averages 2 2 1 

Acquisition time 32:15 min 46:36 min 36:20 min 
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Table 3. Antibodies for neuropathology. *formic acid pretreatment 
 

Protein Clone Source Catalog # Manufacturer  Dilution 

Factor 

Pitt (AD + 
subset of 
DS cases) 

α-synuclein Monoclonal Mouse sc-58480 Santa Cruz 1:500 

β-amyloid Monoclonal  Mouse NAB228 Cell Signaling 1:4000* 

Tau Kindly provided by Dr. Peter Davies 

p-TDP-43 1D3, monoclonal Rat MABN14 Millipore Sigma 1:500 

UCI 

(remaining 

DS cases) 

α-synuclein Polyclonal Rabbit AB5038 Millipore Sigma 1:1000 

β-amyloid 6E10 Mouse 803015 Biolegend 1:1000 

Tau Polyclonal Rabbit A0024 Agilent 1:3000 

Non p-TDP-43 Polyclonal Rabbit 10782-2-AP Proteintech 1:2000 
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