
1 

 

Nuclear magnetic resonance-based metabolomics with machine learning for 

predicting progression from prediabetes to diabetes 

Jiang Lia,#, Yuefeng Yua,#, Ying Suna, Yanqi Fua, Wenqi Shena, Lingli Caia, Xiao Tanb,c, 

Yan Caid, Ningjian Wang a, Yingli Lua,*, Bin Wanga,* 

aInstitute and Department of Endocrinology and Metabolism, Shanghai Ninth People's 

Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 

bDepartment of Medical Sciences, Uppsala University, Uppsala, Sweden 

cDepartment of Big Data in Health Science, School of Public Health, Zhejiang 

University School of Medicine, Hangzhou, China 

dDepartment of Endocrinology, the Fifth Affiliated Hospital of Kunming Medical 

University, Yunnan Honghe Prefecture Central Hospital (Ge Jiu People's Hospital), 

Yunnan, China 

#Jiang Li and Yuefeng Yu contributed equally to this manuscript. 

*Corresponding Author  

Bin Wang*, MD, PhD 

Address: Institute and Department of Endocrinology and Metabolism, Shanghai Ninth 

People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 

200011 China. Telephone number: 0086-21-53315256.  

E-mail: binwang1126@163.com 

Yingli Lu*, MD, PhD  

Address: Institute and Department of Endocrinology and Metabolism, Shanghai Ninth 

People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2024. ; https://doi.org/10.1101/2024.05.14.24307378doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.05.14.24307378


2 

 

200011 China.  

E-mail: luyingli2008@126.com 

 

Word count: 3,870  

Number of tables and figures: 2 tables and 4 figures

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2024. ; https://doi.org/10.1101/2024.05.14.24307378doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307378


3 

 

Abstract 

Background: Identification of individuals with prediabetes who are at high risk of 

developing diabetes allows for precise interventions. We aimed to determine the role 

of nuclear magnetic resonance (NMR)-based metabolomic signature in predicting the 

progression from prediabetes to diabetes. 

Methods: This prospective study included 13,489 participants with prediabetes who 

had metabolomic data from the UK Biobank. Circulating metabolites were quantified 

via NMR spectroscopy. Cox proportional hazard (CPH) models were performed to 

estimate the associations between metabolites and diabetes risk. Supporting vector 

machine, random forest, and extreme gradient boosting were used to select the 

optimal metabolite panel for prediction. CPH and random survival forest (RSF) 

models were utilized to validate the predictive ability of the metabolites.  

Results: During a median follow-up of 13.6 years, 2,525 participants developed 

diabetes. After adjusting for covariates, 94 of 168 metabolites were associated with 

risk of progression to diabetes. A panel of nine metabolites, selected by all three 

machine learning algorithms, was found to significantly improve diabetes risk 

prediction beyond conventional risk factors in the CPH model (area under the receiver 

operating characteristic curve [AUROC], 1-year: 0.823 for risk factors + metabolites 

vs 0.759 for risk factors, 5-year: 0.830 vs 0.798, 10-year: 0.801 vs 0.776, all P <0.05). 

Similar results were observed from the RSF model. Categorization of participants 

according to the predicted value thresholds revealed distinct cumulative risk of 

diabetes. 

Conclusions: Our study lends support for use of the metabolite markers to help 

determine individuals with prediabetes who are at high risk of progressing to diabetes 
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and inform targeted and efficient interventions. 
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Introduction 

Prediabetes, an intermediate stage of glucose dysregulation that blood glucose levels 

are elevated but lower than in diabetes, has become a burgeoning global health 

emergency1. Prediabetes affected approximately 720 million individuals worldwide in 

2021, with a project to 1 billion people by 20452. Approximately 5% to 10% of people 

with prediabetes progress to having diabetes each year and the lifetime conversion 

rate to diabetes could be as high as 70%3,4. Therefore, preventing or delaying diabetes 

development among people with prediabetes will have substantial clinical and public 

health benefits. 

Although lifestyle modification and medical therapy have been proven to be 

effective in preventing or delaying the diabetes onset among people with 

prediabetes5-7, the substantial cost of modification programs and medications as well 

as drug-related side effects limit the widespread delivery of such interventions in this 

large high-risk population8,9. Notably, the progression from prediabetes to diabetes is 

highly heterogeneous, and a fraction of individuals with prediabetes may regress to 

normoglycemia without treatment.10 Therefore, identifying targeted population who 

are at high risk of developing diabetes is the key step to tailor precise and efficient 

interventions. Glycemic indicators alone for risk stratification are deficient, with 

fasting glucose and glycosylated hemoglobin A1c (HbA1c) being convenient but less 

sensitive, while post-load glucose tolerance being sensitive but unfeasible in practice 

on a large scale11,12. In addition, several risk assessment models based on conventional 

clinical variables have been developed, but most of which had comparatively low 

performance and failed to take follow-up time into account13-15.  

Plasma metabolomics using high-throughput techniques could provide a 

comprehensive profiling of small-molecule metabolites in a specific physiological 
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period, which might yield valuable information for risk prediction. Previous studies 

have implied that incorporating circulating metabolites into basic models with 

conventional risk factors could improve prediction of diabetes risk 16-18. However, we 

are aware of only one study that has assessed the relationship between metabolomic 

profiling and the progression to diabetes among individuals with prediabetes and 

investigated the predictive values of metabolites19. Nevertheless, it was limited by a 

nested case-control study design with a relatively short follow-up (median 5 years) 

and small sample size (n=~300). Whether addition of metabolic biomarkers improves 

the ability in predicting the progression from prediabetes to diabetes in prospective 

settings remains largely unknown.  

To address these knowledge gaps, in the current study we aimed to examine the 

longitudinal associations of circulating metabolic biomarkers, quantified using 

high-throughput nuclear magnetic resonance (NMR), with the risk of incident diabetes 

among individuals with prediabetes from the UK Biobank. Moreover, we evaluated 

whether metabolic signature adds anything to prediction models for diabetes 

development and risk stratification. 

Methods 

Study design and participants 

The UK Biobank is a large population-based prospective cohort study enrolling more 

than 500,000 community-dwelling adults from 22 assessment centers across the UK 

between 2006 and 201020,21. Participants completed touchscreen questionnaires and 

physical measurements and provided blood samples at baseline. The study was 

approved by the Northwest Multicenter Research Ethics Committee (REC reference 

for UK Biobank 11/NW/0382), and all participants provided informed consent. 
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For the identification of metabolomic biomarkers associated with the progression 

from prediabetes to diabetes, the current study focused on participants with 

prediabetes at baseline with available circulating metabolite data. The diagnosis of 

prediabetes was defined by an HbA1c level of 5.7% to 6.4% (39 to 47 mmol/mol) in 

participants without diabetes, according to the American Diabetes Association (ADA) 

criteria22. After excluding individuals who developed diabetes or died within 1 month 

from the baseline, 13,489 participants with prediabetes were included in the final 

analyses. 

Metabolite quantification 

The metabolomics analysis of approximately 118,000 non-fasting 

ethylenediaminetetraacetic acid (EDTA) plasma samples at baseline was performed 

using the high-throughput NMR platform in Nightingale Health’s laboratories of 

Finland. Details of the metabolic profiling platform and experimentation have been 

described elsewhere23-25. In brief, the EDTA samples were collected and stored at 

-80°C. Before preparation, frozen samples were slowly thawed at +4°C overnight and 

were centrifuged (3,400 g) for 3 minutes. Each sample was analyzed with a 

spectrometer and the metabolic biomarkers were quantified using Nightingale 

Health’s proprietary software. The quality control procedures were implemented 

during the whole process and only samples and biomarkers that underwent the quality 

control process were stored in the UK Biobank dataset (Method S1). The coefficient 

of variations was below 5% for most of the biomarkers and there were no batch 

effects26. 

A total of 249 metabolic biomarkers (168 directly measured and 81 ratios of 

these), spanning lipids, lipoprotein subclass, fatty acids, amino acids, ketone bodies, 

and glycolysis metabolites were quantified for each sample. In the present study, we 
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analyzed 168 metabolic biomarkers that were directly measured (Supplementary Table 

S1). The values of all metabolites were transformed using natural logarithmic 

transformation (ln[x+1]) followed by Z-transformation. 

Covariate collection 

Information on covariates was collected through a self-completed touchscreen 

questionnaire or verbal interview at baseline, including age, sex, ethnicity, Townsend 

deprivation index, household income, education, employment status, smoking status, 

moderate alcohol, physical activity, healthy diet score, healthy sleep score, family 

history of diabetes, history of cardiovascular disease (CVD), history of hypertension, 

history of dyslipidemia, history of chronic lung diseases (CLD), and history of cancer.  

Physical measurements included systolic (SBP) and diastolic blood pressure 

(DBP), height, weight, waist circumference (WC), and hip circumference (HC). Body 

mass index (BMI) was calculated as weight in kilograms divided by the square of 

height in meters (kg/m²). Missing covariates were imputed by the median value for 

continuous variables and a missing indicator for categorical variables. More details 

about covariates collection can be found in Method S2. 

Ascertainment of diabetes 

Incident diabetes was ascertained from hospital inpatient records, death registers, and 

primary care records, according to the International Classification of Diseases, 10th 

revision (ICD-10) codes. Detailed information about the linkage procedure is 

available from https://content.digital.nhs.uk/services. The follow-up time was 

calculated from the baseline to the occurrence of diabetes, death, or the censoring date 

(30 March 2023), whichever came first. 

Statistical analyses 
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Baseline characteristics were presented as numbers (percentages) for categorical 

variables and means (standard deviations, SDs) for continuous variables, respectively. 

Continuous variables were assessed for statistical differences using t-test and 

categorical variables were evaluated using the χ2 test. Overall schematic workflow of 

the study is shown in Graphical abstract. 

Metabolite selection 

We first used Cox proportional hazards (CPH) model to assess the associations 

between individual metabolites and risk of diabetes progression with adjustment for 

sociodemographic covariates (age, sex, ethnicity, education, Townsend Deprivation 

Index, employment status and household income), family history of diabetes, health 

conditions (history of CVD, hypertension, dyslipidemia, CLD and cancer), physical 

measurements (BMI, WC, HC, SBP and DBP), lifestyle factors (smoking status, 

moderate alcohol, healthy diet score, healthy sleep score and physical activity), and 

HbA1c. The potential confounders were selected based on prior knowledge of the risk 

factors for diabetes. Metabolites that were significantly associated with incident 

diabetes (P <0.05/168) were retained. 

Secondly, we performed priority-Lasso to deal with multicollinearity in high 

dimensional data and to retain variables with nonzero coefficients. Priority-Lasso is a 

Lasso-based intuitive analysis strategy, which uses prior knowledge regarding the 

outcome by defining the blocks of different types of predictor variables27. In this study, 

we defined the 24 covariates as block 1, while all metabolites significantly associated 

with diabetes risk in the CPH model were defined as block 2. The penalization 

parameter λ was determined as values with maximum partial-likelihood in a 10-fold 

cross-validation. 

Thirdly, three machine learning models including supporting vector machine 
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(SVM), random forest (RF), and extreme gradient boosting (XGBoost) were adopted 

to further evaluate the importance of the Lasso-selected metabolites, as they can 

model nonlinear and nonadditive relations more flexibly28. Models were built by 

10-fold cross-validation through the “caret” package. Common signals detected across 

diverse approaches are more likely to represent the strongest and true patterns in the 

data. We chose the intersection set of the top 20 most important variables selected by 

the three machine learning models, after balancing the performance of the final 

diabetes risk prediction model and the clinical applicability associated with 

measurement costs of metabolites.  

Model development 

Participants were randomly subclassified into a training set and a test set at a ratio of 

8:2 and two common algorithms for survival data including CPH model and random 

survival forest (RSF)29 were adopted for model development. RSF, as a machine 

learning method, is designed to be used specifically for survival outcome prediction 

and has shown promising results in various settings30,31. It builds many decision trees 

using split points based on the log-rank test to identify different survival statuses and 

produces the predicted probability for an individual derived from the average 

prediction across all trees32. The RSF model was fitted using the “randomForestSRC” 

package and the grid search method was used for hyperparameter tuning (number of 

trees, number of variables to possibly split at each node, and minimum size of 

terminal node) (See Method S3 for more details). 

Model evaluation 

The model performance was assessed in the test set. The time-dependent area 

under the receiver operating characteristic curve (AUROC) was used to evaluate the 
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model’s discrimination ability. Continuous net reclassification improvement (NRI), 

and absolute integrated discrimination improvement (IDI) were used to assess 

whether adding the selected metabolites could improve risk discrimination and 

reclassification for the risk of progression from prediabetes to diabetes over the basic 

model that was built on 10 conventional clinical variables (age, sex, Townsend 

Deprivation Index, family history of diabetes mellitus, BMI, WC, HC, SBP, DBP, and 

HbA1c)33. The calibration ability of the model was estimated using calibration curve. 

Furthermore, we used decision curve analysis (DCA) to assess the clinical usefulness 

of prediction model-based guidance for prediabetes management, which calculates a 

clinical “net benefit” for one or more prediction models in comparison to default 

strategies of treating all or no patients34. To facilitate risk stratification, we classified 

participants into two risk groups according to the predictive value using 

“surv_cutpoint” function in the “survminer” R package35. We also divided participants 

into three categories according to the tertiles of probability. In addition, we included 

90,688 participants with normal glucose from the UK Biobank and divided them into 

the training and test sets using an 8:2 ratio to further investigate the additive value of 

the selected metabolites in diabetes prediction among participants with 

normoglycemia. All analyses were conducted in R software (version 4.2.2). A 

two-sided P value < 0.05 was considered statistically significant. To control for the 

false discovery rate in the association between multiple metabolic biomarkers and 

incident diabetes, Bonferroni correction for P value (P <0.05/168) was used. 

Results 

Baseline characteristics 

Among the 13,489 participants with baseline prediabetes, the mean age was 59.6 (SD, 
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7.1) years, and 6,166 (45.7%) were males. During a median follow-up of 13.6 

(12.3-14.6) years, 2,525 (18.7%) participants progressed to diabetes. Baseline 

characteristics of the study population stratified by incident diabetes are summarized 

in Table 1. Participants who developed diabetes were more likely to be male, 

non-White, less educated, more deprived, and smokers. They also tended to have a 

family history of diabetes, comorbidities such as CVD, hypertension, dyslipidemia 

and CLD, and higher levels of BMI, WC, and HC. 

Identification of metabolic biomarkers for progression to diabetes  

After adjusting for covariates and correcting for multiple testing, 94 of 168 metabolic 

biomarkers were significantly associated with the risk of incident diabetes (Figure 1, 

Table S2). Concentrations of very low-density lipoprotein (VLDL) particles, 

particularly larger VLDL particles and composition within larger VLDL, were 

strongly associated with progression to diabetes. Triglyceride in all lipoprotein 

subclasses also demonstrated strong positive associations with diabetes risk. In 

contrast, concentrations of larger high-density lipoprotein (HDL) particles and 

composition within these particles were inversely associated with incident diabetes. 

For lipoprotein particle diameter, larger HDL and LDL particle sizes were associated 

with a lower risk of progression to diabetes, while larger VLDL particle size was 

associated with a higher risk.  

Monounsaturated fatty acids and saturated fatty acids were positively associated 

with the risk of diabetes, whereas docosahexaenoic acid and the degree of fatty acid 

unsaturation were negatively associated with diabetes. Among the amino acids, higher 

concentrations of alanine, tyrosine, and branched-chain amino acid (BCAA) such as 

leucine and valine were associated with an increased risk of diabetes, but glutamine 

and glycine were inversely associated with diabetes. Neither of the ketone bodies 
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showed an association with the risk of diabetes.  

Of the 94 metabolites that were significantly associated with diabetes, 17 

metabolites were selected by priority-Lasso (Table S3). When further evaluating the 

importance of these metabolites after adjustment for covariates using three machine 

learning algorithms, the intersection of the top 20 important predictors identified a 

total of 9 metabolites, namely cholesteryl esters in large HDL, cholesteryl esters in 

medium VLDL, triglycerides in very large VLDL, average diameter for LDL particles, 

triglycerides in IDL, glycine, tyrosine, glucose, and docosahexaenoic acid (Figure 2, 

Table S4). 

Model development and evaluation 

Build upon the selected 9 metabolites and 10 clinical variables, there was no obvious 

difference in the AUROC obtained from CPH model (1-year: 0.823 [95% confidence 

interval, CI 0.702, 0.945]; 5-year: 0.830 [0.797, 0.864]; 10-year: 0.801 [0.778, 0.825]) 

and RSF model (1-year: 0.828 [0.723, 0.933]; 5-year: 0.820 [0.785, 0.855]; 10-year: 

0.802 [0.778, 0.826]). Hence, we chose CPH model as the final model because of its 

simplicity and interpretability. The addition of selected metabolites consecutively 

outperformed the basic model with conventional clinical variables in diabetes risk 

prediction from 1 to 10 years (Figure S1). Specifically, the AUROC increased from 

0.759 (95% CI 0.608, 0.911) to 0.823 (0.702, 0.945), 0.798 (0.762, 0.834) to 0.830 

(0.797, 0.864), and 0.776 (0.750, 0.801) to 0.801 (0.778, 0.825) for 1-year, 5-year, and 

10-year diabetes risk, respectively (Table 2, Figure S2). Results from continuous NRI 

and absolute IDI also demonstrated improvement in the risk prediction for progression 

to diabetes (Table 2), although the model calibration was not significantly improved 

(Figure S3). The decision curve analysis showed that the inclusion of the metabolites 

had a higher net benefit across the threshold probabilities of 0-0.35 for predicting 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 16, 2024. ; https://doi.org/10.1101/2024.05.14.24307378doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307378


14 

 

5-year diabetes risk and 0-0.55 for predicting 10-year diabetes risk (Figure S4). 

We further categorized the participants from the test set into low-risk and 

high-risk groups according to the optimal threshold of the predicted value (1.02) 

reflecting the best risk difference. Compared with the low-risk group, participants in 

the high-risk group had a significantly higher cumulative risk of incident diabetes 

(log-rank P < 0.0001) (Figure 3). When participants were alternatively classified into 

low-risk, medium-risk, and high-risk groups according to the tertile cut-off point of 

the predicted value, the high-risk group showed the highest risk of developing 

diabetes, followed by the medium-risk and low-risk groups (log-rank P < 0.0001). 

Similar results were also observed when considering the competing risk from death 

(Fine-Gray P < 0.0001) (Figure S5). In addition, the predicted risk of diabetes within 

1 year (P = 0.001), 5 years (P < 0.001), or 10 years (P < 0.001) was generally higher 

among participants who progressed to diabetes than those who did not (Figure 4). 

Among participants with normoglycemia, we also observed a significant 

improvement in the prediction of diabetes after the addition of metabolic biomarkers 

to the basic model. The AUROC increased from 0.821 (95% CI 0.736, 0.907) to 0.868 

(0.802, 0.934), 0.790 (0.738, 0.842) to 0.811 (0.762, 0.860), and 0.791 (0.765, 0.816) 

to 0.806 (0.781, 0.831) for 1-year, 5-year, and 10-year diabetes risk, respectively. 

(Table S5). The increases in NRI and IDI were similar to or slightly lower than those 

found among participants with prediabetes. 

Discussion 

By leveraging data from the large UK Biobank cohort, this prospective study provided 

a comprehensive analysis of the associations of circulating metabolites with the risk 

of progression to diabetes and predictive ability in participants with prediabetes. We 
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found that lipoprotein particles, lipoprotein particle size and composition, fatty acids, 

and amino acids were associated with the risk of incident diabetes. More importantly, 

our findings suggested that adding the selected metabolites (i.e., cholesteryl esters in 

large HDL, cholesteryl esters in medium VLDL, triglycerides in very large VLDL, 

average diameter for LDL particles, triglycerides in IDL, glycine, tyrosine, glucose, 

and docosahexaenoic acid) could significantly improve the risk prediction of 

progression from prediabetes to diabetes beyond the conventional clinical variables.  

In the present study, the association between diabetes risk and lipid and 

lipoprotein profile, including VLDL particles and composition with larger VLDL, 

HDL particles and composition within larger HDL, triglyceride, smaller HDL and 

LDL particle sizes, and larger VLDL particle sizes, were broadly consistent with 

previous studies in the general population36-39. BCAAs have been widely reported to 

be involved in the pathogenesis of diabetes, which might impair insulin signaling and 

lead to increased insulin secretion and pancreatic β-cell exhaustion40. Furthermore, 

genetic association studies have shown higher BCAAS resulting from insulin 

resistance, which may in turn cause diabetes41,42. Our study confirmed the vital role of 

these metabolites in the progression to diabetes among individuals with prediabetes. 

Several risk assessment models for predicting the risk of progression from 

prediabetes to diabetes have been reported13-15. Yokota et al. developed a logistic 

regression model to predict the risk for conversion from prediabetes to diabetes based 

on family history of diabetes, sex, SBP, fasting plasma glucose (FPG), HbA1c, and 

alanine aminotransferase (ALT)13. The model derived from a retrospective 

longitudinal study design achieved an AUROC of 0.80 (0.70–0.87) but did not take 

follow-up time into account. Similarly, Liang et al developed a predictive model using 

three glycemic indicators (FPG, 2-h postprandial blood glucose [2-hPG], and HbA1c) 
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alone15 and obtained a relatively low AUROC of 0.732 (95% CI 0.688-0.776). In a 

cohort study of 852,454 individuals with prediabetes, a machine-learning model 

predicting the progression to diabetes within 1-year was established using data from 

electronic medical records14. The model built on age, gender, BMI, medication usage, 

and laboratory results achieved a high AUROC of 0.865 (0.860-0.869). However, the 

model’s performance over a longer follow-up period was unclear and conventional 

parameters such as lifestyle, family history of diabetes or comorbidities were not 

taken into account. 

Changes in circulating small-molecule metabolites may occur long before the 

disease onset. Although rapid development in the technology of metabolomics 

provides a powerful tool for precise disease prediction, few studies have investigated 

the role of metabolomics-derived metabolic biomarkers in predicting progression 

from prediabetes to diabetes. To our best knowledge, only one case-control study 

among 153 individuals with prediabetes and 160 matched controls reported that 

adding 13 metabolites to conventional clinical variables including BMI, waist-hip 

ratio, WC, SBP, DBP, triglyceride, LDL, and triglyceride-glucose index improved the 

risk prediction of diabetes progression within 5 years, with the AUROC increasing 

from 0.72 to 0.9819. However, the predictive ability of metabolites in prospective 

settings with large sample size remains uncertain. In this longitudinal study among 

13,489 participants with prediabetes, we comprehensively used multiple machine 

learning algorithms to identify a panel of 9 circulating metabolites that were 

associated with diabetes incidence during a median follow-up of 13.6 years. The CPH 

model integrating conventional clinical variables and the selected metabolic signature 

achieved a comparatively high AUROC of 0.823, 0.830, and 0.801 for 1-year, 5-year, 

and 10-year diabetes risk, respectively. Importantly, the addition of the metabolites 
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resulted in a significant improvement in the discrimination ability and risk 

reclassification of diabetes beyond conventional risk factors. Furthermore, we 

categorized participants according to the optimal threshold points of the predicted 

value and found that the high-risk group had a significantly higher cumulative 

incidence of diabetes than the low-risk group. Most importantly, a model with good 

discrimination does not necessarily have high clinical value. Hence, DCA was used to 

compare the clinical utility of the model before and after adding the metabolites, and 

this showed a higher net benefit for the latter than the basic model, suggesting the 

addition of the metabolites increased the clinical value of prediction, i.e., the potential 

benefit of guiding management in individuals with prediabetes34,43. These results 

provided novel evidence supporting the value of metabolic biomarkers in risk 

prediction and stratification for the progression from prediabetes to diabetes. 

Considering the epidemic proportion of prediabetes worldwide, even a modest 

improvement in diabetes risk prediction among individuals with prediabetes will have 

substantial clinical and public health implications. Early detection of individuals with 

prediabetes who are at high risk of developing diabetes would not only advance 

targeted screening initiatives, health management and interventions but also facilitate 

a rational allocation of medical resources while avoiding disproportionate healthcare 

expenditure, which could finally translate into precise and efficient prevention of 

diabetes. The value of the selected metabolic biomarkers in diabetes prediction was 

also confirmed in individuals with normal glucose. 

Our study presents several strengths. Circulating metabolites were quantified via 

NMR-based metabolome profiling within the UK Biobank, which offers metabolite 

qualification with relatively lower costs and better reproducibility26. Additional 

strengths of our study included large sample size, prospective study design with 
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long-term follow-up, and comprehensive control of covariates. Moreover, we used 

multiple machine learning algorithms to identify the consistently important metabolic 

biomarkers based on which we developed the predictive models. The final model 

exhibited relatively high performance for 1-year, 5-year, and 10-year diabetes risk 

prediction. However, several limitations of our study should be noted. First, since 

FPG and 2-hPG were not available in the UK Biobank, we defined prediabetes using 

HbA1c alone and to what extent our results could be extrapolated to other people with 

prediabetes determined by multiple glycemic indicators requires further investigation. 

Second, circulating metabolites were measured at baseline, thus their dynamic change 

over time could not be captured. However, our models showed stable performance in 

predicting short-term and long-term progression to diabetes (1 to 10 years), indicating 

the validity of single measurements of metabolic biomarkers for risk prediction. Third, 

the Nightingale metabolomics platform primarily focused on lipids and lipoprotein 

sub-fractions, and thus the predictive value of other metabolites in the progression 

from prediabetes to diabetes warranted further research using an untargeted 

metabolomics approach. Additionally, the use of non-fasting blood samples might 

increase inter-individual variation in metabolic biomarker concentrations, however, 

fasting duration has been reported to account for only a small proportion of variation 

in plasma metabolic biomarker concentrations44. Therefore, we believe the impact of 

non-fasting samples on our findings would be minor. Fourth, although incident 

diabetes cases were ascertained through different data sources, including hospital 

inpatient records, death registers, and primary care records, some undiagnosed 

diabetes might have been missed. This misclassification would underestimate the 

effect of the observed associations between metabolites and diabetes risk. Fifth, we 

could not draw any conclusion about the causality between the identified metabolites 
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and the risk for progression to diabetes due to the observational nature, which 

remained to be validated in further experimental studies. Sixth, in this study, the 

prediction models were established and tested using the UK Biobank dataset, external 

validation in an independent cohort is warranted to confirm the predictive values of 

the metabolic biomarkers. Finally, the participants from the UK Biobank were mostly 

White, which might limit the generalizability of the findings to other populations.  

Conclusions 

In this large prospective study among individuals with prediabetes, we detected a 

panel of circulating metabolites that were associated with an increased risk of 

progressing to diabetes. Use of these metabolites significantly improved the risk 

prediction of progression from prediabetes to diabetes. Our findings provide evidence 

that integrating metabolite markers with conventional risk factors is a promising 

approach to advance effective screening strategies and precise interventions for 

individuals with prediabetes who are at high risk of developing diabetes.  
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 Table 1. Baseline characteristics of participants with prediabetes stratified by incident diabetes status. 

Data were presented as means (standard deviations, SDs) for continuous variables and numbers (percentages) for categorical 
variables.  

Characteristics Overall (n = 13,489) Diabetes (n = 2,525) Non-diabetes (n = 10,964) P value 

Age, years 59.6 (7.1) 59.7 (7.1) 59.6 (7.0) 0.347 

Male 6,166 (45.7) 1,407 (55.7) 4,759 (43.4) <0.001 
Education 

   
<0.001 

College or university 3,409 (25.3) 498 (19.7) 2,911 (26.6)  
Others 10,056 (74.5) 2,022 (80.1) 8,034 (73.3)  
Unknown 24 (0.2) 5 (0.2) 19 (0.2)  

Ethnicity 
   

0.013 

White 12,172 (90.2) 2,239 (88.7) 9,933 (90.6)  
Others 1,293 (9.6) 281 (11.1) 1,012 (9.2)  
Unknown 24 (0.2) 5 (0.2) 19 (0.2)  

Employment status 
   

<0.001 
Working 6,608 (49.0) 1,172 (46.4) 5,436 (49.6)  
Retired 5,931 (44.0) 1,114 (44.1) 4,817 (43.9)  
Other 787 (5.8) 212 (8.4) 575 (5.2)  
Unknown 163 (1.2) 27 (1.1) 136 (1.2)  

Household income 
   

<0.001 
Low 3,529 (26.2) 2,734 (24.9) 795 (31.5)  
Medium 5,659 (42.0) 4,666 (42.6) 993 (39.3)  
High 1,897 (14.1) 1,611 (14.7) 286 (11.3)  
Unknown 2,404 (17.8) 1,953 (17.8) 451 (17.9)  

Townsend Deprivation Index -1.0 (3.3) -0.7 (3.4) -1.1 (3.2) <0.001 
Family history of DM 3,068 (22.7) 786 (31.1) 2,282 (20.8) <0.001 
History of CVD 1,392 (10.3) 413 (16.4) 979 (8.9) <0.001 
History of hypertension 4,217 (31.3) 985 (39.0) 3,232 (29.5) <0.001 
History of dyslipidemia  1,932 (14.3) 417 (16.5) 1,515 (13.8) 0.001 
History of CLD 1,847 (13.7) 413 (16.4) 1,434 (13.1) <0.001 

History of cancer 
   

0.056 
Yes 1,315 (9.7) 215 (8.5) 1,100 (10.0)  
No 12,171 (90.2) 2,309 (91.4) 9,862 (89.9)  

Unknown 3 (0.0) 1 (0.0) 2 (0.0)  

BMI, kg/m2 29.0 (5.2) 31.3 (5.3) 28.4 (5.0) <0.001 

WC, cm 94.6 (13.5) 101.3 (13.1) 93.1 (13.1) <0.001 
HC, cm 105.4 (10.0) 108.6 (10.8) 104.6 (9.7) <0.001 
Smoking status (%) 

   
<0.001 

Never 6,478 (48.0) 1,104 (43.7) 5,374 (49.0)  
Previous 4,843 (35.9) 1,003 (39.7) 3,840 (35.0)  
Current 2,074 (15.4) 397 (15.7) 1,677 (15.3)  

Unknown 94 (0.7) 21 (0.8) 73 (0.7)  
Moderate alcohol 

   
0.081 

Yes 3,888 (28.8) 689 (27.3) 3,199 (29.2)  
No 9,595 (71.1) 1,836 (72.7) 7,759 (70.8)  
Unknown 6 (0.0) 0 (0.0) 6 (0.1)  

Healthy diet score 3.3 (1.1) 3.2 (1.1) 3.3 (1.1) <0.001 
Healthy sleep score 3.5 (1.0) 3.3 (1.1) 3.6 (1.0) <0.001 
Physical activity, METs 10.4 (4.9) 9.7 (5.1) 10.6 (4.9) <0.001 
SBP, mmHg 141.3 (18.5) 143.5 (18.2) 140.8 (18.5) <0.001 

DBP, mmHg 83.3 (10.2) 84.6 (10.4) 83.0 (10.1) <0.001 
HbA1c, mmol/mol 41.0 (1.8) 42.2 (2.2) 40.7 (1.6) <0.001 
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BMI, body mass index; DM, diabetes mellitus; CVD, cardiovascular disease; CLD, chronic lung disease; DBP, diastolic blood 
pressure; HbA1c, glycated hemoglobin A1c; HC, hip circumference; MET, metabolic equivalent of task; SBP, systolic blood 
pressure; WC, waist circumference. 
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Table 2. Performance of Cox proportional hazards regression models in prediction of the progression of prediabetes 
to diabetes. 

aBasic model: age, sex, Townsend Deprivation Index, family history of diabetes mellitus, body mass index, Waist 
circumference, hip circumference, systolic blood pressure, diastolic blood pressure, and glycated hemoglobin A1c. 
bThe selected 9 metabolic biomarkers: cholesteryl esters in large HDL, triglycerides in very large VLDL, Glycine, average 
diameter for LDL particles, tyrosine, cholesteryl esters in medium VLDL, glucose, triglycerides in IDL, docosahexaenoic 
acid. 
AUROC, area under the receiver operating characteristic curve; HDL, high-density lipoprotein; IDL, intermediate-density 
lipoprotein; IDI, absolute integrated discrimination improvement; LDL, low-density lipoprotein; NRI, net reclassification 
improvement; VLDL, very-low-density lipoprotein.

Performance metric Basic modela Basic model + 9 metabolitesb P value 
AUROC    

T=1-year 0.759 (0.608, 0.911) 0.823 (0.702, 0.945) 0.009 
T=5-year 0.798 (0.762, 0.834) 0.830 (0.797, 0.864) <0.001 
T=10-year 0.776 (0.750, 0.801) 0.801 (0.778, 0.825) <0.001 

Continuous NRI    
T=1-year Reference 0.461 (0.134, 0.660) <0.001 
T=5-year Reference 0.400 (0.277, 0.483) <0.001 
T=10-year Reference 0.329 (0.252, 0.405) <0.001 

Absolute IDI    
T=1-year Reference 0.006 (-0.002, 0.020) 0.132 
T=5-year Reference 0.028 (0.017, 0.040) <0.001 
T=10-year Reference 0.040 (0.027, 0.054) <0.001 
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Figure legends 

Graphical abstract.  

 

CPH, Cox proportional hazard; NMR, nuclear magnetic resonance; RF, random forest; RSF, 

Random survival forest; SVM, supporting vector machine; XGBoost, extreme gradient 

boosting.
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Figure 1. Associations of 168 metabolic biomarkers with risk of diabetes among 13,489 

participants with prediabetes.  

Hazard ratios (HR) were presented per 1 standard deviation (SD) higher of metabolic 

biomarker on the natural log scale and were adjusted for age, sex, ethnicity, education, 

Townsend Deprivation Index, employment status, household income, family history of 

diabetes, history of CVD, history of hypertension, history of dyslipidemia, history of CLD, 

history of cancer, body mass index, waist circumference, hip circumference, smoking status, 

moderate alcohol, healthy diet score, healthy sleep score, physical activity, systolic blood 

pressure, diastolic blood pressure and glycated hemoglobin A1c. *False discovery rate 
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controlled P < 0.05/168.  

Apo-A1, apolipoprotein A1; Apo-B, apolipoprotein B; Apo-LP, apolipoprotein; BCAA, 

branched-chain amino acid; BMI, body mass index; CVD, cardiovascular disease; CLD, 

chronic lung disease; DHA, docosahexaenoic acid; FA, fatty acids; HDL, high-density 

lipoproteins; HDL-D, high-density lipoprotein particle diameter; IDL, intermediate-density 

lipoproteins; L, large; LA, linoleic acid; LDL, low-density lipoproteins; LDL-D, low-density 

lipoprotein particle diameter; LP, lipoprotein; M, medium; MUFA, monounsaturated fatty 

acids; PUFA, polyunsaturated fatty acids; S, small; SFA, saturated fatty acids; VLDL, 

very-low-density lipoproteins; VLDL-D, very-low-density lipoprotein particle diameter; XL, 

very large; XS, very small; XXL, extremely large. 
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Figure 2. The top 20 important variables selected by three machine learning models: (A) 

supporting vector machine (SVM); (B) extreme gradient boosting (XGBoost); (C) 

random forest (RF). 

The models were adjusted for age, sex, ethnicity, education, Townsend Deprivation Index, 

employment status, household income, family history of diabetes, history of CVD, history of 

hypertension, history of dyslipidemia, history of CLD, history of cancer, body mass index, 

waist circumference, hip circumference, smoking status, moderate alcohol, healthy diet score, 

healthy sleep score, physical activity, systolic blood pressure, diastolic blood pressure and 

glycated hemoglobin A1c. CVD, cardiovascular disease; CLD, chronic lung disease. HDL, 

high-density lipoproteins; IDL, intermediate-density lipoproteins; LDL, low-density 

lipoproteins; VLDL, very-low-density lipoproteins. 
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Figure 3. Cumulative hazard curves for participants with prediabetes with different 

risks stratified by the Cox model based on clinical variables and 9 metabolites.  

The Cox model divided participants with prediabetes in the test set to two categories (A) and 

three categories (B) with significant differences in cumulative hazard of diabetes during the 

follow-up (both P <0.0001).  
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Figure 4. The distribution of the predictive probability of developing diabetes among 

participants with prediabetes by incident diabetes status within 1- year (A), 5-year (B), 

and 10-year (C).  
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