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Abstract 

Breast cancer is a major public health issue. Current treatment options, while effective, have 
severe side effects. FDA-approved drugs have known safety and pharmacological profiles and 
some, such as metformin, have been tested in clinical trials for repurposing for breast cancer. 
However, clinical trials are slow and expensive, which creates the need for innovative 
approaches to accelerate drug repurposing for breast cancer. We have previously shown that 
genes associated with Mendelian diseases that predispose patients to certain cancers are 
enriched for successful drug targets, due to their pleiotropic effects. Here, we extend our 
approach to exploit clinical associations between breast cancer and its predisposing diseases 
for drug repurposing. We hypothesize that pleiotropic genes shared between breast cancer 
and its predisposing diseases can help us discover new uses for drugs currently approved 
only for the predisposing diseases. To test our hypothesis, we compile a list of six traits known 
to increase breast cancer risk (predisposing diseases). Using GWAS summary statistics and 
local genetic correlation analysis, we find 84 genomic loci harboring mutations with positively 
correlated effects between breast cancer and each predisposing disease. These loci contain 
194 protein-coding genes (shared genes). Using a network biology approach and canonical 
pathways, for each disease pair, we connect drugs already indicated for the predisposing 
disease to its shared biology with breast cancer and identify drug repurposing candidates for 
breast cancer. Finally, we show that our list of candidate drugs is enriched for currently 
investigated and indicated drugs for breast cancer (OR=9.28, p=7.99e-03). Our findings 
suggest a novel way to accelerate drug repurposing for complex diseases by leveraging 
shared genetics. 
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Introduction 
Breast cancer is a major public health issue and the most common type of cancer in women 
worldwide1. Current treatment options, such as chemotherapy, hormone therapy, and 
immunotherapy2, while effective, often have severe side-effects that impair patients’ quality of 
life and adherence to treatment3,4. On the other hand, existing FDA-approved drugs have 
established safety and pharmacological profiles, and testing them for repurposing for breast 
cancer treatment has been an attractive strategy5. For instance, metformin, the most 
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commonly prescribed anti-diabetic drug, has shown anti-proliferative effects in pre-clinical 
studies and is currently undergoing clinical trials for breast cancer treatment. This surprising 
effect may be explained by its downstream effects activating AMPK protein kinase, a tumor 
suppressor critical in regulating cell proliferation6,7. However, oncology clinical trials are slow, 
expensive and have up to 95% attrition rates, mainly due to lack of understanding of the 
mechanism of action of the tested drug prior to the clinical trial8–10. Therefore, new approaches 
are needed to both accelerate drug repurposing for breast cancer treatment and provide 
biological insights to design clinical trials with higher success rates. 

Genome-wide association studies (GWAS) associate genes with a disease; drugs 
targeting those genes are twice as likely to successfully treat that disease11–13. For example, 
a recent breast cancer GWAS found a strong signal in the ESR1 locus which is the target of 
tamoxifen, a widely used drug for breast cancer treatment14. This highlights the great potential 
of genetics in informing drug discovery and repurposing15. However, the inherent limitations 
of GWAS, such as the need for large sample sizes and the challenge of identifying true causal 
genes, limit their ability to inform drug repurposing16,17. This creates the need for innovative 
ways to build on genetics findings to discover drugs for diseases of high public importance, 
such as breast cancer. 
  To this end, we propose that shared genetics between breast cancer and other 
diseases can inform drug repurposing for breast cancer. This idea is supported by prior 
research. For one, it has been shown that clinically co-occurring diseases share genetics18,19. 
This suggests that shared biological processes may explain why a health condition might 
predispose individuals to breast cancer. Consequently, drugs approved for such predisposing 
diseases and targeting shared biology with breast cancer might hold potential for breast 
cancer treatment. In further support of this concept, we have previously built on work showing 
bearers of Mendelian disease mutations may suffer increased risk of certain cancers, due to 
a hidden role of the Mendelian disease genes in the comorbid cancer. In a follow-up study, we 
showed that the Mendelian disease genes implicated for a cancer are enriched for successful 
drug targets20. Building on these observations, here, we propose the repurposing of drugs 
based on shared genetic etiology.  
 Ultimately, we propose 59 drugs that have not been previously tested for breast 
cancer, accompanied by biological insights supporting their potential therapeutic effect on 
breast cancer. 

Results 

Overview of approach 
Health conditions including high cholesterol and type 2 diabetes incur increased risk for breast 
cancer. Previous genetics research has supported a biological explanation: these diseases, 
which we will refer to as predisposing diseases, share genetic variation with breast cancer. 
Building on this, we hypothesize that finding the shared genetics between breast cancer and 
its predisposing diseases can help us discover new drugs for breast cancer. Specifically, we 
hypothesize that drugs approved for a predisposing disease and targeting its shared biology 
with breast cancer can treat the latter disease (Figure 1A). 

To test this hypothesis, we first search the scientific literature (epidemiological and 
statistical genetic studies) for diseases with genetic variation known to predispose individuals 
to breast cancer. We find six such diseases (Table 1). 
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Next, we aim to identify the shared genetics between each pair of breast cancer and a 
predisposing disease that can be tied to medications currently used to treat the predisposing 
disease. We use publicly available GWAS summary statistics data (Table 1) and a local 
genetic correlation analysis, to find the shared genetics. Following the identification of likely 
shared genes for each disease pair, we connect them to drugs currently used to treat the 
predisposing disease. Because we wish to both make this connection and gain interpretation 
about the pathways involved, we link each shared gene, and each set of drug targets, to 
canonical pathways using a network biology approach. By finding drugs that target shared 
pathways, we both prioritize candidate drugs for repurposing for breast cancer and provide 
biological insights that support their effect in disease treatment. Figure 1B illustrates the 
complete workflow using the example of high HDL and breast cancer. 

Finally, we evaluate our list of candidate drugs. To do so, we compile a list of 583 drugs 
either in clinical trials (N=451) or approved (N=132) for breast cancer and test for enrichment 
within our candidate drugs. 
 

Figure 1. Outline of the approach. A. Tested hypothesis that a drug treating a health condition 
known to increase the risk for breast cancer and targets the shared biology of both conditions 
may also treat breast cancer. B. Proposed workflow to identify the most likely shared genes 
between breast cancer and a predisposing disease and connect them to drugs approved for 
the predisposing disease. 
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Table 1. Evidence for shared etiology of predisposing conditions, and genome-wide 
association study (GWAS) summary statistics for breast cancer and its six predisposing 
diseases used in this study. All GWAS include samples of European ancestry. 
BCAC: Breast Cancer Association Consortium; PGC: Psychiatric Genomics Consortium; 
UKBB: United Kingdom BioBank; GLGC: Global Lipids Genetics Consortium; PRACTICAL: 
Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the 
Genome; DIAMANTE: Diabetes Meta-Analysis of Trans-Ethnic association studies 

Discovering shared genetics between breast cancer and its predisposing 
diseases 
The first step in testing our hypothesis is to identify genomic loci likely to drive the shared 
etiology between breast cancer and a predisposing disease. Although cross-trait Linkage 
Disequilibrium Score Regression (LDSC) is a widely adopted method to identify genetic 
correlation between a pair of phenotypes using GWAS summary statistics, its genome wide 
nature means it does not provide insight into particular genes driving the correlation. To gain 
that insight, we perform a local genetic correlation analysis for each pair of breast cancer and 
predisposing disease, using LOGODetect26. Across all disease pairs, we identify 59 negatively 
(per disease pair: median=5.5; min=0; max=34) and 84 positively (per disease pair: 
median=10; min=5; max=37) correlated genomic loci (Figure 2A, Supplementary Tables 1 
& 2). Notably, the identified loci are distributed across all autosomal chromosomes and not 
localized in specific parts of the genome (Figure 2B). In order to confirm that LOGODetect 
does not discover shared loci for disease pairs without known epidemiological or clinical 
associations, such as high LDL-depression and high LDL-schizophrenia, we repeat the 
analysis for these pairs. LOGODetect does not identify any significant correlated loci. 
 Next, for each predisposing disease, we seek to prioritize genes in the correlated 
genomic loci that are the most likely drivers of shared etiology with breast cancer. Since our 
ultimate goal is to recommend candidate drugs for repurposing for breast cancer, we are more 

Disease Consortium 
of GWAS 

Year of 
publication Ncases Ncontrols Ntotal Supported connection 

with breast cancer 

Breast cancer BCAC 2020 133,384 113,789 247,173 - 

Depression PGC 2019 170,756 329,443 500,199 Zhu et al.21 

High density 
cholesterol GLGC 2021 - - 1,209,154 Johnson et al.22 

Low density 
cholesterol GLGC 2021 - - 1,199,124 Johnson et al.22 

Prostate cancer PRACTICAL 2018 79,194 61,112 140,306 Ren et al.23 

Schizophrenia PGC 2022 53,386 77,258 130,644 Byrne et al.24 

Type 2 diabetes DIAMANTE 2022 80,154 853,816 933,970 Pearson-Stuttard et al.25 
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interested in genes exhibiting effects in the same direction in both breast cancer and 
predisposing disease. Therefore, for the downstream analysis, we focus on genomic loci found 
to be positively correlated for each disease pair. Using the SNP2GENE function from FUMA27, 
we extract a total of 194 protein-coding genes that fall within all the positively correlated loci 
(median of 37 protein-coding genes per disease pair; min=8; max=81). For each disease pair, 
these genes constitute the list of shared genes that likely drive the shared etiology with breast 
cancer. 

From this list, we seek the subset most likely to contribute to druggable shared etiology. 
That is, we wish to prioritize genes more likely to 1) participate in shared pathophysiological 
processes and 2) relate to the effect of drugs on the predisposing disease. First, we use 
MAGMA, a tool that aggregates the effect of all SNPs within a gene, to keep genes significantly 
associated with the predisposing disease in every disease pair28. This filter is important as the 
predisposing disease increases the risk for breast cancer, implying that any genes underlying 
that shared risk should, at a minimum, impact the predisposing disease. Second, we use S-
MultiXcan, a tool that uses GWAS summary statistics data to genetically predict the 
expression of a gene summarized across 49 GTEx tissues29. We keep only genes with 
genetically predicted expression consistently aligned in the same direction (either 
downregulated or upregulated) in both diseases in a disease pair, as dysregulation in opposite 
directions is not easily interpretable and not useful for therapeutic purposes. For instance, 
ABCA1 is found to be one of the genes shared between high LDL and breast cancer. Probucol, 
an approved anti-cholesterol drug, inhibits ABCA1. But, ABCA1 is upregulated in high LDL 
and downregulated in breast cancer, suggesting that inhibitions of this gene might not lead to 
desired treatment outcome for breast cancer30. Figure 2C shows the number of shared genes 
within positively correlated loci between breast cancer and each predisposing disease, before 
and after applying the filters. The full list of shared genes for each disease pair is provided in 
Supplementary Table 3. 
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Figure 2. Shared genetics between breast cancer and its predisposing diseases. A. Number 
of negatively and positively correlated loci between each breast cancer and predisposing 
disease pair. B. Position in the genome of the identified correlated loci for each breast cancer 
and predisposing disease pair. The y-axis represents the -log10(q-value) of each locus as 
provided by LOGODetect. C. Number of protein-coding genes located within the positively 
correlated loci for each breast cancer and predisposing disease pair, before and after applying 
the MAGMA & S-MultiXcan filters. 

Connecting shared genetics to drugs 
The next step is to connect the identified shared genes to drugs treating the predisposing 
diseases. We make this connection through canonical pathways. In that way, we can capture 
the biological processes which 1) are involved with identified shared genes and 2) are related 
to drugs indicated for the predisposing disease. First, for each breast cancer and predisposing 
disease pair, we connect the identified shared genes to canonical pathways using the STRING 
protein-protein interaction network and a network propagation algorithm (Supplementary 
Table 4). Notably, our workflow identifies pathways with known roles in tumorigenesis and 
progression that are also disrupted in the breast cancer predisposing diseases (Figure S1). 
For instance, we identify the WNT signaling pathway to be part of the shared etiology between 
breast cancer31and each of high HDL32, prostate cancer33and type 2 diabetes34. Additionally, 
the mTOR signaling pathway, another cancer-related pathway35,36, is found to be shared 
between breast cancer and high LDL37.  
 After connecting the shared genes for every disease pair to pathological processes, 
we seek to find which drugs target them. To do so, we use a similar approach and connect 
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targets of a drug currently approved for a predisposing disease to the shared canonical 
pathways between breast cancer and that disease (Figure 3, Supplementary Table 5). Drugs 
significantly connected to at least one shared canonical pathway are considered candidate 
drugs for repurposing for breast cancer. 
 
 

Figure 3. Drugs treating high HDL and targeting its shared biology with breast cancer. These 
drugs are recommended for repurposing for breast cancer and the shared pathways they 
target provide a biological basis for the repurposing. Only canonical pathways significantly 
linked to both identified shared genes and high HDL drugs are shown. 

Evaluation of drug repurposing and prioritization of new candidates 
The final step is to assess the efficacy of our approach in identifying promising candidate drugs 
for repurposing for breast cancer. To do so, we compare our list of candidate drugs to those 
currently under investigation or approved for breast cancer treatment. In total, out of 112 
approved drugs for the six breast cancer predisposing diseases, 16 have undergone testing 
or received approval for breast cancer treatment (Figure 4A). Remarkably, our method 
identifies 15 out of these 16 drugs, while also offering insights into the specific genes and 
pathways that might explain their effect on breast cancer (Supplementary Table 5). When 
considering all the recommended candidate drugs for repurposing, we find a significant 
enrichment for drugs currently investigated or approved for breast cancer (OR=9.28, p=7.99e-
03, one-sided Fisher’s exact test). 
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Our workflow identifies HMGCR to be shared between high LDL and breast cancer. 
However, HMGCR is also the target of statins, a group of drugs approved for lowering the LDL 
blood levels. Therefore, to ensure that the significance of our results is not driven by this 
instance where a shared gene is also the target of an approved drug for the predisposing 
disease, we repeat the analysis by excluding the high LDL-breast cancer pair. Again, we find 
strong enrichment (OR=9.35, p=9.66e-03, one-sided Fisher’s exact test), highlighting the 
ability of our approach in connecting shared biology to drugs even when a shared gene is not 
directly targeted by a drug. 

In conclusion, we recommend 76 candidate drugs for repurposing while providing 
biological insights (specific genes and pathways) supporting their potential use in breast 
cancer treatment. Among these candidates, 15 are already in advanced clinical trial phases 
or approved for breast cancer treatment, while 59 are novel candidate drugs (Figure 4B). 
 

Figure 4. Evaluation of recommended candidate drugs for repurposing in breast cancer. A. 
Out of all drugs approved for breast cancer predisposing diseases, sixteen have been 
investigated or approved for breast cancer treatment. B. Our recommended candidate drugs 
for repurposing in breast cancer treatment are significantly enriched for drugs already 
investigated or approved for breast cancer (OR=9.28, p=7.99e-03, one-sided Fisher’s exact 
test). Notably, our list of candidate drugs includes 15 of the 16 drugs currently in advanced 
clinical trials (Phase II or III) or approved for breast cancer treatment. 
BRCA: breast cancer 
 

Discussion 
In our previous work, we exploited monogenic diseases that predispose their bearers 

to complex diseases, showing that drugs targeting the causal gene of the monogenic disease 
are good candidates for treating the associated complex disease20. With that study we 
introduced the idea that predisposing health conditions of a complex disease, and their 
genetics, can be used to inform drug repurposing for the complex disease. Building on that 
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work, here, we develop an approach to investigate whether complex disease risk factors that 
predispose individuals to a complex disease can inform the repurposing of existing drugs for 
the complex disease. To test this, we use breast cancer as an example of a well-studied and 
common complex disease, with many predisposing risk factors. We show that shared genes 
and pathways between breast cancer and its predisposing diseases can point to promising 
candidate drugs for repurposing for breast cancer treatment that target the shared pathways. 
Importantly, our recommended candidate drugs are enriched for those currently undergoing 
clinical trials or already approved for breast cancer treatment, highlighting the ability of our 
approach in identifying likely successful candidate drugs for repurposing. 

Pleiotropy has been previously used for the identification of shared biology between 
diseases from the same body systems, such as psychiatric diseases. However, our study aims 
to identify shared genetic factors between breast cancer and its predisposing diseases which 
primarily affect different body systems, such as depression and high HDL. Despite affecting 
distinct anatomical regions, these disease pairs share pathophysiological processes which 
suggests that association is not just due to the known similarity between the phenotypes. Our 
approach identifies these pleiotropic genes using a local genetic correlation analysis and links 
them to canonical pathways which are used to prioritize candidate drugs for repurposing. With 
that, our study is the first to propose an alternative way to analyze publicly available GWAS 
summary data that can both suggest new uses for existing drugs and point towards the genes 
and pathways supporting drug repurposing. 

We present an example to illustrate the power of our approach in both identifying 
shared biology between diseases and providing a biological basis for the repurposing of a 
drug. It is known that elevated levels of HDL increase the risk for breast cancer22. By analyzing 
this pair of diseases, we identify MLXIPL as a shared gene between breast cancer and high 
HDL. We also find that MLXIPL is significantly connected to the FOXA2 pathway. Interestingly, 
the FOXA2 pathway is known to play a role in both breast cancer pathogenesis and lipid 
metabolism (pleiotropic effect)38–40. Among the approved lipid-lowering medications, we find 
two fibric acids (fenofibrate and gemfibrozil) and one statin (rosuvastatin) significantly 
connected to the FOXA2 pathway. Notably, both drug categories have demonstrated anti-
cancer properties in preclinical and clinical studies, respectively41,42. This example shows that 
our approach can identify meaningful biological signals. It also shows that by leveraging the 
shared biology between breast cancer and its predisposing factors, we can prioritize candidate 
drugs for repurposing while also providing plausible biological mechanisms through which 
these drugs may impact breast cancer. 
 Our approach has some limitations. First, we define shared genes as those located 
within the detected, positively correlated shared genomic loci for each disease pair. However, 
a SNP in a shared locus might have distal regulatory effects on genes located outside that 
locus and including those genes could potentially result in a more complete list of shared 
genes for each disease pair. Second, we rely on pleiotropy to identify shared genetic factors 
between breast cancer and its predisposing diseases. However, it is possible that a disease 
might increase the risk for breast cancer through indirect or interaction effects, which are not 
captured by our approach. Third, redundant canonical pathways in the Molecular Signatures 
Database (MSigDB) could result in the identification of fewer significantly shared pathways 
between diseases than their actual number due to multiple testing corrections. Fourth, we 
analyzed GWAS summary statistics data only from the European population, due to greater 
sample sizes and data availability. Future studies analyzing data from diverse populations may 
discover shared loci missing from our analysis. 
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 In conclusion, our approach detects and leverages the shared biology between pairs 
of breast cancer with its predisposing diseases to suggest novel drugs for breast cancer 
treatment, while also providing a biological basis for each drug recommendation. Future work 
can exploit our list of candidate drugs for repurposing and evaluate their efficacy in 
experimental settings. While we specifically applied our approach to the case of breast cancer, 
we trust that it can be applied to recommend novel candidate drugs for repurposing for any 
complex disease with a known set of predisposing diseases and available GWAS summary 
statistics. Therefore, it serves as a valuable tool for not only identifying promising candidate 
drugs for repurposing across various complex diseases, but also suggesting the disease 
networks involved in repurposing. 

Methods 

Data collection and preprocessing 

Genetics data 
We download the most recent, publicly available GWAS summary statistics data of European 
ancestry for breast cancer43, depression44, high HDL45, high LDL45, prostate cancer46, 
schizophrenia47 and type 2 diabetes48. For each GWAS, we keep only bi-allelic SNPs in 
autosomal chromosomes that match to unique rsIDs. We also harmonize the effect and 
alternate allele for each SNP using the 1K Genomes reference panel of Europeans. The 
GWAS for schizophrenia included an imputation quality score for each SNP and we filter for 
SNPs with imputation score ≥0.3. 

Protein-protein interaction network 
We download the STRING protein-protein interaction (PPI) network for humans (version 11.5, 
date of download: May 8, 2023). This network contains both physical and functional 
interactions of proteins and assigns a confidence score to each interaction (edge) that 
represents the amount of evidence supporting it. We use this score to filter for edges with high 
confidence (score ≥ 0.7). We also remove multiple edges and loops and map each gene-node 
to entrezIDs using a file provided by STRING (“9606.protein.aliases.v11.5.txt”). The final PPI 
network contains 16,115 nodes and 240,541 edges. 

Canonical pathways 
We download a list of gene sets for canonical pathways from the MSigDB (version 2023.2). 
This is a list of manually curated gene sets by domain experts and includes information from 
five databases: BioCarta, KEGG (Kyoto Encyclopedia of Genes and Genomes), Reactome, 
PID (Pathway Interaction Database) and WikiPathways. For each canonical pathway, we filter 
for genes found in the STRING PPI network. Eventually, we have a list of 3,795 canonical 
pathways that we use to connect shared genes to drugs. 

Drugs indicated for breast cancer predisposing diseases 
For each of the six breast cancer predisposing diseases (depression, high HDL, high LDL, 
prostate cancer, schizophrenia, type 2 diabetes), we compile a list of FDA-approved drugs 
using RxNORM and annotate them with gene-targets from DrugBank (version 5.19, date of 
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download: June 16, 2022). We do not filter the list of targets based on pharmacological action. 
Finally, we keep the drug gene-target with unique entrezIDs that are found in the STRING PPI 
network. 

Drugs investigated or indicated for breast cancer 
To find drugs currently investigated for breast cancer, we download clinical trial data from the 
Aggregate Content of ClinicalTrials.gov (AACT) database in a pipe-delimited format (date of 
download: November 4, 2022; note that it is updated daily). AACT is a publicly available 
relational database that contains information about all the studies registered in 
ClinicalTrials.gov. We obtain information for 432,597 clinical trials that were registered in 
ClinicalTrials.gov by the date of download. Using a manually curated list of MeSH codes 
related to breast cancer (D001943, D000071960, D018270, D018275, D061325, D058922, 
D064726, D000069584), we keep 4,237 clinical trials that tested 774 drugs for breast cancer 
treatment. 
 To find drugs currently indicated for breast cancer, we obtain the indications of all FDA-
approved drugs from RxNORM and filter for those that treat breast cancer using the MeSH 
terms mentioned above. We find 68 breast cancer indicated drugs and combine them with the 
investigated drugs to get a complete list of drugs for breast cancer. Again, all drugs are coded 
in DrugBank IDs. 

Finding likely shared genes between breast cancer and its predisposing 
diseases 
To identify shared genes between each pair of breast cancer and predisposing diseases, we 
use GWAS summary statistics data and LOGODetect (default settings) to perform a local 
genetic correlation analysis. LOGODetect scans the entire genome to identify loci with 
correlated SNP effects in two GWAS, accounting for linkage disequilibrium. Following the 
identification of shared loci for each disease pair, we use the FUMA SNP2GENE function to 
compile a list of protein-coding genes positionally located within and ±10 kb upstream and 
downstream of positively correlated loci (default setting). We do this by providing to FUMA 
SNP2GENE a list of all SNPs within the identified loci and not only the genome-wide significant 
ones. Eventually, for each breast cancer and predisposing disease pair, we obtain a list of 
protein-coding genes (entrezIDs) that are part of their shared etiology (termed as shared 
genes). 
 We then seek to prioritize genes that are more likely to contribute to the shared biology 
for each disease pair. To achieve this, we utilize two commonly used tools: MAGMA (gene-
based) and S-MultiXcan (cis-eQTL based). First, we run MAGMA with default settings to 
obtain gene-based p-values for each disease and adjust them for multiple hypothesis testing 
using the Benjamini-Hochberg correction method. Second, we use S-MultiXcan to obtain the 
genetically predicted expression of genes, summarized across 43 GTEx tissues. Then, for 
each disease pair, we filter the previously identified shared genes for those that are 
significantly associated with the predisposing disease (MAGMA p.adjusted<0.05) and are 
predicted to be dysregulated in the same direction in both diseases (sign of S-MultiXcan 
calculated z-score). Ultimately, these two filtering steps, one gene-based and one cis-eQTL-
based, help us prioritize shared genes more likely to contribute to the shared biology of a 
breast cancer and predisposing disease pair. 
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Connecting shared genes to drugs via canonical pathways 
Our goal here is to link the shared genes with drugs and gain insights into the implicated 
biological pathways. To do so, we first find which canonical pathways are significantly 
connected to the shared genes using the STRING PPI network and the Personalized 
PageRank (PPR) algorithm. PPR uses a user-defined gene, named seed gene, as a starting 
point and performs random walks in the PPI network, with a probability (default=0.8) of 
returning to the seed gene after each step. This process assigns a score to each gene based 
on its connectivity with the seed gene: genes with higher connectivity receive higher scores. 
Using each shared gene for a disease pair as a seed gene, we calculate the average PPR 
score of genes within a canonical pathway. To determine if the observed score is higher than 
expected by chance, we compare it to random PPR scores obtained through 1,000 
permutations (more details in “Statistical analysis - Permutation tests”). Ultimately, for each 
breast cancer and predisposing disease pair, this process yields a list of canonical pathways 
that are significantly connected (ppermutation<0.05) to the previously identified shared genes 
(referred to as shared canonical pathways). 

We then seek to link the shared canonical pathways to drugs approved for a 
predisposing disease. To do so, we repeat the above analysis but this time, we use a target 
of a drug as a seed gene (instead of a shared gene). Similarly, we calculate the average PPR 
score of genes within a shared canonical pathway and compare it to average PPR scores 
obtained after 1,000 permutations. Drugs approved for a predisposing disease and 
significantly connected to a shared canonical pathway (ppermutation<0.05), are considered to 
target the shared etiology with breast cancer. Therefore, these drugs constitute the prioritized 
candidate drugs for repurposing for breast cancer, and the shared genes and canonical 
pathways they target provide biological insights for their effect on breast cancer. 

Statistical analysis 

Evaluating candidate drugs for repurposing 
We find 76 unique drugs approved for a predisposing disease that can be linked with its shared 
biology with breast cancer. Using these drugs alongside those currently in clinical trials or 
approved for breast cancer treatment, we test for significant overlap using the Fisher's one-
sided exact test. 

Permutation tests 
To assess the significance of the observed associations between shared genes, drugs, and 
canonical pathways, we conduct permutations tests. 
 First, for each breast cancer and predisposing disease pair, we connect each canonical 
pathway to the identified shared genes. To do so, we use each shared gene as a seed gene, 
and we calculate the average PPR score for the genes in a canonical pathway. To determine 
the significance of these connections, we create a null distribution of average PPR scores for 
genes within a canonical pathway. This involves grouping all genes in the PPI network into 
four bins based on their degree (quantiles). Subsequently, for each seed (shared) gene, we 
randomly select 1,000 genes from the same degree bin and calculate the average PPR score 
for genes within the canonical pathway. These scores are then compared to the observed 
average PPR score, and a permuted p-value is calculated based on how often the observed 
score is lower than the permuted scores. This process yields a permuted p-value for every 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307374doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307374
http://creativecommons.org/licenses/by/4.0/


 13 

canonical pathway-shared gene pair, which is then adjusted for the number of shared genes 
and canonical pathways tested using the Bonferroni correction method. 

Second, we link the shared canonical pathways to drugs approved for a predisposing 
disease to prioritize candidate drugs for repurposing. To do so, we follow a similar approach 
as above, but this time, we use random genes matched to the gene-target of each drug using 
the four degree bins. This process yields a permuted p-value for every shared canonical 
pathway-drug target pair, which is then adjusted for the number of drug targets tested using 
the Bonferroni correction method. 

References 
1. Guo Q, Lu Y, Liu W, Lan G, Lan T. The global, regional, and national disease burden of 

breast cancer attributable to tobacco from 1990 to 2019: a global burden of disease study. 
BMC Public Health. 2024;24(1):107. doi:10.1186/s12889-023-17405-w 

2. Waks AG, Winer EP. Breast Cancer Treatment: A Review. JAMA. 2019;321(3):288-300. 
doi:10.1001/jama.2018.19323 

3. Franzoi MA, Agostinetto E, Perachino M, et al. Evidence-based approaches for the 
management of side-effects of adjuvant endocrine therapy in patients with breast cancer. 
Lancet Oncol. 2021;22(7):e303-e313. doi:10.1016/S1470-2045(20)30666-5 

4. Ferreira AR, Di Meglio A, Pistilli B, et al. Differential impact of endocrine therapy and 
chemotherapy on quality of life of breast cancer survivors: a prospective patient-reported 
outcomes analysis. Ann Oncol Off J Eur Soc Med Oncol. 2019;30(11):1784-1795. 
doi:10.1093/annonc/mdz298 

5. Aggarwal S, Verma SS, Aggarwal S, Gupta SC. Drug repurposing for breast cancer 
therapy: Old weapon for new battle. Semin Cancer Biol. 2021;68:8-20. 
doi:10.1016/j.semcancer.2019.09.012 

6. Lord SR, Harris AL. Is it still worth pursuing the repurposing of metformin as a cancer 
therapeutic? Br J Cancer. 2023;128(6):958-966. doi:10.1038/s41416-023-02204-2 

7. De A, Kuppusamy G. Metformin in breast cancer: preclinical and clinical evidence. Curr 
Probl Cancer. 2020;44(1):100488. doi:10.1016/j.currproblcancer.2019.06.003 

8. Schlander M, Hernandez-Villafuerte K, Cheng CY, Mestre-Ferrandiz J, Baumann M. How 
Much Does It Cost to Research and Develop a New Drug? A Systematic Review and 
Assessment. PharmacoEconomics. 2021;39(11):1243-1269. doi:10.1007/s40273-021-
01065-y 

9. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related 
parameters. Biostatistics. 2019;20(2):273-286. doi:10.1093/biostatistics/kxx069 

10. Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug 
Discov. 2019;18(7):495-496. doi:10.1038/d41573-019-00074-z 

11. Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for 
approved drug indications. Nat Genet. 2015;47(8):856-860. doi:10.1038/ng.3314 

12. King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be 
approved? Revised estimates of the impact of genetic support for drug mechanisms on 
the probability of drug approval. Marchini J, ed. PLOS Genet. 2019;15(12):e1008489. 
doi:10.1371/journal.pgen.1008489 

13. Minikel EV, Painter JL, Dong CC, Nelson MR. Refining the impact of genetic evidence on 
clinical success. Nature. Published online April 17, 2024. doi:10.1038/s41586-024-07316-
0 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307374doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307374
http://creativecommons.org/licenses/by/4.0/


 14 

14. NBCS Collaborators, ABCTB Investigators, ConFab/AOCS Investigators, et al. 
Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-
94. doi:10.1038/nature24284 

15. Reay WR, Cairns MJ. Advancing the use of genome-wide association studies for drug 
repurposing. Nat Rev Genet. 2021;22(10):658-671. doi:10.1038/s41576-021-00387-z 

16. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of 
genome-wide association studies. Nat Rev Genet. 2019;20(8):467-484. 
doi:10.1038/s41576-019-0127-1 

17. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal 
variants by statistical fine-mapping. Nat Rev Genet. 2018;19(8):491-504. 
doi:10.1038/s41576-018-0016-z 

18. Nam Y, Jung SH, Yun JS, et al. Discovering comorbid diseases using an inter-disease 
interactivity network based on biobank-scale PheWAS data. Bioinforma Oxf Engl. 
2023;39(1):btac822. doi:10.1093/bioinformatics/btac822 

19. Melamed RD, Emmett KJ, Madubata C, Rzhetsky A, Rabadan R. Genetic similarity 
between cancers and comorbid Mendelian diseases identifies candidate driver genes. Nat 
Commun. 2015;6(1):7033. doi:10.1038/ncomms8033 

20. Lalagkas PN, Melamed RD. Shared etiology of Mendelian and complex disease supports 
drug discovery. Published online April 19, 2024. doi:10.21203/rs.3.rs-4250176/v1 

21. Zhu GL, Xu C, Yang K bin, et al. Causal relationship between genetically predicted 
depression and cancer risk: a two-sample bi-directional mendelian randomization. BMC 
Cancer. 2022;22(1):353. doi:10.1186/s12885-022-09457-9 

22. Johnson KE, Siewert KM, Klarin D, et al. The relationship between circulating lipids and 
breast cancer risk: A Mendelian randomization study. Minelli C, ed. PLOS Med. 
2020;17(9):e1003302. doi:10.1371/journal.pmed.1003302 

23. Ren ZJ, Cao DH, Zhang Q, et al. First-degree family history of breast cancer is associated 
with prostate cancer risk: a systematic review and meta-analysis. BMC Cancer. 
2019;19(1):871. doi:10.1186/s12885-019-6055-9 

24. Cui Y, Lu W, Shao T, Zhuo Z, Wang Y, Zhang W. Severe mental illness and the risk of 
breast cancer: A two-sample, two-step multivariable Mendelian randomization study. 
Montazeri A, ed. PLOS ONE. 2023;18(9):e0291006. doi:10.1371/journal.pone.0291006 

25. Pearson-Stuttard J, Papadimitriou N, Markozannes G, et al. Type 2 Diabetes and Cancer: 
An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer 
Epidemiol Biomarkers Prev. 2021;30(6):1218-1228. doi:10.1158/1055-9965.EPI-20-1245 

26. Guo H, Li JJ, Lu Q, Hou L. Detecting local genetic correlations with scan statistics. Nat 
Commun. 2021;12(1):2033. doi:10.1038/s41467-021-22334-6 

27. Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and 
annotation of genetic associations with FUMA. Nat Commun. 2017;8(1):1826. 
doi:10.1038/s41467-017-01261-5 

28. De Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set 
Analysis of GWAS Data. Tang H, ed. PLOS Comput Biol. 2015;11(4):e1004219. 
doi:10.1371/journal.pcbi.1004219 

29. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted 
transcriptome from multiple tissues improves association detection. Plagnol V, ed. PLOS 
Genet. 2019;15(1):e1007889. doi:10.1371/journal.pgen.1007889 

30. Ghoussaini M, Nelson MR, Dunham I. Future prospects for human genetics and genomics 
in drug discovery. Curr Opin Struct Biol. 2023;80:102568. doi:10.1016/j.sbi.2023.102568 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307374doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307374
http://creativecommons.org/licenses/by/4.0/


 15 

31. Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, 
challenges and opportunities. Mol Cancer. 2020;19(1):165. doi:10.1186/s12943-020-
01276-5 

32. Sheng R, Kim H, Lee H, et al. Cholesterol selectively activates canonical Wnt signalling 
over non-canonical Wnt signalling. Nat Commun. 2014;5(1):4393. 
doi:10.1038/ncomms5393 

33. Murillo-Garzón V, Kypta R. WNT signalling in prostate cancer. Nat Rev Urol. 
2017;14(11):683-696. doi:10.1038/nrurol.2017.144 

34. Chen J, Ning C, Mu J, Li D, Ma Y, Meng X. Role of Wnt signaling pathways in type 2 
diabetes mellitus. Mol Cell Biochem. 2021;476(5):2219-2232. doi:10.1007/s11010-021-
04086-5 

35. Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal 
Transduction Pathways in Breast Cancer: The Important Role of PI3K/Akt/mTOR. J Oncol. 
2020;2020:1-11. doi:10.1155/2020/9258396 

36. Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer. Am J 
Cancer Res. 2017;7(3):383-404. 

37. Laplante M, Sabatini DM. An Emerging Role of mTOR in Lipid Biosynthesis. Curr Biol. 
2009;19(22):R1046-R1052. doi:10.1016/j.cub.2009.09.058 

38. Zhang Z, Yang C, Gao W, et al. FOXA2 attenuates the epithelial to mesenchymal 
transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. 
Cancer Lett. 2015;361(2):240-250. doi:10.1016/j.canlet.2015.03.008 

39. Perez-Balaguer A, Ortiz-Martínez F, García-Martínez A, Pomares-Navarro C, Lerma E, 
Peiró G. FOXA2 mRNA expression is associated with relapse in patients with Triple-
Negative/Basal-like breast carcinoma. Breast Cancer Res Treat. 2015;153(2):465-474. 
doi:10.1007/s10549-015-3553-6 

40. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism 
and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432(7020):1027-
1032. doi:10.1038/nature03047 

41. Li T, Zhang Q, Zhang J, et al. Fenofibrate induces apoptosis of triple-negative breast 
cancer cells via activation of NF-κB pathway. BMC Cancer. 2014;14(1):96. 
doi:10.1186/1471-2407-14-96 

42. Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp 
Clin Cancer Res. 2021;40(1):241. doi:10.1186/s13046-021-02041-2 

43. Zhang H, Ahearn TU, Lecarpentier J, et al. Genome-wide association study identifies 32 
novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat 
Genet. 2020;52(6):572-581. doi:10.1038/s41588-020-0609-2 

44. Howard DM, Adams MJ, Clarke TK, et al. Genome-wide meta-analysis of depression 
identifies 102 independent variants and highlights the importance of the prefrontal brain 
regions. Nat Neurosci. 2019;22(3):343-352. doi:10.1038/s41593-018-0326-7 

45. Graham SE, Clarke SL, Wu KHH, et al. The power of genetic diversity in genome-wide 
association studies of lipids. Nature. 2021;600(7890):675-679. doi:10.1038/s41586-021-
04064-3 

46. The Profile Study, Australian Prostate Cancer BioResource (APCB), The IMPACT Study, 
et al. Association analyses of more than 140,000 men identify 63 new prostate cancer 
susceptibility loci. Nat Genet. 2018;50(7):928-936. doi:10.1038/s41588-018-0142-8 

47. Trubetskoy V, Pardiñas AF, Qi T, et al. Mapping genomic loci implicates genes and 
synaptic biology in schizophrenia. Nature. 2022;604(7906):502-508. doi:10.1038/s41586-
022-04434-5 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307374doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307374
http://creativecommons.org/licenses/by/4.0/


 16 

48. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant 
resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 
2018;50(11):1505-1513. doi:10.1038/s41588-018-0241-6 

 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307374doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307374
http://creativecommons.org/licenses/by/4.0/

