
Page 1 of 33 

TILTomorrow today: dynamic factors predicting changes 1 

in intracranial pressure treatment intensity after traumatic 2 

brain injury 3 
 4 
Shubhayu Bhattacharyay1,2,3,*, Florian D van Leeuwen4, Erta Beqiri5, Cecilia 5 
Åkerlund6, Lindsay Wilson7, Ewout W Steyerberg4, David W Nelson6, Andrew I R 6 
Maas8,9, David K Menon1, Ari Ercole1,10, and the CENTER-TBI investigators and 7 
participants† 8 
 9 
1Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom. 10 
2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United 11 
Kingdom. 12 
3Harvard Medical School, Boston, MA, USA. 13 
4Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 14 
The Netherlands. 15 
5Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, 16 
Cambridge, United Kingdom. 17 
6Department of Physiology and Pharmacology, Section for Perioperative Medicine and 18 
Intensive Care, Karolinska Institutet, Stockholm, Sweden. 19 
7Division of Psychology, University of Stirling, Stirling, United Kingdom. 20 
8Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium. 21 
9Department of Translational Neuroscience, Faculty of Medicine and Health Science, 22 
University of Antwerp, Antwerp, Belgium. 23 
10Cambridge Centre for Artificial Intelligence in Medicine, Cambridge, United Kingdom. 24 
 25 
*Corresponding author: sb2406@cam.ac.uk (SB) 26 
†A full list of the CENTER-TBI investigators and participants are listed after the 27 
acknowledgements.  28 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307364doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:sb2406@cam.ac.uk
https://doi.org/10.1101/2024.05.14.24307364
http://creativecommons.org/licenses/by/4.0/


Page 2 of 33 

ABSTRACT 29 
 30 
Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients 31 
admitted to the intensive care unit (ICU) vary considerably between centres. To help 32 
understand the rational basis for such variance in care, this study aims to identify the 33 
patient-level predictors of changes in ICP management. We extracted all heterogeneous 34 
data (2,008 pre-ICU and ICU variables) collected from a prospective cohort (n=844, 51 35 
ICUs) of ICP-monitored TBI patients in the Collaborative European NeuroTrauma 36 
Effectiveness Research in TBI (CENTER-TBI) study. We developed the TILTomorrow 37 
modelling strategy, which leverages recurrent neural networks to map a token-embedded 38 
time series representation of all variables (including missing values) to an ordinal, 39 
dynamic prediction of the following day’s five-category therapy intensity level (TIL(Basic)) 40 
score. With 20 repeats of 5-fold cross-validation, we trained TILTomorrow on different 41 
variable sets and applied the TimeSHAP (temporal extension of SHapley Additive 42 
exPlanations) algorithm to estimate variable contributions towards predictions of next-day 43 
changes in TIL(Basic). Based on Somers’ Dxy, the full range of variables explained 68% 44 
(95% CI: 65–72%) of the ordinal variation in next-day changes in TIL(Basic) on day one and 45 
up to 51% (95% CI: 45–56%) thereafter, when changes in TIL(Basic) became less frequent. 46 
Up to 81% (95% CI: 78–85%) of this explanation could be derived from non-treatment 47 
variables (i.e., markers of pathophysiology and injury severity), but the prior trajectory of 48 
ICU management significantly improved prediction of future de-escalations in ICP-49 
targeted treatment. Whilst there was no significant difference in the predictive 50 
discriminability (i.e., area under receiver operating characteristic curve [AUC]) between 51 
next-day escalations (0.80 [95% CI: 0.77–0.84]) and de-escalations (0.79 [95% CI: 0.76–52 
0.82]) in TIL(Basic) after day two, we found specific predictor effects to be more robust with 53 
de-escalations. The most important predictors of day-to-day changes in ICP management 54 
included preceding treatments, age, space-occupying lesions, ICP, metabolic 55 
derangements, and neurological function. Serial protein biomarkers were also important 56 
and may serve a useful role in the clinical armamentarium for assessing therapeutic 57 
needs. Approximately half of the ordinal variation in day-to-day changes in TIL(Basic) after 58 
day two remained unexplained, underscoring the significant contribution of unmeasured 59 
factors or clinicians’ personal preferences in ICP treatment. At the same time, specific 60 
dynamic markers of pathophysiology associated strongly with changes in treatment 61 
intensity and, upon mechanistic investigation, may improve the timing and personalised 62 
targeting of future care.  63 
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MAIN TEXT 64 
 65 

Introduction 66 
 67 
When traumatic brain injury (TBI) patients are admitted to the intensive care unit (ICU), a 68 
core focus of their care is to protect and promote potential recovery in brain tissue by 69 
either preventing or mitigating raised intracranial pressure (ICP).1 To date, the 70 
heterogeneous pathophysiological mechanisms that elevate ICP after TBI are not 71 
sufficiently characterised for patient-tailored treatment (i.e., precision medicine).2,3 72 
Therefore, consensus-based guidelines4,5 encourage a precautionary, stepwise 73 
approach6 to ICP management, in which therapeutic intensity – defined by the perceived 74 
risk and complexity of each treatment plan – is incrementally escalated until adequate 75 
ICP control is achieved. The overall intensity of a patient’s ICP management can be 76 
measured on the latest Therapy Intensity Level (TIL) scale,7 which was developed by the 77 
interagency TBI Common Data Elements (CDE) scheme8 and prospectively validated 78 
thereafter.7,9 79 
 80 
An analysis of high-TIL treatment administration across 52 ICUs participating in the 81 
Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) 82 
study10,11 revealed frequent deviation from the recommended stepwise approach, even 83 
with ICP monitoring.12 In fact, there was substantial between-centre variation in ICP 84 
management (according to TIL) without commensurate variation in six-month functional 85 
outcome on the Glasgow Outcome Scale – Extended (GOSE).13,14 Baseline injury 86 
severity factors, imaging results, and ICP explained only 8.9% of the pseudo-variance in 87 
dichotomised high-TIL treatment use.12 These results raised the questions about whether 88 
contemporary ICP management is performed in a systematic, rational manner in practice 89 
and whether some patients are being exposed to unnecessary risks with high-TIL 90 
therapies. Answering these questions requires consideration of a patient’s full, time-91 
varying clinical course as well as a more detailed representation of different levels of the 92 
TIL scale. 93 
 94 
As a first step towards answering the questions above, we aim to identify factors 95 
associated with ICP-targeted treatment decisions on an individual patient level. 96 
Expanding upon our previous work,13,15 we propose a modelling strategy (TILTomorrow) 97 
which dynamically predicts next-day TIL(Basic) – the five-category version of TIL – from all 98 
pre-ICU and ICU data prospectively recorded for the CENTER-TBI study (Fig. 1). Our 99 
primary objective in developing TILTomorrow was to determine how well a patient’s full 100 
clinical course can predict upcoming changes in ICP treatment intensity. Our second 101 
objective was to estimate the differential contribution of pathophysiological severity, the 102 
preceding trajectory of treatment, and unmeasured factors (e.g., personal treatment 103 
preferences) towards explanation of next-day changes made to TIL(Basic). Our third 104 
objective was to mine the full dataset for dynamic predictors of day-to-day changes in 105 
TIL(Basic). 106 
 107 
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 108 
Fig. 1. TILTomorrow prediction task and modelling strategy. All shaded regions surrounding curves 109 
are 95% confidence intervals derived using bias-corrected bootstrapping (1,000 resamples) to represent 110 
the variation across the patient population and across the 20 repeated five-fold cross-validation partitions. 111 
(a) Illustration of the TILTomorrow dynamic prediction task on a sample patient’s timeline of ICU stay. The 112 
objective of the task is to predict the next-day TIL(Basic) score at each calendar day of a patient’s ICU stay. 113 
The prediction is dynamic, updated for each calendar day, and must account for temporal variation of 114 
variables across all preceding days using a time-series model (ft). (b) Illustration of the TILTomorrow 115 
modelling strategy on a sample patient’s timeline of ICU stay. Each patient’s ICU stay is first discretised 116 
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into non-overlapping time windows, one for each calendar day. From each time window, values for up to 117 
979 dynamic variables were combined with values for up to 1,029 static variables to form the variable set. 118 
The variable values were converted to tokens by discretising numerical values into 20-quantile bins from 119 
the training set and removing special formatting from text-based entries. Through an embedding layer, a 120 
vector was learned for each token encountered in the training set, and tokens were replaced with these 121 
vectors. A positive relevance weight, also learned for each token, was used to weight-average the vectors 122 
of each calendar day into a single, low-dimensional vector. The sequence of low-dimensional vectors 123 
representing a patient’s ICU stay were fed into a gated recurrent neural network (RNN). The RNN outputs 124 
were then decoded at each time window into an ordinal prognosis of next-day TIL(Basic) score. The highest-125 
intensity treatments associated with each threshold of TIL(Basic) are decoded in Table 1. (c) Probability 126 
calibration slope, at each threshold of next-day TIL(Basic), for models trained on the full variable set. The 127 
ideal calibration slope of one is marked with a horizontal orange line. (d) Ordinal probability calibration 128 
curves at four different days after ICU admission. The diagonal dashed line represents the line of perfect 129 
calibration. The values in each panel correspond to the maximum absolute error (95% confidence interval) 130 
between the curve and the perfect calibration line. Abbreviations: CT=computerised tomography, 131 
ER=emergency room, ft=time-series model, GRU=gated recurrent unit, Hx=history, ICP=intracranial 132 
pressure, ICU=intensive care unit, LSTM=long short-term memory, N/A=not available, NF-L=neurofilament 133 
light chain, SES=socioeconomic status, TIL=Therapy Intensity Level, TIL(Basic)=condensed, five-category 134 
TIL scale as defined in Table 1, VE=vascular endothelial. 135 
 136 

Methods 137 
 138 

Study design and participants 139 
 140 
CENTER-TBI is a longitudinal, observational cohort study (NCT02210221) involving 65 141 
medical centres across 18 European countries and Israel.10,11 Patients were recruited 142 
between 19 December 2014 and 17 December 2017 if they met the following criteria: (1) 143 
presentation within 24 hours of a TBI, (2) clinical indication for a computerised 144 
tomography (CT) scan, and (3) no severe pre-existing neurological disorder. In 145 
accordance with relevant laws of the European Union and the local country, ethical 146 
approval was obtained for each site, and written informed consent by the patient or legal 147 
representative was documented electronically. The list of sites, ethical committees, 148 
approval numbers, and approval dates can be found online: https://www.center-149 
tbi.eu/project/ethical-approval. The project objectives and design of CENTER-TBI have 150 
been described in detail previously.10,11 151 
 152 
In this work, we apply the following additional inclusion criteria: (1) primary admission to 153 
the ICU, (2) at least 16 years old at ICU admission, (3) at least 24 hours of ICU stay, (4) 154 
invasive ICP monitoring, (5) no decision to withdraw life-sustaining therapies (WLST) on 155 
the first day of ICU stay, and (6) availability of daily TIL assessments from at least two 156 
consecutive days. 157 
 158 

Therapy intensity level (TIL) 159 
 160 
The endpoint for the TILTomorrow dynamic prediction task (Fig. 1a) is the next-day 161 
TIL(Basic) score. The TIL(Basic) scale was developed through an international expert panel 162 
to serve as a five-category summary of the full, 38-point TIL score.8 TIL(Basic) categorises 163 
overall ICP treatment intensity over a given period of time by selecting the highest 164 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307364doi: medRxiv preprint 

https://www.center-tbi.eu/project/ethical-approval
https://www.center-tbi.eu/project/ethical-approval
https://doi.org/10.1101/2024.05.14.24307364
http://creativecommons.org/licenses/by/4.0/


Page 6 of 33 

classification of ICP control amongst all treatments administered in that period of time, as 165 
defined in Table 1. By convention, a decompressive craniectomy for refractory intracranial 166 
hypertension is scored with TIL(Basic)=4 (i.e., extreme ICP control) for every subsequent 167 
timepoint. As described later, we account for this effect in our analysis by: (1) referencing 168 
TILTomorrow performance against simply carrying forward the last-available TIL(Basic) 169 
score and against models trained without treatment (e.g. incidence of decompressive 170 
craniectomy) or clinician-impression (e.g., reason for decompressive craniectomy) 171 
variables, and (2) focusing only on variables that occur at least a day before a change in 172 
TIL(Basic). Since daily use of TIL(Basic) was prospectively validated,7 we calculate the 173 
TIL(Basic) score over each available calendar day of a patient’s ICU stay. For the CENTER-174 
TBI study, information pertaining to the TIL(Basic) treatments (Table 1) was recorded on 175 
days 1–7, 10, 14, 21, and 28 of ICU stay. TIL(Basic) score calculations were excluded on 176 
or after the day of any WLST decision. As an overall summary metric, we also calculated 177 
TIL(Basic)median – the median of the daily TIL(Basic) scores over days 1–7 of ICU stay. 178 
 179 
We elected not to use the full TIL score as the model endpoint since it is a point-sum 180 
(rather than a truly categorical) score, and the same value changes in TIL can be the 181 
result of changing treatments across different intensities. For instance, administering 182 
head elevation, low-volume cerebrospinal fluid drainage, and low-dose mannitol is 183 
numerically ‘equivalent’ to performing a last-resort decompressive craniectomy.7 On the 184 
contrary, changes in TIL(Basic) correspond to transitions across specific, interpretable 185 
bands of treatment intensity (Table 1). 186 
 187 
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Table 1. TIL(Basic) scale treatments and representation in study population 188 
Classification of ICP control ICP-targeting treatment Study representation (count) 

Patients (844 total) Centres (51 total) 

(4) Extreme 490 (58%) 50 (98%) 
 High-dose propofol or barbiturates (metabolic suppression) 315 (37%) 46 (90%) 
 Intensive hyperventilation (PaCO2<30 mmHg) 61 (7.2%) 24 (47%) 
 Therapeutic hypothermia (<35°C) 93 (11%) 31 (61%) 
 Intracranial operation for progressive mass lesion (not scheduled at admission) 149 (18%) 40 (78%) 
 Decompressive craniectomy for refractory intracranial hypertension* 76 (9.0%) 29 (57%) 
(3) Moderate 344 (41%) 47 (92%) 
 High-volume CSF drainage (≥120 mL/24h) 212 (25%) 41 (80%) 
 Moderate hyperventilation (30≤PaCO2<35 mmHg) 235 (28%) 41 (80%) 
 Higher-dose mannitol (>2g/kg/24h) 45 (5.3%) 22 (43%) 
 Higher-dose hypertonic saline (>0.3g/kg/24h) 128 (15%) 33 (65%) 
 Cooling for ICP control (≥35°C) 146 (17%) 32 (63%) 
(2) Mild 645 (76%) 50 (98%) 
 Higher-dose sedation for ICP control (not aiming for burst suppression) 561 (66%) 48 (94%) 
 Low-volume CSF drainage (<120 mL/24h) 221 (26%) 41 (80%) 
 Fluid loading for CPP management 511 (61%) 48 (94%) 
 Vasopressor therapy for CPP management 720 (85%) 50 (98%) 
 Mild hyperventilation (35≤PaCO2<40 mmHg) 509 (60%) 48 (94%) 
 Lower-dose mannitol (≤2g/kg/24h) 197 (23%) 41 (80%) 
 Lower-dose hypertonic saline (≤0.3g/kg/24h) 303 (36%) 41 (80%) 
(1) Basic 406 (48%) 45 (88%) 
 Head elevation for ICP control 765 (91%) 50 (98%) 
 Nursed flat (180°) for CPP management 123 (15%) 31 (61%) 
 Lower-dose sedation for mechanical ventilation 753 (89%) 50 (98%) 
(0) None 338 (40%) 48 (94%) 

The TIL(Basic) scale was developed by Maas et al.8 and prospectively validated by Bhattacharyay et al.7 The TIL(Basic) score is determined by selecting 189 
the highest classification of ICP control (first column) among all the ICP-targeting treatments (second column) administered to a patient over a 190 
calendar day. The study representation of each TIL(Basic) category and each ICP-targeting treatment is the count (and percentage) of patients who 191 
received the corresponding (category of) treatment in the study population as well as the count (and percentage) of centres who administered the 192 
corresponding (category of) treatment in the study population. 193 
*If a decompressive craniectomy is performed as a last resort for refractory intracranial hypertension, its score is included in the day of the operation 194 
and in every subsequent day of ICU stay. 195 
Abbreviations: CPP=cerebral perfusion pressure, CSF=cerebrospinal fluid, ICP=intracranial pressure, ICU=intensive care unit, PaCO2=partial 196 
pressure of carbon dioxide in arterial blood, TIL=Therapy Intensity Level scale, TIL(Basic)=condensed TIL scale.197 
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Model variables 198 
 199 
We extracted all variables collected before and during ICU stays for the CENTER-TBI 200 
core study11 (v3.0, ICU stratum) using Opal database software.16 These variables were 201 
sourced from medical records and online test results and include structured (i.e., 202 
numerical, binary, or categorical), unstructured (i.e., free text), and missing values. We 203 
manually excluded variables which explicitly indicate death or WLST (Supplementary 204 
Table S1), and, if a decision to WLST was made during any point of a patient’s ICU stay, 205 
we only extracted model variables before the timestamp of WLST decision. We also 206 
added features extracted from automatically segmented and expert-corrected high-207 
resolution CT and magnetic resonance (MR) images. These features correspond to the 208 
type, location, and volume of space-occupying lesions, and the process of their extraction 209 
has been described in detail previously.17,18 In total, we included 2,008 variables: 1,029 210 
static (i.e., fixed at ICU admission) variables and 979 dynamic variables (i.e., collected 211 
during ICU stay) with varying sampling frequencies. We qualitatively organised the 212 
variables into the nine categories listed in Table 2 and further indicated whether variables 213 
represented an intervention during ICU admission (e.g., administration and type of 214 
glucose management) or a physician-based impression (e.g., reason for not pursuing 215 
intracranial surgery following CT scan, Supplementary Table S2). Descriptions for each 216 
of the variables can be viewed online at the CENTER-TBI data dictionary: 217 
https://www.center-tbi.eu/data/dictionary. 218 
 219 
Table 2. Variable count per category and subtype 220 

Category Example variable Count by subtypes 
All Static Dynamic Interventions and 

physician impressions 
Demographics and 
socioeconomic status 

Years of formal 
education 

22 22 0 0 

Medical and behavioural 
history 

Number of prior TBIs or 
concussions 

186 186 0 0 

Injury characteristics and 
severity 

Airbag deployed during 
accident 

84 84 0 0 

Emergency care and ICU 
admission 

Blood transfusion in ER 234 234 0 14 

Brain imaging reports Cortical sulcal 
effacement 

939 425 514 19 

Laboratory measurements Serum level of UCH-L1 228 75 153 6 
ICU medications and 
management 

Vasopressor dose 141 3 138 127 

ICU vitals and 
assessments 

Types of seizures in past 
day 

125 0 125 0 

Surgery and 
neuromonitoring 

Ventriculostomy for CSF 
drainage 

49 0 49 39 

Total  2008 1029 979 205 
Data represent the number of subtype (column) variables per category (row). 221 
Abbreviations: CSF=cerebrospinal fluid, ER=emergency room, ICU=intensive care unit, SBP=systolic blood 222 
pressure, TBI=traumatic brain injury, UCH-L1=ubiquitin carboxy-terminal hydrolase L1. 223 
 224 

TILTomorrow modelling strategy 225 
 226 
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Whilst strong predictors of functional outcome after TBI are known, this is not the case 227 
for TIL. Thus, the TILTomorrow modelling strategy was designed to include all static and 228 
dynamic variables from CENTER-TBI to produce an evolving prediction of the next 229 
calendar day’s TIL(Basic) over each patient’s ICU stay. The large number of variables 230 
precludes building such a model by manual feature extraction, motivating our flexible 231 
tokenisation-and-embedding approach with no constraints on the number or type of 232 
variables per patient. We trained models, through supervised machine learning, with three 233 
main components based on our prior studies13,15,19: (1) a token-embedding encoder, (2) 234 
a gated recurrent neural network (RNN), and (3) an ordinal endpoint output layer. We 235 
created 100 partitions of our patient population for repeated k-fold cross-validation (20 236 
repeats, 5 folds) with 15% of each training set randomly set aside as an internal validation 237 
set. 238 
 239 
ICU stays were partitioned into non-overlapping time windows, one per calendar day (Fig. 240 
1a). Static variables were carried forward across all windows (Fig. 1b). All variables were 241 
tokenised through one of the following methods: (1) for categorical variables, appending 242 
the value to the variable name, (2) for numerical variables, learning the training set 243 
distribution and discretising into 20 quantile bins, (3) for text-based entries, removing all 244 
special characters, spaces, and capitalisation from the text and appending to the variable 245 
name, and (4) for missing values, creating a separate token to designate missingness 246 
(Fig. 1b). We selected 20 quantile bins for discretisation based on optimal performance 247 
in our previous work.13,19 By labelling missing values with separate tokens instead of 248 
imputing them, the models could learn potentially significant patterns of missingness and 249 
integrate a diverse range of missing data without needing to validate the assumptions of 250 
imputation methods on each variable.20 During training, the models learned a low-251 
dimensional vector (of either 128, 256, 512, or 1,024 units) and a ‘relevance’ weight for 252 
each token in the training set. Therefore, models would take the unique tokens from each 253 
time window of a patient, replace them with the corresponding vectors, and average the 254 
vectors – each weighted by its corresponding relevance score – into a single vector per 255 
time window (Fig. 1b). 256 
 257 
Each patient’s sequence of low-dimensional vectors then fed into a gated RNN – either a 258 
long short-term memory (LSTM) network or a gated recurrent unit (GRU) – to output 259 
another vector per time window. In this manner, the models learned temporal patterns of 260 
variable interactions from training set ICU records and updated outputs with each new 261 
time window of data. Finally, each RNN output vector was decoded with a multinomial 262 
(i.e., softmax) output layer to return a probability at each threshold of next-day TIL(Basic) 263 
over time (Fig. 1b). From these outputs, we also calculated the probabilities of TIL(Basic) 264 
decreasing, staying the same, or increasing tomorrow in relation to the last available 265 
TIL(Basic) score (Supplementary Methods S1). Please note that both threshold-level 266 
probability estimates and estimated probabilities of next-day changes in TIL(Basic) are 267 
derived from the outputs of the same model, as described in Supplementary Methods S1. 268 
 269 
The combinations of hyperparameters – in addition to those already mentioned 270 
(embedding vector dimension and RNN type) – and the process of their optimisation in 271 
the internal validation sets are reported in Supplementary Methods S2–S3. 272 
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 273 

Model and information evaluation 274 
 275 
All metrics, curves, and associated confidence intervals (CIs) were calculated on the 276 
testing sets using the repeated Bootstrap Bias Corrected Cross-Validation (BBC-CV) 277 
method,21 as described in Supplementary Methods S2. We calculated metrics and CIs at 278 
each day directly preceding a day of TIL assessment in our study population (i.e., days 279 
1–6, 9, 13, 20, and 27). 280 
 281 
The reliability of model-generated prediction trajectories was assessed through the 282 
calibration of output probabilities at each threshold of next-day TIL(Basic). Using the logistic 283 
recalibration framework,22 we first measured calibration slope. Calibration slope 284 
less(/greater) than one indicates overfitting(/underfitting).22 Additionally, we examined 285 
smoothed probability calibration curves to detect miscalibrations that might have been 286 
overlooked by the logistic recalibration framework.22 287 
 288 
To evaluate prediction discrimination performance, we calculated the area under the 289 
receiver operating characteristic curve (AUC) at each threshold of next-day TIL(Basic). 290 
These AUCs are interpreted as the probability of the model correctly discriminating a 291 
patient whose next-day TIL(Basic) is above a given threshold from one with next-day 292 
TIL(Basic) below. Moreover, we calculated the AUC for prediction of next-day escalation 293 
and de-escalation in TIL(Basic). In this case, the AUC represents the probability of the 294 
model correctly discriminating a patient who experienced a day-to-day (de-)escalation in 295 
TIL(Basic) from one who did not. 296 
 297 
We also assessed the information quality achieved by the combination of our modelling 298 
strategy and the CENTER-TBI variables in predicting next-day changes in TIL(Basic) by 299 
calculating Somers’ Dxy.23 In our context, Somers’ Dxy is interpreted as the proportion of 300 
ordinal variation in day-to-day changes of TIL(Basic) that is explained by the variation in 301 
model output.24 The calculation of Somers’ Dxy is detailed in Supplementary Methods S4. 302 
 303 
We compared the performance of the TILTomorrow modelling strategy trained on the 304 
following factors to test their differential contribution to prediction: (1) the full variable set 305 
[2,008 variables], (2) all variables excluding physician-based impressions and treatments 306 
(e.g., all variables related to TIL) [1,803 variables], and (3) only static variables repeated 307 
in each time window [1,029 variables]. Our rationale for these ablated variable sets was 308 
to estimate the extent to which: (1) predictable trajectories of care – independent of other 309 
measured factors – influence treatment planning and (2) ICP treatments are responding 310 
to recorded events that occur over a patient’s ICU stay. To serve as our reference for 311 
model comparison, we also calculated the performance achieved by simply carrying over 312 
the last available TIL(Basic) for prediction of next-day TIL(Basic). This reference performance 313 
accounts not only for the proportion of the population that did not change in TIL(Basic) on a 314 
given day but also for the change in the assessment population caused by patient 315 
discharge over time. 316 
 317 
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Contributors to transitions in TIL 318 
 319 
We applied the TimeSHAP algorithm25 on testing set predictions to find specific variables 320 
associated with next-day changes in TIL(Basic). TimeSHAP is a temporal extension of the 321 
kernel-weighted SHapley Additive exPlanations (KernelSHAP) algorithm,26 which 322 
estimates the relative contribution (i.e., Shapley value27) of each model input to a specific 323 
patient’s model output. In our case, this was done by masking sampled combinations of 324 
tokens (i.e., coalitions) leading up to a patient’s next-day change in TIL(Basic) and 325 
calculating the difference in trained model output for each combination. A kernel-weighted 326 
linear regression model was then fit between binary coalition masks and resulting model 327 
outputs to estimate the Shapley value for each model input. TimeSHAP extends 328 
KernelSHAP by considering each unique combination of tokens and time windows as its 329 
own feature. Crucially, TimeSHAP made this computationally tractable for our application, 330 
in which models contain many possible tokens, by grouping low-contributing time 331 
windows in the distant past together as a single feature (i.e., temporal coalition pruning). 332 
TimeSHAP, KernelSHAP, and Shapley values are described in greater, mathematical 333 
detail in Supplementary Methods S5. 334 
 335 
We estimated token-level Shapley values with the TimeSHAP algorithm at both one day 336 
and two days before an upcoming change in TIL(Basic). Our chosen model output for 337 
TimeSHAP was the expected next-day TIL(Basic) score, as defined in Supplementary 338 
Methods S5. We then calculated the difference between the estimated Shapley values of 339 
the two consecutive days for each token to derive its ΔTimeSHAP value. If a token did 340 
not exist in the window of either of the two days, then its Shapley value for that day was 341 
zero. Therefore, ΔTimeSHAP values were interpreted as the contributions of variable 342 
tokens towards the difference in model prediction of next-day TIL(Basic) over the two days 343 
directly preceding the change in TIL(Basic), given the patient’s full set of tokens. If a variable 344 
had a positive (or negative) ΔTimeSHAP value, it was associated with an increased 345 
likelihood of escalation (or de-escalation) in next-day treatment intensity. Moreover, since 346 
the calculation of ΔTimeSHAP values required two days of information before the change 347 
in TIL(Basic), we only calculated the variable contributions to day-to-day changes in TIL(Basic) 348 
that occurred after day two of ICU stay. 349 
 350 

Results 351 
 352 

Study population 353 
 354 
Of the 4,509 patients available for analysis in the CENTER-TBI core study, 844 patients 355 
from 51 ICUs met the inclusion criteria of this work (Supplementary Fig. S1). The median 356 
ICU stay duration of our population was 14 days (Q1–Q3: 8.4–23 days) and 86% (n=722) 357 
stayed through at least seven calendar days. Since the regularity of TIL(Basic) assessments 358 
decreased substantially after 14 days, and since less than half of the population remained 359 
in the ICU for 21 days (Supplementary Fig. S2), we focused our analysis on the first 14 360 
days of ICU stay. Summary characteristics of the overall population as well as those 361 
stratified by whether patients had a day-to-day change in TIL(Basic) over their first week in 362 
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the ICU are detailed in Table 3. On average, patients who did not experience a change 363 
in TIL(Basic) over their first week were significantly younger, had higher baseline ICP 364 
values, and resulted in poorer functional recovery at six months post-injury (Table 3). 365 
However, their mean ICU stay duration was not significantly different. 366 
 367 
Table 3. Summary characteristics of the study population stratified by day-to-day changes in 368 
TIL(Basic) 369 
Summary characteristic Overall 

(n=844, 
51 centres) 

Day-to-day change in TIL(Basic) during first week in ICU 
Yes (n=677, 
50 centres) 

No (n=167, 
40 centres) 

p-value‡ 

Age [years] 47 (29–61) 48 (30–62) 41 (27–58) 0.047 
Sex: Female 212 (25%) 165 (24%) 47 (28%) 0.36 
Baseline Glasgow Coma Scale (n*=795) 0.67  

3–8 540 (68%) 426 (67%) 114 (71%) 
 

 
9–12 138 (17%) 112 (18%) 26 (16%) 

 
 

13–15 117 (15%) 96 (15%) 21 (13%) 
 

Baseline CT lesions (n*=730)  
Epidural haematoma 165 (23%) 136 (23%) 29 (19%) 0.36  
Intracerebral haemorrhage 594 (81%) 480 (83%) 114 (77%) 0.11  
Subdural haematoma 465 (64%) 368 (63%) 97 (65%) 0.76  
Traumatic subarachnoid haemorrhage 633 (87%) 502 (86%) 131 (88%) 0.73 

First-day mean ICP [mmHg] (n*=811) 11 (7.0–15) 10. (6.8–14) 12 (8.2–17) <0.001 
TIL(Basic)median 2 (2–4) 2 (2–3) 4 (2–4) <0.001 
Refractory intracranial hypertension 
(n*=836) 

143 (17%) 85 (13%) 58 (35%) <0.001 

ICU stay duration [days] 14 (8.4–23) 14 (8.1–23) 14 (8.8–23) 0.90 
Six-month GOSE (n*=738) 0.018  

(1) Death 181 (25%) 139 (23%) 42 (29%) 
 

 
(2 or 3) Vegetative/lower SD 181 (25%) 154 (26%) 27 (18%) 

 
 

(4) Upper SD 70 (9.5%) 48 (8.1%) 22 (15%) 
 

 
(5) Lower MD 122 (17%) 96 (16%) 26 (18%) 

 
 

(6) Upper MD 73 (10%) 65 (11%) 8 (5.5%) 
 

 
(7) Lower GR 55 (7.5%) 42 (7.1%) 13 (8.9%) 

 
 

(8) Upper GR 56 (7.6%) 48 (8.1%) 8 (5.5%) 
 

Baseline prognosis† [%] (n*=749)  
Pr(GOSE>1) 85 (64–94) 85 (66–95) 83 (56–93) 0.010  
Pr(GOSE>3) 54 (31–75) 54 (33–76) 52 (24–71) 0.019  
Pr(GOSE>4) 40. (22–59) 41 (24–60.) 38 (16–54) 0.010  
Pr(GOSE>5) 22 (11–36) 22 (12–38) 19 (8.9–30.) 0.0022  
Pr(GOSE>6) 13 (6.7–21) 13 (7.1–22) 11 (5.2–17) 0.0034  
Pr(GOSE>7) 5.2 (2.5–9.5) 5.4 (2.7–9.9) 4.2 (2.2–8.6) 0.0071 

Data are median (Q1–Q3) for numerical characteristics and n (% of column group) for categorical 370 
characteristics unless otherwise indicated. Units or numerical definitions of characteristics are provided in 371 
square brackets. 372 
*Limited sample size of non-missing values for characteristic. 373 
†Ordinal functional outcome prognostic scores were calculated through tokenised embedding of all clinical 374 
information in the first 24 hours of ICU stay, as described previously.15 375 
‡p-values, comparing patients who experienced a day-to-day change in TIL(Basic) in the first week of ICU 376 
stay to those who did not, are derived from Welch’s t-test for numeric variables and χ2 contingency table 377 
test for categorical variables. 378 
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Abbreviations: CT=Computerised tomography, GOSE=Glasgow Outcome Scale–Extended, GR=good 379 
recovery, ICP=intracranial pressure, ICU=intensive care unit, MD=moderate disability, 380 
Pr(GOSE>•)=“probability of GOSE greater than • at six months post-injury” as previously calculated from 381 
the first 24 hours of admission,27 SD=severe disability, TIL=Therapy Intensity Level scale, 382 
TIL(Basic)=condensed TIL scale as measured in Table 1 for each calendar day, TIL(Basic)median=median TIL(Basic) 383 
over first week of ICU stay. 384 
 385 
The representation of each ICP-targeting treatment and TIL(Basic) score in our study is 386 
listed in Table 1. The least-represented treatment (higher-dose mannitol) was 387 
administered to 45 patients (5.3%) across 22 ICUs, whereas the least-represented 388 
TIL(Basic) score (TIL(Basic)=1) applied to 344 patients (41%) across 47 ICUs. A 389 
decompressive craniectomy for refractory intracranial hypertension was performed in 76 390 
patients (9.0%) across 29 ICUs, and the median timepoint for such an operation was day 391 
three (Q1–Q3: two–five) of ICU stay. 392 
 393 
The distribution of TIL(Basic) values at each day of TIL assessment and the transitions of 394 
TIL(Basic) scores between days of assessment are visualised in Fig. 2a. No more than 2.4% 395 
of the population’s TIL(Basic) scores were missing at any given assessment day, and the 396 
proportion of patients receiving basic-to-no ICP-targeting treatment (i.e., TIL(Basic)≤1) 397 
increased over time (Supplementary Fig. S2). The distribution of day-to-day changes in 398 
TIL(Basic) (Fig. 2b) demonstrates that there was considerably more change in TIL(Basic) from 399 
day one to day two than there was in any other pair of consecutive days. On the rest of 400 
the days in the first week, 69–75% of the population did not experience a change in 401 
TIL(Basic) from one day to the next (Fig. 2b). The distribution of next-day TIL(Basic) given the 402 
current day’s TIL(Basic) (Supplementary Fig. S3) show that at least 79% of day-to-day 403 
therapeutic transitions happen within one TIL(Basic) category, except for escalations from 404 
TIL(Basic)=0 and de-escalations from TIL(Basic)=4 from day one to two. When a change in 405 
TIL(Basic) did occur, the distributions of TIL(Basic) before and after the change 406 
(Supplementary Fig. S4) reflect a gradual trend towards de-escalation at later days of ICU 407 
stay as expected. 408 
 409 
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 410 
Fig. 2. Distributions of TIL(Basic) and its day-to-day changes in the study population. (a) Alluvial 411 
diagram of the evolution of the TIL(Basic) distribution in the study population over the assessed days of ICU 412 
stay. Percentages which round to 2% or lower are not shown. (b) Distributions of day-to-day changes in 413 
TIL(Basic). The numbers above each bar represent the number of study patients remaining in the ICU after 414 
the corresponding day-to-day step. Percentages which round to 2% or lower are not shown. Abbreviations: 415 
ICU=intensive care unit, TIL=Therapy Intensity Level, TIL(Basic)=condensed, five-category TIL scale as 416 
defined in Table 1, WLST=withdrawal of life-sustaining therapies. 417 
 418 

Reliability and performance of TILTomorrow 419 
 420 
With both calibration slopes (Fig. 1c) and smoothed calibration curves (Fig. 1d) across 421 
the thresholds of next-day TIL(Basic), we observed that the TILTomorrow modelling strategy 422 
achieved sufficient testing set calibration for analysis from day two of ICU stay onwards. 423 
The 95% CI of the calibration slope pertaining to prediction of next-day TIL(Basic) > 0 was 424 
wider than that of other thresholds but still centred around a well-calibrated slope of one. 425 
 426 
In the first week of ICU stay, TILTomorrow correctly discriminated patients at each 427 
threshold of next-day TIL(Basic) between 79% (95% CI: 77–82%) and 95% (95% CI: 93–428 
96%) of the time (Fig. 3a). However, this apparently strong predictive power was in fact 429 
largely because TIL(Basic) tended not to change greatly (i.e., the “inertia” of TIL) across 430 
day-to-day steps (Fig. 2b), especially at higher thresholds of next-day TIL(Basic) (violet lines 431 
in Fig. 3a). After removing all treatments and physician-based impressions from the model 432 
variable set (including all variables related to TIL), the first-week AUCs dropped to 433 
between 0.65 (95% CI: 0.62–0.68) and 0.86 (95% CI: 0.82–0.89) with significantly lower 434 
performance at higher thresholds of next-day TIL(Basic) (Fig. 3a). Models trained with only 435 
static variables achieved only marginally better discrimination than an uninformative 436 
predictor (best AUC: 0.60 [95% CI: 0.56–0.63], Fig. 3a). 437 
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 438 

 439 
Fig. 3. Differential performance in discriminating and explaining next-day TIL(Basic). All shaded regions 440 
surrounding curves and error bars are 95% confidence intervals derived using bias-corrected bootstrapping 441 
(1,000 resamples) to represent the variation across 20 repeated five-fold cross-validation partitions. (a) 442 
Discrimination performance in prediction of next-day TIL(Basic) – measured by AUC at each threshold of 443 
TIL(Basic) – by models trained on different variable sets. The violet line represents the performance achieved 444 
by simply carrying the last available TIL(Basic) forward to account for the effect of day-to-day stasis in TIL(Basic) 445 
on prediction. The horizontal dashed line (AUC=0.5) represents the performance of uninformative 446 
prediction. (b) Discrimination performance in prediction of next-day de-escalation or escalation in TIL(Basic) 447 
– measured by AUC – by models trained on different variable sets. The horizontal dashed line (AUC=0.5) 448 
represents the performance of uninformative prediction. (c) Explanation of ordinal variation in next-day 449 
changes in TIL(Basic) – measured by Somers’ Dxy – by models trained on different variable sets. 450 
Abbreviations: AUC=area under the receiver operating characteristic (ROC) curve, ICU=intensive care unit, 451 
TIL=Therapy Intensity Level, TIL(Basic)=condensed, five-category TIL scale as defined in Table 1. 452 
 453 
To completely account for the inertia of TIL(Basic) across day-to-day steps, we calculated 454 
discrimination performance in the prediction of changes in next-day TIL(Basic) (Fig. 3b). 455 
Prediction performance was highest on day one across all variable sets, with the full-456 
variable model correctly discriminating next-day de-escalations 90% (95% CI: 88–91%) 457 
of the time and next-day escalations 85% (95% CI: 83–87%) of the time. Within each 458 
variable set, change-in-TIL(Basic) prediction performance did not change significantly from 459 
day two onwards, except for the prediction of next-day escalation from static variables. 460 
Treatment and physician-based impression variables significantly improved performance 461 
in prediction of next-day de-escalations in TIL(Basic) but not in prediction of next-day 462 
escalations in TIL(Basic) (Fig. 3b). Moreover, static variables achieved greater 463 
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discrimination in the prediction of TIL(Basic) escalations than in the prediction of TIL(Basic) 464 
de-escalations from days two to four of ICU stay. 465 
 466 

Differential explanation of next-day changes in TIL 467 
 468 
The full set of 2,008 variables explained 68% (95% CI: 65–72%) of the ordinal variation 469 
in next-day changes in TIL(Basic) on day one and up to 51% (95% CI: 45–56%) through the 470 
rest of the first week (Fig. 3c). For the same endpoint, the 1,803 variables which exclude 471 
treatments and physician-based impressions explained 60% (95% CI: 57–64%) of the 472 
ordinal variation on day one and up to 35% (95% CI: 30–41%) thereafter (Fig. 3c). From 473 
Fig. 3b, we found that the explanation added from the prior trajectory of ICU management 474 
related more to informative patterns of treatment de-escalation than to those of 475 
escalation. At the same time, most of the explanation achieved by the full variable model 476 
could also be achieved without explicit information about the patient’s treatments. The 477 
1,029 static variables explained 54% (95% CI: 50–57%) of the ordinal variation in next-478 
day changes in TIL(Basic) on day one and decreased in explanation significantly from days 479 
two (28% [95% CI: 23–33%]) to six (13% [95% CI: 7–19%]) (Fig. 3c). In other words, the 480 
explanatory impact of dynamic variables increased over time in the ICU. Most of the 481 
explanatory information in static variables contributed towards prediction of treatment 482 
escalations earlier in patients’ ICU stays (Fig. 3b). 483 
 484 

Variables associated with next-day changes in TIL 485 
 486 
During the days of consecutive TIL assessment that were eligible for ΔTimeSHAP 487 
calculation (days 2–7), 575 patients (68% of population) experienced a total of 1,004 day-488 
to-day changes in TIL(Basic). The associative contributions of highest-impact variables 489 
towards prediction of these changes – both for models trained on all variables and for 490 
those trained without treatment variables – are visualised in Fig. 4. The number of points 491 
for each variable in Fig. 4 equals the number of times each variable was represented 492 
across the 1,004 changes in TIL(Basic). Moreover, we annotated several specific values of 493 
categorical variables in Fig. 4 because of their visually consistent association with next-494 
day TIL(Basic) de-escalation (i.e., negative ΔTimeSHAP) or TIL(Basic) escalation (i.e., 495 
positive ΔTimeSHAP). Across the leading predictors of next-day changes in TIL(Basic) (Fig. 496 
4), we found the following categories of variables: 497 

• the preceding trajectory of ICU management (e.g., extubation, prior trajectory of 498 
TIL, ending nasogastric feeding), 499 

• age at admission, 500 
• bleeding risk factors (e.g., history of taking anticoagulants, baseline platelet count), 501 
• brain imaging results (e.g., traumatic subarachnoid haemorrhage, subdural 502 

haematoma, intraparenchymal haemorrhage), 503 
• haemodynamics and intracranial hypertension (e.g., ICP, blood pressure, 504 

respiratory efficiency), 505 
• markers of systemic inflammation (e.g., ventilator-associated pneumonia [which 506 

may also reflect long ventilation time], eosinophils), 507 
• metabolic derangements (e.g., sodium, calcium, alanine aminotransferase), 508 
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• neurological function (e.g., Glasgow Coma Scale [GCS] eye and motor scores), 509 
• protein biomarkers (e.g., neurofilament-light chain, total tau protein). 510 

 511 

 512 
Fig 4. Population-level variable contributions to prediction of changes in next-day TIL(Basic) at days 513 
directly preceding a change in TIL(Basic). The ΔTimeSHAP values on the left panel are from the models 514 
trained on the full variable set whilst the ΔTimeSHAP values on the right panel are from the models trained 515 
without clinician impressions or treatments. ΔTimeSHAP values are interpreted as the relative contributions 516 
of variables towards the difference in model prediction of next-day TIL(Basic) over the two days directly 517 
preceding the change in TIL(Basic) (Supplementary Methods S5). Therefore, the study population 518 
represented in this figure is limited to patients who experienced a change in TIL(Basic) after day two of ICU 519 
stay (n = 575). A positive ΔTimeSHAP value signifies association with an increased likelihood of escalation 520 
in next-day TIL(Basic), whereas a negative ΔTimeSHAP value signifies association with an increased 521 
likelihood of de-escalation. The variables were selected by first identifying the ten variables with non-522 
missing value tokens with the most negative median ΔTimeSHAP values across the population (above the 523 
ellipses) and then, amongst the remaining variables, selecting the ten with non-missing value tokens with 524 
the most positive median ΔTimeSHAP values (below the ellipses). Each point represents the mean 525 
ΔTimeSHAP value, taken across all 20 repeated cross-validation partitions, for a token preceding an 526 
individual patient’s change in TIL(Basic). The number of points for each variable, therefore, indicates the 527 
relative occurrence of that variable before changes in TIL(Basic) in the study population. The colour of the 528 
point represents the relative ordered value of a token within a variable, and for unordered variables (e.g., 529 
patient status during GCS assessment), tokens were sorted alphanumerically (the sort index per possible 530 
unordered variable token is provided in the CENTER-TBI data dictionary: https://www.center-531 
tbi.eu/data/dictionary). Abbreviations: CVDs=cardiovascular diseases, ER=emergency room, FIO2=fraction 532 
of inspired oxygen, GCS=Glasgow Coma Scale, ICP=intracranial pressure, PaO2=partial pressure of 533 
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oxygen, TIL=Therapy Intensity Level, TIL(Basic)=condensed, five-category TIL scale as defined in Table 1, 534 
VAP=ventilator-associated pneumonia. 535 
 536 
The most robust predictors of next-day de-escalation in TIL(Basic) were other clinical 537 
indicators of treatment de-escalation (e.g., ending nasogastric feeding), improvement in 538 
patients’ eye-opening responses, previous administration of barbiturates or propofol, and 539 
sufficient control of ICP. Overall, the effects of predictors for TIL(Basic) escalation were not 540 
as robust as those for de-escalation (Fig. 4); however, stratifying the ΔTimeSHAP values 541 
by the pre-transition TIL(Basic) score revealed more consistent associations per level of 542 
treatment intensity (Supplementary Fig. S5). For example, high ICP values were robustly 543 
predictive of escalations from TIL(Basic)=2, and the prior administration of certain therapies 544 
could be predictive of a future escalation or de-escalation based on the current TIL(Basic) 545 
score (Supplementary Fig. S5). Apart from treatment variables, the factors that 546 
contributed the most towards prediction of de-escalation from extreme ICP management 547 
(i.e., TIL(Basic)=4) were neurological improvements in motor and eye response with 548 
sufficiently controlled ICP and high blood oxygen saturation (Supplementary Fig. S5). The 549 
ΔTimeSHAP values of missing variables (Supplementary Fig. S6) demonstrated that 550 
missingness of a variable (e.g., missing report of daily complications) could have a 551 
significant de-escalating associative effect on model output. 552 
 553 

Conceptual model of changes in treatment intensity 554 
 555 
We combined the results from the differential explanation of next-day changes in TIL(Basic) 556 
(Fig. 3b–c) and the variable contributions towards prediction of these events (Fig. 4) to 557 
produce a conceptual model of day-to-day changes in treatment intensity (Fig. 5). Given 558 
the considerable difference in explanation performance between day one and subsequent 559 
days of ICU stay, we separated these explanation percentages in our model. 560 
 561 
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 562 
Fig 5. Conceptual diagram of factors explaining day-to-day changes in therapeutic intensity. The 563 
percentage values represent the differential explanation of ordinal variation in next-day changes in TIL(Basic) 564 
as measured by Somers’ Dxy. The bolded percentage values represent the 95% confidence interval of 565 
Somers’ Dxy from days 2–6 of ICU stay, whilst the percentage values below them represent the 95% 566 
confidence interval of Somers’ Dxy from day 1 of ICU stay (Fig. 3c). The 95% confidence intervals were 567 
derived using bias-corrected bootstrapping (1,000 resamples) to represent the variation across 20 repeated 568 
five-fold cross-validation partitions. The leading static and dynamic pathophysiological factors were 569 
determined by qualitative categorisation of the variables with the highest contribution to next-day changes 570 
in TIL(Basic) based on ΔTimeSHAP values (Fig. 4). Abbreviations: TIL=Therapy Intensity Level, 571 
TIL(Basic)=condensed, five-category TIL scale as defined in Table 1. 572 
 573 

Discussion 574 
 575 
We present the first approach to dynamic prediction of future therapy intensity levels (TIL) 576 
in ICP-monitored TBI patients. The TILTomorrow modelling strategy allowed us to exploit 577 
the full clinical context (2,008 variables) captured in a large neurotrauma dataset over 578 
time to uncover factors associated with next-day changes in TIL(Basic).19 By including 579 
missing value tokens, models discovered meaningful patterns of missingness 580 
(Supplementary Fig. S6).20 Moreover, our approach mapped clinical events to evolving 581 
predictions at each ordinal level of next-day TIL(Basic), which is an improvement in 582 
statistical power and clinical information over using a dichotomised measure of 583 
therapeutic intensity (e.g., high-TIL therapies).15 584 
 585 
The main results of this study are summarised in the conceptual diagram of changes in 586 
TIL(Basic) (Fig. 5). Amongst all day-to-day steps, the transition from day one to day two had 587 
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the greatest number of changes in TIL(Basic) (Fig. 2b), which were also the most predictable 588 
(68% [95% CI: 65–72%] explanation, Fig. 3c). From day two onwards, the ordinal 589 
explanation of changes in next-day TIL(Basic) dropped to between 39% (95% CI: 32–47%) 590 
and 51% (95% CI: 45–56%). This difference suggests that first-to-second-day changes 591 
in treatment intensity might have been the most systematic, possibly associated with 592 
primary injury severity and initial patient responses to treatment (Fig. 3c). Later in ICU 593 
stay, the predictive influence of a patient’s treatment trajectory increased (mostly through 594 
informative patterns of de-escalation, Fig. 3b), and that of static factors decreased (Fig. 595 
3c). Whilst static factors are poor predictors of TIL(Basic) on any given day (Fig. 3a and as 596 
shown previously12), they achieve considerable discrimination performance in prediction 597 
of escalations up to day four (AUC: 0.70 [95% CI: 0.65–0.74], Fig. 3b). This may indicate 598 
the potential of certain primary injury factors for justifying earlier intervention as to avoid 599 
tolerating suboptimal ICP management for a few days. Apart from age, the highest-600 
contributing static factors were space-occupying lesions (also reflected in a recent 601 
study28) and bleeding risk factors (Fig. 4), both of which can complicate ICP control. As 602 
targets of TIL therapies, ICP and haemodynamic factors are expectedly high-contributing, 603 
with different effects based on the pre-transition TIL(Basic) score (Supplementary Fig. S5). 604 
Metabolic complications (i.e., abnormalities in renal or liver function and electrolytic 605 
imbalances) have previously been shown to be significantly more common in patients 606 
receiving high-TIL therapies12 and an important marker for physiological endotyping.29 607 
Moreover, in a prior study, serial protein biomarkers (in addition to GCS) were key 608 
descriptors for clustering TBI patient trajectories in the ICU.30 Therefore, the results from 609 
these dynamic variables support the links between TIL and pathophysiology – including 610 
systemic factors (e.g., metabolism and inflammation) – after TBI.7 This is potentially of 611 
clinical importance since protein biomarkers are not measured serially as part of typical 612 
routine care outside of research studies (e.g., CENTER-TBI) and a few centres. It is still 613 
uncertain whether serial biomarker measurement would improve care outcomes. 614 
However, analysing the temporal dynamics of these biomarkers may not only enable a 615 
more precise characterisation of patients’ treatment needs but also elucidate biological 616 
mechanisms underpinning variable treatment response. Finally, whilst we found no 617 
significant difference in full-model prediction performance between next-day escalations 618 
and de-escalations of TIL(Basic) (Fig. 3b), high-impact predictors had a more robust signal 619 
with de-escalations than they did with escalations (i.e., more consistently negative 620 
ΔTimeSHAP values in Fig. 4). This suggests that escalation prediction may be the effect 621 
of a complex interaction of factors which is difficult to perceive with ΔTimeSHAP values. 622 
 623 
The underlying assumption of this work is that a more protocolised management of ICP 624 
would also be more predictable based on the dynamic condition of a TBI patient. Even 625 
with wide inter-centre variation in ICP-targeting treatment,14 we would expect the 626 
measurable factors which rationally drive day-to-day changes in TIL to predict such 627 
changes on an individual level. After day two, approximately half of the ordinal variation 628 
in day-to-day changes in TIL(Basic) is unexplained by the full CENTER-TBI variable set, 629 
and we propose four reasons for this remaining uncertainty (Fig. 5). First, certain clinical 630 
events or complications that could suddenly trigger a (de-)escalation in TIL (e.g., 631 
sustained rise in ICP) might not have been predictable from the day before. Second, there 632 
are probably important physiological factors, either unmeasured or not included in our 633 
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variable set, which would have improved TIL prediction. Most notably, high-resolution 634 
waveforms of ICP31 and arterial blood pressure (ABP) and their derived metrics (e.g., 635 
pressure-time dose32 and vascular reactivity33) are more likely to elucidate ICP 636 
management decisions than the bihourly clinician-recorded ICP or CPP values available 637 
in our variable set.34 Prior analyses of additional physiological modalities – e.g., cerebral 638 
microdialysis,35 automated pupillometry,36,37 and motion sensing38 – have also 639 
demonstrated independent associations with TIL or other short-term endpoints after TBI. 640 
Third, assuming different centres have different protocols for ICP management, there may 641 
not have been enough patient representation across the spectrum of TBI severity from 642 
each centre for TILTomorrow to learn centre-specific guidelines. Fourth, a part of ICP 643 
management may be driven by the personal preferences of clinicians in deviation from 644 
general guidelines. At the same time, we recognise that predictability does not guarantee 645 
a systematised delivery of care. We therefore investigated differential explanation of (Fig. 646 
3b–c) and specific variable contributions towards (Fig. 4) changes in TIL to bridge 647 
prediction performance to a plausible concept of ICP management (Fig. 5). 648 
 649 
Our results support the use of TIL as an intermediate outcome after TBI.7 Specific 650 
categories of pathophysiological variables – both static and dynamic – associate well with 651 
changes in TIL (Fig. 4 and 5). Since TIL rates the relative risk and complexity of 652 
administered treatments, it is logical to minimise TIL when all other factors are held equal. 653 
On the other hand, TIL is also a complicated marker of pathophysiology. Since around 654 
half of the ordinal variation in changes in TIL is not explained by measured variables (Fig. 655 
5), we hypothesise that TIL’s sensitivity to pathophysiology is partially confounded by the 656 
personal preferences of clinical teams. Nevertheless, TIL was previously shown to be a 657 
stronger indicator of refractory intracranial hypertension than ICP itself and, thus, a more 658 
suitable intermediate endpoint for TBI management.7 Since the full information pertaining 659 
to TIL was only date-stamped in CENTER-TBI, the highest resolution at which we could 660 
assess TIL(Basic) was once per calendar day (Table 1). However, clinicians were also 661 
asked to record qualitatively whether treatment intensity was decreasing or increasing 662 
every four hours, and these indications (from the day before a change in TIL(Basic)) were 663 
amongst the strongest predictors of next-day changes in TIL(Basic) (Fig. 4). This result 664 
supports a higher resolution TIL for monitoring pathophysiological severity; however, daily 665 
TIL scores have been shown to be reliable estimates of hourly TIL scores,9 and CENTER-666 
TBI has demonstrated the practical feasibility of daily TIL assessment for a large-scale 667 
study (≤2.4% missingness, Fig. 2a). 668 
 669 
TILTomorrow can potentially be useful in other heterogeneous-data-intensive clinical 670 
domains as a framework for decoding factors tied to treatment decision-making or other 671 
dynamic endpoints. This can inform the design of future causal inference models of 672 
individualised treatment effects from observational data.39 TILTomorrow was not 673 
conceived for clinical deployment and should not be used for real-time decision support 674 
due to concerns of self-fulfilling prophecies, generalisability, and variable robustness.40 675 
Our focus was on explanatory modelling, to derive insightful patterns from the CENTER-676 
TBI data and quantify the predictability of ICP management. Furthermore, ΔTimeSHAP 677 
values on observational data are merely associative and cannot be interpreted for causal 678 
inference. We used TimeSHAP in this work to highlight potential areas of investigation 679 
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from a wider, data-driven approach. Pathophysiological predictors of the need for higher 680 
TIL (Fig. 4 and 5) could be useful for improving the timing and precision of future clinical 681 
decision-making (e.g., performing decompressive craniectomy in a timely but targeted 682 
way) but would require more evidence and feasibility studies than just their predictive 683 
power in our data. 684 
 685 
We recognise several additional limitations in this study. TILTomorrow discretised both 686 
numerical variables into binned tokens and time into daily windows, which caused some 687 
loss of information. Limited by the resolution of available TIL assessments, we chose a 688 
daily time window to avoid inconsistent lead times in our prediction task (Fig. 1a). The 689 
highest resolution of regularly recorded variables (e.g., ICP) in the CENTER-TBI core 690 
study is once every two hours,13 and, since TILTomorrow takes the unique set of tokens 691 
per daily window prior to embedding, these numerical variables would be reduced to the 692 
unique set of quantiles represented in a day (Fig. 1b). An encoding strategy which can 693 
integrate high-resolution ICP, CPP, and other clinical information into broader time 694 
windows may improve prediction performance. Additionally, the daily TIL(Basic) score 695 
accounts for 33% of the information in the full, 38-point TIL score.7 As explained in the 696 
Methods, we used TIL(Basic) as the model endpoint over the full TIL score since it would 697 
enable us to uncover factors associated with changes across specific, interpretable bands 698 
of treatment intensity (Table 1). Nevertheless, a regression-based prediction of next-day 699 
full TIL may capture more nuanced patterns of factors associated with changes in ICP 700 
management. Finally, our results may encode recruitment, collection, and clinical biases 701 
native to our European patient set. Selective recording of clinical data – with selective 702 
missingness – may have biased our analyses, and findings may not generalise to other 703 
populations.41 Given the broad inter-centre variation in ICP-targeted care,14 the results of 704 
TILTomorrow are likely to vary considerably depending on the protocols of specific 705 
centres. We encourage investigators to apply the TILTomorrow approach to other 706 
longitudinal, granular ICU datasets of TBI patients – particularly in low- and middle-707 
income countries where the burden of TBI is disproportionately higher42 – and compare 708 
their results. 709 
 710 

Data and code availability 711 
 712 
Individual participant data, including data dictionary, the study protocol, and analysis 713 
scripts are available online, conditional to approved study proposal, with no end date. 714 
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