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ABSTRACT 

Objective: Understanding the neurobiology of cognitive dysfunction in psychotic 

disorders remains elusive, as does developing effective interventions. Limited 

knowledge about the biological heterogeneity of cognitive dysfunction hinders 

progress. This study aimed to identify subgroups of patients with psychosis with 

distinct patterns of functional brain alterations related to cognition (cognitive biotypes). 

Methods: B-SNIP consortium data (2,270 participants including participants with 

psychotic disorders, relatives, and controls) was analyzed. Researchers used 
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reference-informed independent component analysis and the NeuroMark 100k multi-

scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and 

whole-brain functional network connectivity (FNC). FNC features associated with 

cognitive performance were identified through multivariate joint analysis. K-means 

clustering identified subgroups of patients based on these features in a discovery set. 

Subgroups were further evaluated in a replication set and in relatives. 

Results: Two biotypes with different functional brain alteration patterns were 

identified. Biotype 1 exhibited brain-wide alterations, involving hypoconnectivity in 

cerebellar-subcortical and somatomotor-visual networks and worse cognitive 

performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical 

networks and hypoconnectivity in somatomotor-high cognitive processing networks, 

and better preserved cognitive performance. Demographic, clinical, cognitive, and 

FNC characteristics of biotypes were consistent in discovery and replication sets, and 

in relatives. 70.12% of relatives belonged to the same biotype as their affected family 

members. 

Conclusions: These findings suggest two distinctive psychosis-related cognitive 

biotypes with differing functional brain patterns shared with their relatives. Patient 

stratification based on these biotypes instead of traditional diagnosis may help to 

optimize future research and clinical trials addressing cognitive dysfunction in 

psychotic disorders. 
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INTRODUCTION 

Cognitive dysfunction is widely recognized as a transdiagnostic core dimension 

of psychotic disorders and is consistently associated with general functional outcomes. 

The effectiveness of current therapeutic or preventive strategies for cognitive 

dysfunction is limited (2,3) and the development of new treatments is hampered by 

our scarce knowledge about the biological underpinnings of cognitive dysfunction (4). 

Distinct patient subgroups with different neurobiology (i.e., biotypes) may exist, 

necessitating different treatments (4–6). Nevertheless, DSM diagnoses are based on 

different patterns of psychotic or affective symptoms, which do not necessarily reflect 

the brain alterations that may underlie cognitive dysfunction in these disorders. 

Cognitive dysfunction-associated brain alterations could be different in people with the 

same DSM diagnosis or overlap between people with a different diagnosis or with their 

first-degree relatives, known to present intermediate cognitive performance (7). 

Despite this, cognitive interventions are usually developed for participants with a 

specific DSM diagnosis (8), rather than for biotypes based on neurobiology. This 

method ignores the potential biological heterogeneity underlying cognitive dysfunction 

and poses a substantial impediment to its success (4,5).  

Previous works in this area have been limited mainly to three categories. The first 

category has focused on identifying subgroups using observable cognitive 

performance (9). This methodology resembles DSM, through computational 

approaches, but probably with the same underlying caveats. The second category has 

identified general subgroups combining cognitive performance and laboratory tasks 
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(10,11). These categories often fail to leverage the neural underpinnings of cognition. 

The third category has utilized magnetic resonance imaging (MRI) to identify 

subgroups based on brain characteristics, but their emphasis has been on identifying 

general subgroups rather than oriented toward cognitive dysfunction (12–17). 

Covariation patterns between brain features and symptom dimensions may vary, 

indicating distinct brain mechanisms for each dimension. Relying solely on general 

subgroups may obscure again the underlying biological diversity of cognitive 

dysfunction, limiting the utility of these subgroups in the understanding of cognitive 

dysfunction.  

Recent research has shown that resting-state functional connectivity (rsfMRI) (18) 

exhibits stronger associations with cognitive performance than structural MRI (19). 

Consequently, rsfMRI emerges as a more suitable tool for the discovery of cognition-

related neurobiology-based biotypes of psychotic disorders.  

Recent advancements have led to a standardized and fully automated framework, 

called Neuromark (20) for identifying functional patterns across participants and 

datasets in rsfMRI. This includes a canonical template with 105 multi-scale intrinsic 

connectivity networks (ICNs) from data collected from over 100,000 participants (21). 

This template can be used along with reference-informed independent component 

analysis (ICA) (22,23) to identify these ICNs in new participants and to compute their 

functional network connectivity (FNC). 
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In this work, we hypothesize that subgroups of patients or biotypes with 

psychotic disorders with different patterns of FNC related to cognitive dysfunction and 

different cognitive profiles can be identified with this method. We use a large dataset 

of participants with schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar 

disorder with psychotic symptoms (BDP), their first-degree relatives, and controls. We 

will validate the subgroups in a replication sample and in first-degree relatives. 

METHODS 

Fig. 1 Overview of the analytic pipeline. A) We employed multivariate-objective 

optimization independent component analysis with reference (MOO-ICAR) to estimate 

105 multi-scale intrinsic connectivity networks (ICNs) at the subject level. The 

reference for the 105 ICNs was derived from a large sample of over 100,000 

participants. We computed subject-level static functional network connectivity (FNC) 

by calculating pairwise Pearson correlations between cleaned time courses of ICNs, 

resulting in a 105 × 105 symmetric FNC matrix for each participant. ICNs are grouped 

together based on their anatomical and functional properties. B) Principal Component 

Analyses Plus Canonical Correlation (PCA-CCA) was fitted on the discovery set, 

including patients, relatives, and controls, to find FNC features associated with the 

Brief Assessment of Cognition in Schizophrenia and Wechsler Memory Scale 

Backward and Forwards Tests. The optimal number of principal components was 

estimated directly from the data Elbow criteria. Three canonical correlations remained 

statistically significant in the replication set and two remained statistically significant 

after adjusting for covariates. We conducted a pair-wise comparison between patients 
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and controls for the remaining two canonical variates adjusting for covariates in the 

replication set.  Patients and controls presented statistically significant differences in 

both cognitive canonical variates and in the first FNC canonical variate but did not in 

the second FNC canonical variate, therefore we did not include the second pair in 

subsequent analyses. C) We selected FNC features with the highest correlation with 

the first canonical variate in patients in the discovery set. We selected FNC features 

with a loading >|0.1047| according to the elbow method (Cognitive FNC features in 

Psychosis or CFPs). Left: Correlation values of the 5460 functional network 

connectivity features and the first FNC canonical variate in 105 × 105 symmetric 

matrices in patients in the discovery set. Blue colors: negative correlation. Yellow-red 

colors: positive correlation. Lighter colors: correlation closer to 0. Middle: elbow plot of 

ranked absolute values of correlations with a vertical line at 0.1047, the value chosen 

as threshold. Right: FNC features with a correlation with absolute values lower than 

0.1047 and therefore not included in k-means clustering are shown in white. The 1077 

FNC features selected for k-means clustering are shown in color.  D) We conducted 

k-means clustering using patients from the discovery set to find subgroups of patients 

based on CFPs. Silhouette index solution for two clusters was statistically significant 

(p=0.0005). E) We assigned patients from the replication set to one of the clusters 

obtained in the discovery set based on the shortest Euclidean distance between each 

subject’s centroid and the clusters’ centroid for the 1077 CFPs. F) We computed the 

centroid of the 1077 CFPs in the control group to simulate a control cluster. Like E, we 

assigned first-degree relatives to either one of the patients' clusters or to the control 
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cluster based on the shortest distance between the centroid of each subject and the 

centroids of the clusters. 

 

Fig. 1. Overview of the analytic pipeline. A) We employed multivariate-objective 

optimization independent component analysis with reference (MOO-ICAR) to estimate 
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105 multi-scale intrinsic connectivity networks (ICNs) at the subject level. The 

reference for the 105 ICNs was derived from a large sample of over 100,000 

participants. We computed subject-level static functional network connectivity (FNC) 

by calculating pairwise Pearson correlations between cleaned time courses of ICNs, 

resulting in a 105 × 105 symmetric FNC matrix for each participant. ICNs are grouped 

based on their anatomical and functional properties. B) Principal Component Analyses 

Plus Canonical Correlation (PCA-CCA) was fitted on the discovery set, including 

patients, relatives, and controls, to find FNC features associated with the Brief 

Assessment of Cognition in Schizophrenia and Wechsler Memory Scale Backward 

and Forwards Tests. The optimal number of principal components was estimated 

directly from the data Elbow criteria. Three canonical correlations remained statistically 

significant in the replication set and two remained statistically significant after adjusting 

for covariates. We conducted a pair-wise comparison between patients and controls 

for the remaining two canonical variates adjusting for covariates in the replication set.  

Patients and controls presented statistically significant differences in both cognitive 

canonical variates and in the first FNC canonical variate but did not in the second FNC 

canonical variate, therefore we did not include the second pair in subsequent 

analyses. C) We selected FNC features with the highest correlation with the first 

canonical variate in patients in the discovery set. We selected FNC features with a 

loading >|0.1047| according to the elbow method (Cognitive FNC features in 

Psychosis or CFPs). Left: Correlation values of the 5460 functional network 

connectivity features and the first FNC canonical variate in 105 × 105 symmetric 
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matrices in patients in the discovery set. Blue colors: negative correlation. Yellow-red 

colors: positive correlation. Lighter colors: correlation closer to 0. Middle: elbow plot of 

ranked absolute values of correlations with a vertical line at 0.1047, the value chosen 

as threshold. Right: FNC features with a correlation with absolute values lower than 

0.1047 and therefore not included in k-means clustering are shown in white. The 1077 

FNC features selected for k-means clustering are shown in color.  D) We conducted 

k-means clustering using patients from the discovery set to find subgroups of patients 

based on CFPs. Silhouette index solution for two clusters was statistically significant 

(p=0.0005). E) We assigned patients from the replication set to one of the clusters 

obtained in the discovery set based on the shortest Euclidean distance between each 

subject’s centroid and the clusters’ centroid for the 1077 CFPs. F) We computed the 

centroid of the 1077 CFPs in the control group to simulate a control cluster. Like E, we 

assigned first-degree relatives to either one of the patients' clusters or to the control 

cluster based on the shortest distance between the centroid of each subject and the 

centroids of the clusters. 

 

1. Participants 

We analyzed data from 2270 participants recruited by the Bipolar-Schizophrenia 

Network on Intermediate Phenotypes (B-SNIP) Consortium 1 and 2. Patients meeting 

the criteria for BDP, SAD, or SZ were included (N=1179), and their first-degree 

relatives (N=465). Controls (N=626) had no history of lifetime psychosis syndromes, 

recurrent mood syndromes, or first-degree relatives with psychosis. We used all 
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available data from participants who had completed rsfMRI and Brief Assessment of 

Cognition in Schizophrenia (BACS) data (Table S1). 

2. Discovery and replication sets 

Our sample was divided into discovery and replication sets comprising 80% and 

20% of the sample. The proportion of patients, relatives, and controls was consistent 

in both sets.  

3. Clinical and cognitive assessments 

Participants meeting a diagnosis for SZ, SAD, or BDP were rated on clinical scales. 

All participants were rated on the BACS. We also incorporated the Weschler Memory 

Scale Backward and Forwards subtests for the cognitive assessment (24). For 

patients recruited in B-SNIP2, information regarding childhood learning difficulties was 

collected. 

4. Estimating subject-specific multi-scale intrinsic connectivity networks 

(ICNs) and functional network connectivity (FNC) 

Imaging data acquisition and preprocessing details can be found in supplementary 

material. We used the GIFT software toolbox (http://trendscenter.org/software/gift) 

(25) to perform multivariate-objective optimization ICA with reference (MOO-ICAR) 

(21,22,26), and generate subject-specific ICNs. As a reference, we used the 

Neuromark_fMRI_2.0 template (http://trendscenter.org/data), which includes highly 

replicated 105 ICNs across different spatial scales (21) in over 100k individuals. Next, 
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we computed subject-level static FNC by calculating pairwise Pearson correlations 

between the cleaned time courses of ICNs. This process resulted in a 105 × 105 

symmetric FNC matrix for each participant, which represents the whole-brain 

functional connectome (27,28) (Fig. 1A).  

5. Canonical FNC signatures of cognitive performance 

First, we aimed to find FNC features highly associated with cognitive 

performance (BACS and Weschler Memory Scale Backward and Forwards tests). 

Secondly, we used these features to identify cognition-related neurobiology-based 

subgroups of patients or biotypes. For this purpose, we used a Principal Component 

Analysis Plus Canonical Correlation Analyses (PCA-CCA) model. PCA-CCA finds 

pairs of cognitive and FNC weights (canonical weights) such that the linear 

combination of the cognitive and FNC variables maximizes the correlation (canonical 

correlation) between the resulting pair (canonical pair) of latent variables (canonical 

variates). PCA-CCA was performed on the discovery set, including patients, relatives, 

and controls (Fig. 1B). By combining the three groups we achieved a larger sample 

size, boosting the statistical power and mitigating overfitting (19,32). This is also 

crucial as it allows us to select the canonical variates with significant differences 

between participants with psychosis and controls. By focusing on these features, 

subsequent clustering analysis has a higher likelihood of identifying subgroups of 

patients based on FNC features related to cognitive dysfunction in psychosis, rather 

than simply capturing general population variability. The optimal number of principal 

components was estimated directly from the data using the Elbow method ensuring 
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that we retained relevant information while achieving a well-posed and more 

generalizable model. We included further methods to optimize the model and improve 

the robustness of our findings (supplementary material, Fig. 1B). We tested canonical 

correlations' statistical significance in replication and discovery sets with permutation 

analyses (10000 permutations).  

Next, we examined the influence of covariates (age, sex, race, socioeconomic status, 

and chlorpromazine equivalents) in the association between canonical variates in the 

replication set. For this,  we conducted linear models with canonical cognitive variates 

(CVCog) as dependent variables and canonical FNC variates (CVFNC) and covariates 

as independent variables. Canonical pairs without statistically significant associations 

in the replication set in these linear models were excluded from subsequent analyses.  

 

6. Determining cognition-related FNC features in participants with 

psychosis 

Next, we identified cognition-related FNC features in psychosis. First, we applied 

group comparison between patients and controls while controlling for the same 

previous covariates to identify canonical pairs with significant differences between 

groups in both canonical variates in the replication set (which we called psychosis-

related) (Fig. 1B). Since we were aware of possible problems associated with 

covariates correlated with one group (33) we repeated these analyses excluding 

chlorpromazine equivalents (associated with participants with psychosis) and obtained 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.14.24307341doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307341
http://creativecommons.org/licenses/by-nc/4.0/


   

 

 

13 of 39 

 

 

 

similar results. Subsequently, we calculated Pearson correlations between this CVFNC 

and FNC features in the patient’s group. By this, we pinpointed FNC features that 

exhibit covarying patterns similar to the psychosis-related CVFNC across participants 

with psychotic disorders. The correlation values were ranked, and the elbow method 

was used to establish a threshold. We selected the FNC features with higher 

correlations than |0.1047| (Fig. 1C). We refer to these FNC features as Cognitive FNC 

Features in Psychosis or CFPs (Fig. 1C). 

 

7. Identifying cognition-related psychosis biotypes 

We evaluated whether CFPs conformed to a distribution with potential underlying 

clusters in the patient's group in the discovery set. We applied k-means clustering with 

Euclidean distance (Fig. 1D). We computed the silhouette index to find the optimal 

number of clusters (k) and its statistical significance against the null hypothesis of a 

distribution with no clusters (32). Clustering stability was then evaluated using a 

bootstrapping resampling technique (n bootstraps=1000) and Jaccard similarity 

average (34). We further considered these clusters as biotypes. 

8. Biotypes validation and characterization 

In k-means clustering, each cluster is represented by its centroid. This enables the 

assignment of a new subject to one of the established clusters based on the similarity 

between the CFPs of the subject and the cluster centroids (shortest Euclidean 
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distance between subject and cluster centroids) (35,36). We assigned patients from 

the replication set to clusters obtained in the discovery set using this method (Fig. 1E). 

 First-degree relatives present intermediate cognitive performance between patients 

and controls (34, Table S1), therefore, we hypothesized that some relatives present 

more similar CFP patterns to their affected family member than to controls, while other 

relatives may be more similar to controls than to patients. To evaluate this, we 

computed the centroid representative for the control group (control cluster or biotype) 

by calculating the average value of their CFPs. Relatives were then assigned to either 

one of the patients' clusters or the control cluster based on their closest centroid (Fig. 

1F). We calculated the proportion of relatives assigned to the same cluster as their 

affected family members. We compared clusters/biotypes of patients from discovery 

and replication sets and clusters/biotypes of relatives, for demographic, clinical, 

cognitive variables, and FNC features. We excluded first-degree relatives with a 

psychotic disorder. 

 

9. Comparison with DSM diagnostic categories 

Using a consistent approach, we computed the centroids for SZ and BPD 

participants, assigning their relatives to one of these diagnostic groups or control 

group. We hypothesize that DSM diagnoses exhibit heterogeneity and overlap in FNC 

features related to cognition, therefore, the proportion of relatives in the same cluster 

will be lower than when using biotypes.   
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 For detailed methodological and complementary information see the 

corresponding sections in the supplementary material. 

 

RESULTS 

Demographic, clinical, and cognitive characteristics of discovery and replication sets 

are shown in Table S1. 

1. Canonical FNC signatures of cognitive performance 

Three canonical pairs presented statistically significant correlations in both the 

discovery (rDis1=0.49, pDis1=0.001; rDis2=0.34, pDis2<0.001; rDis3=0.33, pDis3<0.001, Fig. 

2A) and replication set (rRep1=0.47, pRep1=0.001; rRep2=0.24, pRep2<0.001; rRep3=0.13, 

pRep3=0.002, Fig. 2B). Loadings are shown in Fig. 2C  and 2D.  Associations in the 

first and second pairs remained statistically significant after adjusting for covariates in 

the replication set (βRep1=0.24, CIRep1: 0.16 – 0.33, pRep1<0.001; βRep2=0.12, CIRep2: 

0.02 – 0.21, pRep2=0.015), but third pair association did not (βRep3=0.03, CIRep3: -0.07 

– 0.14, pRep3=0.500). The third pair was not included in subsequent analyses (see 

supplementary material). 
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Fig. 2. Canonical correlations and canonical loadings between cognitive 

performance and functional network connectivity features. A) Scatterplots of the 

first (left), second (center), and third (right) canonical pairs in the discovery set. 

Canonical correlations: rDis1=0.49, pDis1=0.001; rDis2=0.34, pDis2=0.001; rDis3=0.33, 

pDis3=0.001. P-values computed with 1000 permutations B) Scatterplots of the first 

(left), second (center), and third (right) canonical pairs in the replication set. Canonical 

correlations: rRep1=0.47, pRep1<0.001; rRep2=0.24, pRep2<0.001; rRep3=0.13, pRep3=0.002. 

C) Loadings (Pearson correlation between cognitive subtests and cognitive canonical 

variates) for Brief Assessment of Cognition in Schizophrenia (BACS, blue) subtests 

and Weschler Memory Scales (WMS, red) Backward and Forward for the first (left), 

second (center) and third (right) canonical pairs. D) Loadings (Pearson correlation 

between FNC and FNC canonical variates) for the 5460 FNC and the first (left), second 

(center), and third (right) canonical pairs. Loadings are represented in 105×105 

symmetric matrices. The 105 multiscale intrinsic connectivity networks are grouped as 

follows: Visual networks (VI), cerebellar networks (CB), temporal networks (TP), 

subcortical networks (SC),  somatomotor networks (SM), and high cognitive 

processing networks (HCP). E, F and G) Brain maps in MNI152 space, where nodes 

are the coordinates of peak activation points of the 105 intrinsic connectivity networks 

and edges are 10% functional connectivity features (FNC) with the highest loadings 

for each FNC canonical variate (E, first; F, second; G, third).  H) Violin plots of 

participants with psychosis and controls pairwise comparisons of the first (left) and 

second (right) canonical pairs in the replication set. Two-tailed t-tests obtained from 
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linear models adjusting for covariates: First functional network canonical variate, 

d=0.58, t(466)=5.28, padj<0.0001; First cognitive canonical variate, d=0.53, 

t(466)=5.05, padj<0.0001; Second functional network connectivity canonical variate, 

d=0.07, t(466)=0.56, padj=0.84; Second cognitive canonical variate, d=0.35, 

t(466)=3.05, padj=0.007. t: t-statistic, t(degrees of freedom), d: difference. * statistically 

significant differences between groups. EMM: Estimated Marginal Mean. P-value: 

Tukey method for comparing a family of 3 estimates. 

 

2. Determining cognition-related FNC features in participants with 

psychosis 

 Pairwise comparison in the replication set (Fig. 2H) showed statistically 

significant differences between patients and controls in CVFNC1 (controls–patients, 

d=0.58, t(466)=5.28, padj<0.0001), CVCog1 (controls–patients, d=0.53, t(466)=5.05, 

padj<0.0001), and CVCog2 (controls–patients, d=0.35, t(466)=3.05, padj=0.007), but not 

in CVFNC2 (controls–patients, d=0.07, t(466)=0.56, padj=0.84). Therefore, we included 

the first pair but not the second in subsequent analyses since we were interested in 

canonical pairs with differences between patients and controls in both cognition and 

FNC. We selected FNC features with the highest correlation with the CVFNC1 in patients 

in the discovery set (CFPs) for k-means clustering. Elbow’s method suggested 0.1047 

as a threshold, comprising 1077 FNC features (Fig. 1C). 
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3. Identifying cognition-related psychosis biotypes, validation, and 

characterization 

 We ran k-means clustering to identify two clusters (Fig. 1D). Silhouette index 

(0.05) solution for two clusters was statistically significant (p=0.0005).  Jaccard 

similarity values were 0.935 for Cluster 1 and 0.921 for Cluster 2. A value higher than 

0.85 suggests a highly stable cluster (29, 31). Of those first-degree relatives with their 

family members included in analyses, 76.56% (N=281/367) were assigned to one of 

the patient's biotypes, and of those relatives, 70.12% (N=197/281, χ2=7.03, 

p<0.00001) were assigned to the same biotype as their family member (Fig. 1F). 

23.4% (N=86/367) of relatives were assigned to the control biotype (see 

supplementary material). In the same analyses with BDP and SZ diagnosis, only 

54.85% of relatives assigned to psychosis clusters were assigned to the same 

diagnosis cluster as their family members (N=96/175, χ2=1.22, p=0.269).  

3.1 Patient biotypes in the discovery set 

Biotype 1 exhibited more extensive FNC alterations than biotype 2. Biotype 1 

displayed hypoconnectivity between visual-somatomotor, cerebellar-subcortical, high 

cognitive processing-cerebellar, somatomotor-subcortical, and high cognitive 

processing-temporal networks, and hyperconnectivity between visual-subcortical, 

visual-cerebellar, somatomotor-subcortical and high cognitive-somatomotor networks 

(Fig.3A and B). Biotype 2 displays hypoconnectivity between high cognitive 

processing-somatomotor, high cognitive processing-subcortical and subcortical-
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cerebellar, and hyperconnectivity between cerebellar-somatomotor, subcortical-

somatomotor, and temporal-high cognitive processing networks (Fig.3A and B). 

Compared to biotype 2 and after false discovery rate correction (FDR), biotype 1 

presented a statistically significantly higher proportion of African Americans and lower 

of Caucasians, a higher proportion of SZ and lower of BDP, older age, lower 

socioeconomic status, more similarity to SZ than BDP (schizo-bipolar scale, SBS), a 

lower but small difference in global and social functioning (GAF and BSFS), worse 

cognitive performance across all cognitive subtests and a higher proportion of patients 

with a history of childhood learning difficulties in all categories (Fig.4, Fig.5A and 

Table S5). 
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Fig. 3. Matrices for the differences in functional network connectivity 

between controls (N = 626) and biotypes. Discovery set: biotype 1, N=426; biotype 

2, N=497. Replication set: biotype 1, N=110, biotype 2 N=146. First-degree relatives: 

biotype 1, N=153; biotype 2, N=178, cognitive biotype, N=95. For each functional 

network connectivity (FNC) feature, we fit a linear model adjusting for sex, age, race, 

ethnicity, site, and head motion and conducted a two-tailed t-test to compare controls 

with each biotype of patients and relatives. Bottom-left triangle: t-statistic. Top-right 

triangle: p-values, those that reached statistical significance (p<0.05) after false 

discovery rate (FDR) correction are shown with colors (–log10(p-value)×sign(t-

statistic) scale); otherwise, they are shown in gray. Yellow-Red colors: higher FNC in 

patients/relatives compared to controls. Blue colors: lower FNC in patients/relatives 

compared to controls. Cognitive FNC features in psychosis (CFPs) included in k-

means clustering are shown with a black line. Visual networks (VI), cerebellar 

networks (CB), temporal networks (TP), subcortical networks (SC),  somatomotor 

networks (SM), and high cognitive processing networks (HCP). First-degree relatives 

with a diagnosis of a psychotic disorder were excluded from these analyses. 

 

3.2 Patient biotypes in the replication set 

Fewer differences in FNC, demographic, clinical, and cognitive characteristics 

reached statistical significance, but a similar pattern of differences in the same 

direction was observed (Fig.3C and D, Fig.4 and  Fig.5B). African Americans and 
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older age were statistically significant. Higher similarity to SCZ (SBS) was close to 

significance (p=0.07) (Fig.4 and Table S5). Regarding cognition, similar to the 

discovery set, biotype 1 displayed an average worse performance in all cognitive 

subtests and a higher proportion of patients with learning difficulties during childhood 

in all categories, but only differences in BACS composite, tower of London, WMS 

backward, and forward tests reached statistical significance. Symbol coding was close 

to significance (p=0.054). None survived FDR correction (Fig. 4, Fig.5B, and Table 

S5).  
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Fig. 4. Comparison of demographic, clinical and cognitive characteristics of 

biotypes (I). Discovery set: biotype 1, N=426; biotype 2, N=497. Replication set: 

biotype 1, N=110, N=146. First-degree relatives: biotype 1, N=153; biotype 2, N=178, 

control biotype, N=95. WMS: Weschler Memory Scale; BACS: Brief Assessment of 

Cognition in Schizophrenia; YMRS: Young Mania Rating Scale; BSFS: Birchwood 

Social Functioning Scale; SES: Socioeconomic Status (Hollingshead index); SBS: 

Schizo-bipolar Scale; PANSS: Positive and Negative Syndrome Scale for 

Schizophrenia; Chlorpromazine equivalents: Average daily chlorpromazine dose; 

MADRS: Montgomery-Asberg Depression Rating Scale; BACS: Brief Assessment of 

Cognition in Schizophrenia;  BSFS: Birchwood Social Functioning Scale; SES: 

Socioeconomic status; SBS: Schizo-bipolar Scale;  Chlorpromazine equivalents: 

Average daily chlorpromazine dose; MADRS: Montgomery-Asberg Depression Rating 

Scale; GAF: Global Assessment of Functioning Scale; Z-scores are shown. BACS z-

scores were obtained from normative data stratified by age and sex. * Non-adjusted 

p-value < 0.05 from a two-tailed t-test; ** False discovery rate correction for multiple 

testing p-value <0.05. Comparisons with three biotypes in first-degree relatives were 

adjusted with the Tukey method for comparing a family of three estimates. WMS: 

Statistics were obtained from linear models that also accounted for the influence of 

age, sex, race, ethnicity, site, and socioeconomic status. BACS: Statistics were 

obtained from linear models that also accounted for the influence of race, ethnicity, 

site, and socioeconomic status (age and sex accounted for when computing z-scores). 
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Statistical details are shown in Table S5. First-degree relatives with a diagnosis of a 

psychotic disorder were excluded from these analyses. 

 

3.3 First-degree relatives biotypes 

Congruent patterns of differences also emerged in first-degree relatives 

(Fig.3E, F and G, Fig. 4, Fig.5C, and Table S5) in FNC, demographic and clinical 

characteristics. Biotype 2 also showed hypoconnectivity between visual-high cognitive 

performance networks and hyperconnectivity between visual-subcortical networks, a 

pattern not observed in the same biotype in patients. As expected, the control biotype 

presented substantially fewer FNC differences. After FDR correction and compared to 

biotype 2, biotype 1 exhibited statistically significant older age, lower GAF, and a 

higher proportion of African Americans. Biotype 1 also presented worse cognitive 

performance across all subtests. Differences in the BACS composite, verbal learning, 

digit sequencing, symbol coding, and WMS backward and forward subtests were 

statistically significant and survived FDR. Compared to relatives in the control biotype, 

biotype 1 displayed worse performance in BACS composite, verbal memory, symbol 

coding, digit sequencing, and WMS forwards subtests after FDR. Biotype 2 (more 

cognitively preserved in patients) and control biotype did not exhibit statistically 

significant differences in cognitive performance. This pattern mirrors the findings 

observed in patients.  
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Fig. 5. Comparison of demographic and clinical characteristics (II) and 

childhood learning difficulties between biotypes. Discovery set: biotype 1, N=426; 

biotype 2, N=497. Replication set: biotype 1, N=110, N=146. First-degree relatives: 

biotype 1, N=153; biotype 2, N=178, control biotype, N=95.  * Non-adjusted p-value < 

0.05 from Pearson’s Chi-squared test; ** False discovery rate correction for multiple 

testing p-value <0.05. DSM diagnosis in first-degree relatives refers to the diagnosis 

of the affected family member. Statistical details are shown in Table S5. First-degree 

relatives with a diagnosis of a psychotic disorder were excluded from these analyses. 
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DISCUSSION 

Our study aimed to identify neurobiology-based cognition-related biotypes in 

patients with psychotic disorders, characterized by distinct functional brain alterations 

related to cognition. Firstly, we identified a robust multivariate correlation between 

brain-wide FNC and cognitive performance across patients, relatives, and controls in 

a never-seen replication set. We found a higher correlation than previously reported 

(19), potentially attributable to methodological improvements through our constrained 

ICA NeuroMark approach and the multi-scale ICNs template. Patients exhibited 

significantly lower scores in the first FNC and cognitive canonical variates and 

remained significant after adjusting for covariates such as antipsychotic medication. 

This is in line with previous studies that suggest that disruptions in brain networks are 

implicated in cognitive dysfunction in psychosis (39,40). 

Secondly, we identified two biotypes with distinct FNC characteristics linked to 

cognitive performance (CFPs). Biotype 1 consistently exhibited poorer cognitive 

performance and a higher prevalence of childhood learning difficulties in both 

discovery and replication sets. Lack of statistically significant differences in cognitive 

performance and other characteristics between biotypes in the replication set is likely 

due to limited statistical power. This is supported by similar patterns in demographic, 

clinical, cognitive, and FNC characteristics between biotypes in discovery and 

replication sets. Analogous patterns were observed in first-degree relatives: biotype 1 

displayed inferior cognitive performance in six cognitive subtests compared to biotype 
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2 and in five compared to the control biotype (first-degree relatives more similar to 

controls), with similar patterns in FNC differences compared to controls. 

The two identified biotypes potentially represent distinct subgroups of patients with 

divergent patterns of brain networks implicated in cognitive dysfunction and spanning 

widely across the brain. This different pattern of hypo-hyper connectivity (reversed in 

somatomotor-high cognitive processes, temporal-high cognitive processes, and 

subcortical-high cognitive processes networks to a different extent) may suggest that 

biotypes are not only different in severity but also in brain alterations or compensation 

mechanisms. The involvement of visual networks is noteworthy, as their implication in 

psychosis is debated (41).  

To our knowledge, this study represents the first attempt to identify neurobiology-

based psychosis biotypes associated with a specific symptom dimension in both 

patients and relatives. We consider this approach as a potential improvement for 

unraveling the biological heterogeneity within psychosis compared to previous efforts. 

The identification of two patient biotypes —one with more pronounced brain alterations 

and poorer cognitive performance— aligns with findings from other studies (15,16) that 

utilized different methodology and structural MRI. The convergence of findings 

potentially suggests the validity for both approaches. 

Our third key finding reveals that 70.12% (χ2=7.0297, p<0.00001) of relatives were 

assigned to the same biotype as their family members with psychosis, suggesting that 

relatives present similarities in the functional brain patterns related to cognition that 
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delineate biotypes. Shared genetic and environmental backgrounds likely contribute 

to this phenomenon. Consistent differences in childhood learning difficulties 

prevalence between the discovery and replication sets (though reaching statistical 

significance only after FDR in the discovery set), suggest potential biotype-related 

distinctions in cognitive performance present, at least, since childhood. This is in line 

with the neurodevelopmental hypothesis of psychosis. Notably, biotype 1 showed a 

higher representation of African Americans among patients and relatives, aligning with 

research on childhood adversity disparities in African Americans impacting structural 

brain differences (42). This overrepresentation may reflect adverse environments for  

biotype 1, potentially influencing cognitive development, leading to learning difficulties 

since childhood and more pronounced FNC disruptions in adulthood.  

The persistent observation of older age in biotype 1 might initially suggest a 

confounding role. We find this unlikely given the modest age disparities (4-5 years), 

likely insufficient to explain the observed FNC variations.  Analyses for cognitive and 

FNC differences were age-adjusted, minimizing the likelihood that age alone can 

account for the results. The disparities in childhood learning difficulties suggest that 

differences between biotypes are present since childhood and independently of the 

participants' current ages. To further validate our results, we conducted k-means 

clustering again after regressing out the influence of age from FNC features. 92.1% of 

patients in the discovery and 93.0% in the replication sets were assigned to the same 

biotype as in the original analyses, additionally supporting that age did not play a major 

role (supplementary material). 
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Furthermore, the percentage of relatives in the same cluster, is reduced to 54.85% 

(χ2=1.22, p=0.269)  when using SZ and BPD diagnoses instead of cognitive biotypes, 

suggesting that SZ and BPD groups are similar or overlapping in CFPs. This suggests 

that a neurobiologically driven stratification could be a better approach to foster 

treatment development for cognitive dysfunction, rather than approaches based on 

DSM diagnoses. Subsequent investigations could explore the impact of treatments 

purportedly capable of modulating cognition in psychotic disorders (3) on CFPs. This 

exploration may offer insights into which patients may experience cognitive 

improvements or deterioration as a pharmacological side effect (43).  

Limitations 

First, even though we have a relatively large sample size, it may have been 

insufficient for some analyses. Second, to avoid simply capturing general population 

variability in clustering, we selected 1) FNC canonical variates within pairs with 

differences between participants with psychosis and controls in both canonical 

variates and 2) FNC features with the highest correlation with this canonical variate in 

participants with psychosis.  However, it still may be possible that identified biotypes 

correspond to general population variability and not specific to psychotic disorders.  

Conducting multivariate analyses using only the participants with psychosis may be 

another approach. Third, hard clustering techniques as k-means present limitations 

since some participants may present intermediate characteristics between clusters. 

Fourth, we did not adjust for drug use or medical conditions known to impact cognition 

(cardiometabolic conditions) (44,45). Fifth, about 60% of our sample were 
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white/caucasian, limiting the generalization of results. Differences in the 

representation of races in biotypes may not extrapolate outside the US to countries 

with different social structures. 

CONCLUSIONS 

We have identified and, to a reasonable extent, replicated two distinct cognitive 

biotypes in a large sample of patients with psychotic disorders. These biotypes exhibit 

disparities in cognitive dysfunction severity, demographics, and brain functional 

alterations with distinct patterns of hypo-hyperconnectivity. These biotypes may be 

partially present in first-degree relatives. Utilizing these biotypes as a stratification 

framework in future investigations focused on cognitive dysfunction may be promising 

for enhancing their success. 
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