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ABSTRACT 
 
Background 
Prognostic models are becoming increasingly relevant in clinical trials as potential surrogate 
endpoints, and for patient management as clinical decision support tools. However, the impact 
of competing risks on model performance remains poorly investigated. We aimed to carefully 
assess the performance of competing risks and non-competing risks models in the context of 
kidney transplantation, where allograft failure and death with a functioning graft are two 
competing outcomes. 
 
Methods 
We included 10 546 adult kidney transplant recipients enrolled in 10 countries (3941 patients 
in the derivation cohort, 6605 patients in international external validation cohorts). We 
developed prediction models for long-term kidney graft failure prediction, without accounting 
(i.e., censoring) and accounting for the competing risk of death with a functioning graft, using 
Cox and Fine-Gray regression models. To this aim, we followed a detailed and transparent 
analytical framework for competing and non-competing risks modelling, and carefully 
assessed the models’ development, stability, discrimination, calibration, overall fit, and 
generalizability in external validation cohorts and subpopulations. In total, 15 metrics were 
used to provide an exhaustive assessment of model performance. 
  
Results 
Among the 3941 recipients included in the derivation cohort, 538 (13.65%) lost their graft and 
414 (10.50%) died after a median follow-up post-risk evaluation of 5.77 years (IQR 3.52-7.00). 
In the external validation cohorts, 896 (13.56%) graft losses and 525 (7.95%) deaths occurred 
after a median follow-up post-risk evaluation of 4.25 years (IQR 2.35-6.59). At 7 years post-
risk evaluation, overestimation of the cumulative incidence was moderate when using Kaplan-
Meier, compared to the Aalen-Johansen estimate (16.71% versus 15.67% in the derivation 
cohort). Cox and Fine-Gray models for predicting the long-term graft failure exhibited similar 
and stable risk estimates (average MAPE of 0.0140 and 0.0138 for Cox and Fine-Gray models, 
respectively). At 7 years post-risk evaluation, discrimination and overall fit were good and 
comparable in the external validation cohorts (concordance index ranging from 0.76 to 0.86, 
Brier Scores ranging from 0.102 to 0.141). In a large series of subpopulations and clinical 
scenarios, both models performed well and similarly.  
 
Conclusions 
Competing and non-competing risks models performed similarly in predicting long-term kidney 
graft failure. These results should be interpreted in light of the low rate of the competing event 
in our cohort, and do not stand as a general conclusion for competing risks modelling. 
Depending on the clinical scenario and the population considered, competing risks may be 
crucial to consider for accurate risk predictions. 
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 INTRODUCTION 

 Prognostic models have the potential to serve as companion tools for clinicians to 

enhance their prognostic judgements, optimize patient care, and personalize their follow-up1. 

They also become increasingly relevant in clinical trials as potential surrogate endpoints2. 

Models development studies need to be specifically designed towards the prediction of the 

clinical outcome. Not only are large, well-annotated, and deeply phenotyped cohorts required 

to capture a comprehensive set of candidate predictors3, but robust methodological standards 

for model development and validation must also be followed4,5,6. In many scenarios, this 

includes taking into account the presence of competing events, i.e., the medical event of 

interest being precluded by another earlier event, which is a frequently encountered setting 

when developing prognostic models7. 

Handling competing events by censoring them assumes that the censoring mechanism 

is uninformative, implying that censored patients are expected to have the same likelihood of 

experiencing the event of interest as those who are not censored. Failing to account for 

competing risks can lead to an upward bias of the cumulative incidence of the event when 

estimated with the Kaplan-Meier estimator8,9,10,11. For instance, in studies with a recognized 

competing event – such as death in oncology when remission is the outcome12,13, or death in 

cardiology when non-fatal stroke is the outcome14 – the estimation of the cumulative incidence 

of the event of interest may be overestimated when censoring for the competing event.  

In kidney transplantation, prediction of allograft failure is crucial for optimal patient 

management. This outcome is generally censored for death, that is, for patients who die with 

a functioning allograft, it is generally assumed that the allograft is still functioning at the time of 

death. This assumption has been recently criticized because of the resulting overestimation of 

the cumulative incidence of allograft failure15. One strategy would consist in regrouping 

allograft failure and death into a composite endpoint (e.g. “all-cause graft loss”). Nevertheless, 

this approach assumes that the competing event shares the same set of predictors that 

influence both events in the same way16,17. 
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Conversely, keeping distinct outcomes and accounting for the competing risk of death 

should be considered18,19,20. However, blindly applying competing risks modelling without 

considering issues related to the design and the aim of the study might also be inappropriate. 

Moreover, the impact of accounting for the competing event on prediction model performance 

and generalizability is unclear. Despite current recommendations21,22,23, there is a dearth of 

research of assessing the impact of competing risks on model performance.  

Therefore, we aimed to investigate the impact of competing risks on long-term kidney 

graft failure prediction. To this aim, we used large, international, deeply phenotyped cohorts of 

kidney recipients and assessed whether the development and validation of a prognostic model 

without accounting for the competing risk of death were affected by this competing event.  
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 METHODS  

 Study design and participating cohorts  

We included kidney transplant recipients from the Paris Transplant Group qualified 

database24 (NCT03474003) aged 18 years and older prospectively enrolled on the day of 

transplantation, either from a living or deceased donor, in France between 1st January 2005 

and 1st January 2014. Patients experiencing allograft primary non-function were excluded from 

the analyses. Clinical data were collected from each centre and entered into the Paris 

Transplant Group database system (French Data Protection Authority registration no. 363505), 

using a structured protocol to ensure harmonization across study centres. All data were 

anonymized and prospectively entered at the time of transplantation, at the time of post-

transplant allograft biopsies, and at each transplant anniversary using a standardized protocol. 

Allograft outcomes were prospectively assessed until January 1, 2021. To ensure data 

accuracy, an annual audit was performed.  

External validation was carried out on multiple international datasets of kidney transplant 

recipients (living or deceased donation), involving 23 centres in 10 countries: France (n=1733), 

Belgium (n=838), Spain (n=133), Croatia (n=314), Finland (n=413), United States and Canada 

(n=2384), Argentina (n=135), Brazil (n=530), and Chile (n=125). Data were collected and 

entered in the databases of the centres in accordance with local and national regulatory 

standards, and submitted to the Paris Transplant Group anonymously. In each cohort, patients 

gave written informed consent on the day of transplantation. 

A total of 10 546 kidney transplant recipients were included for the final analyses, this 

included 3941 in the derivation cohort and 6605 in the external validation cohorts. External 

validation cohorts’ data were combined into a European validation cohort (European transplant 

centres, n=3431), a North American validation cohort (US and Canadian transplant centres, 

n=2384), and a South American validation cohort (South American transplant centres, n=790).  
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Data collection and procedures	

To investigate the key prognostic determinants of allograft outcome, patients were 

extensively phenotyped, encompassing donor and recipient-related demographic 

characteristics, transplant characteristics, biological parameters, as well as immunological and 

histological parameters. The following candidate predictors were collected: (1) recipient and 

donor characteristics including age, sex, and comorbidities; (2) donor characteristics including 

age, sex, serum creatinine, deceased or living, cause of death, history of hypertension or 

diabetes; (3) transplant characteristics including previous kidney transplant, cold ischemia 

time, number of HLA mismatches, delayed graft function; (4) functional parameters including 

estimated glomerular filtration rate (eGFR) by the Modification of Diet in Renal Disease Study 

equation, and the proteinuria level using the urine protein/creatinine ratio; (5) immunological 

parameters including circulating anti-human leukocyte antigen donor-specific antibody 

specificities and mean fluorescence intensity specificities and levels; and (6) allograft 

histopathology data including glomerulitis, transplant glomerulopathy, tubulitis, interstitial 

inflammation, interstitial fibrosis and tubular atrophy, endarteritis, arteriosclerosis, arteriolar 

hyalinosis, peritubular capillaritis and C4d deposition (g, cg, t, i, IFTA, v, cv, ah, ptc, and C4d 

Banff scores), and diagnoses.  

We defined the time of initial risk evaluation as the time of allograft biopsy after 

transplantation. Kidney transplant biopsies were performed as per protocol and for clinical 

indication. At the time of risk evaluation, recipients underwent concomitant evaluation of eGFR 

and proteinuria, allograft biopsy (Banff lesion scores and diagnoses), and circulating anti-HLA 

antibody. In the external validation cohorts, in case of multiple biopsies, the closest to one year 

post-transplantation was chosen.  

 

Outcome measures 

Death-censored allograft survival was the outcome that we aimed to predict when 

ignoring the competing risk of death, and non-death-censored allograft survival was the 

outcome that we aimed to predict when accounting for the competing risk of death. In the case 
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of death-censored allograft survival, patients who died with a functioning allograft were 

censored at the time of death. Allograft failure was defined as a patient’s definitive return to 

dialysis or pre-emptive kidney re-transplantation.  

Follow-up started from the patient’s initial risk evaluation up to the date of allograft 

failure, death, or the end of the follow-up (01/01/2021). The maximum follow-up was truncated 

to 7 years. 

 

 Statistical Analysis 

Continuous variables were described using means and standard deviations (SDs) or 

medians and interquartile ranges, as appropriate. Means and proportions between groups 

were compared with Student’s t-test, analysis of variance (ANOVA) or the chi-square test (or 

Fisher’s exact test if appropriate). Values of P < 0.05 were considered significant, and all tests 

were two-tailed. 

Descriptive survival analysis 

In the case of death-censored graft survival, graft survival was estimated with the 

Kaplan-Meier estimator25. When accounting for the competing risk of death, graft survival was 

estimated with the Aalen-Johansen estimator26,27. 

 Competing and non-competing risks modelling frameworks  

Prediction model development 

In the derivation cohort (Paris Transplant Group database), a multivariable Cox model 

was used to predict long-term death-censored graft failure, integrating eight independent 

clinically relevant parameters derived from the large set of candidate factors: 1) kidney-graft 

function assessed by the eGFR and proteinuria level, 2) circulating donor-specific antibodies, 

3) kidney-graft pathology data with transplant glomerulopathy (cg Banff score), 

microcirculation inflammation (g+ptc Banff score), interstitial fibrosis and tubular atrophy (IFTA 

Banff score) and interstitial inflammation and tubulitis (i+t Banff score) recorded according to 

the Banff classification and 4) the delay between the date of transplantation and the date of 

risk evaluation. This model (the iBox score28) is specifically designed towards long-term death-
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censored graft failure and stands as the most validated model so far in kidney 

transplantation29,30. It has been qualified as a secondary endpoint for clinical trials by the 

European Medicine Agency24.  

To account for the competing risk of death in long-term graft failure prediction, a Fine-

Gray subdistribution hazards model31 integrating the independent parameters listed above was 

developed on the derivation cohort. The Fine-Gray model was chosen for its ability to directly 

estimate the cumulative incidence of the outcome of interest in the presence of competing 

risks, thus facilitating the evaluation of predictive accuracy and comparison.  

Prediction model stability 

Model stability was investigated by producing 500 bootstrap models and deriving 

prediction instability plots and instability index, as described in Riley and Collins32. Selection 

of the predictors was not replicated in the bootstrap samples. Prediction instability plots were 

obtained by plotting bootstrap predictions against original predictions. Mean absolute 

prediction error (MAPE) values were calculated for each observation and MAPE instability 

plots were obtained by plotting individual MAPE values against original predictions.  

 Evaluation of model performance      

Performance of the Cox and Fine-Gray models were assessed in terms of 

discrimination, calibration, and overall fit in the derivation cohort and in the three external 

validation cohorts. The chosen time horizon was 7 years post-risk evaluation in the derivation 

cohort and in the European and North American validation cohorts, and 5 years post-risk 

evaluation in the South American cohort, due to the shorter follow-up in this cohort.  

First, the discrimination was assessed with Harrell’s concordance index (Harrell’s c-

index)33, and Uno’s concordance index (Uno’s c-index)34. Respectively for Cox and Fine-Gray 

model, the expected mortality35, and the cause-j mortality36 were used as one-dimensional 

summaries of relative risk predictions for concordance evaluation37. 

Second, calibration was assessed in terms of calibration slope, calibration-in-the-large, 

and observed/expected ratio. For the Cox model, the calibration slope was obtained by 

regressing the prognostic index (PI) values of the Cox model with the difference between the 
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cumulative hazard (log transformation) and the PI as an offset using a Poisson model, and 

calibration intercept was obtained by regressing the cumulative hazard (log transformation) as 

an offset using a Poisson model38. For the Fine-Gray model, the calibration slope was      

estimated by regressing the pseudo-observations with the risk estimates (log-log 

transformation) as an offset using a generalized linear model39. The observed/expected ratio 

was obtained by dividing the observed outcome proportion given by the Kaplan-Meier 

estimator (for the Cox model) or the Aalen-Johansen estimator (for the Fine-Gray model) and 

the expected risk given by the mean of (one minus) the predicted survival probabilities (for the 

Cox model) and the mean of the predicted risks (for the Fine-Gray model). 

Calibration was also assessed graphically. To produce calibration plots, predicted risks 

from the Cox and Fine-Gray models were divided into equally-sized groups and, for each 

group, the median was plotted against the observed event probability estimated by (one minus) 

the Kaplan-Meier estimator for the Cox model and the Aalen-Johansen estimator for the Fine-

Gray model, respectively. In each cohort, the number of groups was chosen to ensure a 

minimum of 100 observations per group comprising, if possible, at least 10 events (10 graft 

losses or 10 graft losses and 10 deaths). Smoothed calibration curves were obtained by two 

approaches: first, by fitting a secondary Cox (respectively, Fine-Gray) model with restricted 

cubic splines (three knots) to the risk estimates (log-log transformation) obtained from the Cox 

(Fine-Gray) prediction models, as described by Austin et al for non-competing risks40 and 

competing risks41; second, by deriving pseudo-observations39 and using loess smoothing with 

a span of 0.75 through the risk estimates and these pseudo-observations. 

Additionally, the Integrated Calibration Index (ICI) and its quantiles E50, E90 and Emax 

and the root squared bias were obtained using the aforementioned restricted cubic splines. 

These metrics allow for a comparison of the relative calibration of different prediction models.  

Third, the overall fit was assessed with the Brier Score and its derivatives (the 

Integrated Brier Score and the Index of Predictive Accuracy42), which capture both calibration 

and discrimination, and Royston and Sauerbrei’s R2
D

43. The Brier Scores were calculated using 
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inverse probability of censoring weighting, as defined by Gerds et al44 for non-competing risks 

and by Schoop et al45 for competing risks. The Integrated Brier Score was calculated as the 

integration of the Brier Score over the time range of interest (0 to 7 years or 0 to 5 years). The 

Index of Predictive Accuracy is a scaled version of the Brier Score, defined as one minus the 

Brier Score of the prediction model divided by the Brier Score of the “null model”. The Brier 

Score for the “null model” is obtained with the Kaplan-Meier estimator for the non-competing 

risks framework and with the Aalen-Johansen estimator for the competing risks framework.  

Confidence intervals 

For the Cox model, 95% confidence intervals for concordance metrics (Harrell’s c-index 

and Uno’s c-index) were based on Therneau et Atkinson46. For Cox and Fine-Gray models, 

calibration slope and intercept are presented along normal-based 95% confidence intervals, 

and Brier Scores’ 95% confidence intervals were based on Blanche et al47. For all the other 

metrics, for both models, confidence intervals were obtained using bootstrap on 500 samples, 

with the 2.5th and 97.5th percentile as values for the lower and upper bounds. 

Internal validation 

In the derivation cohort, optimism-corrected performance for Cox and Fine-Gray 

models were obtained by randomly bootstrapping the data 500 times and calculating the 

average difference between the model performance in the original data and in the bootstrap 

samples after fitting the models in each bootstrap sample. 

Missing data 

 There were no missing values for follow-up time, outcome status and predictors 

included in both models in any of the derivation or validation cohorts. 

Subgroup analyses  

Subgroup analyses were conducted to evaluate the robustness and magnitude of 

performance divergence in both models across various subpopulations and clinical scenarios 

within the derivation cohort. We stratified patients by age, sex, BMI, race, type of treatment 

induction, immunological risk, deceased or living donors, older donors, expanded criteria 

donors, and we implemented different timings of risk evaluation. 
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Software 

 All analyses were performed using R (version 4.0.4, R Foundation for Statistical 

Computing, Vienna, Austria). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.13.24307280doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24307280
http://creativecommons.org/licenses/by-nc-nd/4.0/


 RESULTS 

 Cohorts’ characteristics 

Overall, 10 546 patients from 10 countries were included in the study. The derivation 

cohort included a total of 3941 patients from four centres, and the external validation cohorts 

included a total of 6605 patients from 19 centres. The median time from transplantation to risk 

evaluation was 0.98 years (IQR 0.27-1.07) in the derivation cohort and 1.00 years (IQR 0.46-

1.13) in the validation cohorts. Restricting to 7-years post risk-evaluation, 538 (13.65%) graft 

losses and 414 (10.50%) deaths occurred in the derivation cohort after a median follow-up 

post-risk evaluation of 5.77 years (IQR 3.52-7.00), and 896 (13.56%) graft losses and 525 

(7.95%) deaths occurred in the validation cohorts after a median follow-up post-risk evaluation 

of 4.25 years (IQR 2.35-6.59). Characteristics of the derivation and validation cohorts are 

shown in table 1. 

 

 Estimation of the long-term allograft survival with Kaplan-Meier and Aalen-

Johansen 

Cumulative incidences of graft loss with and without accounting for the competing risk 

of death are shown in figure 1 and in supplementary table 1, in the derivation and validation 

cohorts. The Kaplan-Meier (KM) estimations of cumulative incidences were greater than the 

corresponding Aalen-Johansen (AJ) estimations. This overestimation was however moderate, 

with 1-KM and AJ estimates of 16.71% and 15.67% at 7 years, respectively, in the derivation 

cohort (relative difference of 6.63%), 16.11% and 15.01% in the European validation cohort 

(relative difference of 7.31%), 22.12% and 21.25% in the North American validation cohort 

(relative difference of 4.07%), and 36.92% and 34.04% in the South American validation cohort 

(relative difference of 8.48%).  
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 Development of the Cox and Fine-Gray models to predict the long-term allograft 

survival 

The coefficients of the determinants of graft loss, as estimated by Cox and Fine-Gray 

models, are shown in figure 2 and supplementary table 2. The estimated effects of proteinuria, 

IFTA Banff score and cg Banff score (subHRproteinuria=1.44, subHRIFTA=3 =1.37 and subHRcg≥1= 

1.32) were smaller than their corresponding effects on the rate (HRproteinuria=1.50, HRIFTA=3 =1.41 

and HRcg≥1= 1.41). Time from transplant to evaluation (subHR 1.07 [1.00 – 1.14]) and cg Banff 

score (subHR 1.32 [CI 1.00-1.75]) were slightly out of significance in the Fine-Gray model. 

Comparison of 7-years predictions from the Cox and Fine-Gray model are shown in 

figure 3, along with a loess curve and the P20 (the proportion of the Fine-Gray’s predictions 

within 20% of the Cox’s predictions). For all the cohorts, 99% of Fine-Gray model’s predictions 

fell within 20% of the Cox model’s predictions. 

Prediction instability plots and MAPE instability plots for both models are shown in 

supplementary figure 1. Cox and Fine-Gray models exhibited close and stable individual risk 

estimates, with an average MAPE of 0.0140 and 0.0138, respectively. 

 

Predictive performance of the Cox and Fine-Gray models 

Discrimination, calibration and overall fit are shown in table 2 for the different cohorts. 

Discrimination. Both models showed good and comparable discrimination in the 

derivation and validation cohorts (Harrell’s c-index range 0.76 to 0.86), at 7 years post-risk 

evaluation. In the derivation cohort, the Cox model achieved a c-index of 0.809 [CI 

0.790;0.827] (optimism-corrected performance 0.807), and 0.800 [CI 0.781;0.817] (optimism-

corrected performance 0.797) for the Fine-Gray model. In the validation cohorts, the c-index 

values were similar between the Cox model and the competing risk model: 0.770 [CI 

0.747;0.792] and 0.762 [CI 0.739;0.783] in the European cohort, 0.814 [CI 0.789;0.836] and 

0.805 [CI 0.784;0.828] in the North American cohort and 0.862 [CI 0.831;0.888] and 0.855 [CI 

0.825;0.882] in the South American cohort. Correction by inverse probability of censoring 
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weighting resulted in decreased but good discriminative estimates (Uno’s c-index range 0.75 

to 0.81) for both models. 

Calibration. Both Cox and Fine-Gray models showed close and good agreement 

between the predicted and observed risks in the derivation cohort and in the North American 

cohort (figure 4 and supplementary figure 2, table 2). In the European validation cohort, the 

models tended to overestimate the risks, as reflected in the negative calibration intercept           

(-0.303 [CI -0.402;-0.207] and -0.073 [CI -0.194;-0.048] for Cox and Fine-Gray, respectively) 

and the O/E ratio lower than 1 (0.939 [CI 0.854;1.020] and 0.972 [CI 0.886;1.054] for Cox and 

Fine-Gray, respectively). In this cohort, the Fine-Gray model was slightly better calibrated than 

the Cox model (figure 4, table 2). In the South American validation cohort, both models tended 

to underestimate the risks (positive calibration intercept 0.388 [CI 0.218;0.549] and 0.364 [CI 

0.152;0.577] for Cox and Fine-Gray, respectively), and observed/expected ratio greater than 

one (1.186 [CI 0.994;1.415] and 1.259 [CI 1.060;1.493] for Cox and Fine-Gray, respectively). 

Comparison of the relative calibration of the two prediction models with the Integrated 

Calibration Index, E50, E90, Emax and the root squared bias are presented in supplementary 

table 3. Both models exhibited close values in the derivation, North American and South 

American cohorts, with slightly smaller (better) metrics for the Cox model, whereas in the 

European cohort smaller metrics were obtained with the Fine-Gray model. 

Overall fit. Across all cohorts, differences were minimal between the Brier Scores and 

the Integrated Brier Scores (IBS) of the two models. The IBS values amounted to 0.054 [CI 

0.049;0.059] and 0.054 [CI 0.050;0.059] in the derivation cohort, 0.057 [CI 0.051;0.062] and 

0.054 [CI 0.050;0.059] in the European cohort, 0.069 [CI 0.062;0.076] and 0.070 [CI 

0.063;0.077] in the North American cohort and 0.076 [CI 0.064;0.088] and 0.079 [CI 

0.067;0.090] in the South American cohort, for Cox and Fine-Gray, respectively. Differences 

were larger for IPA values, along with wider confidence intervals (table 2). Explained variation 

slightly differed in the Cox and Fine-Gray models in the derivation and North American cohorts, 

and was similar in the two other external validation cohorts.  
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Subgroup analyses 

We investigated the prediction performance of the models when applied in a series of 

distinct subpopulations in the derivation cohort, including living and deceased donors, 

according to donor and recipient age, recipient’s BMI, sex, and race, in highly sensitized and 

non-highly sensitized recipients, and in patients receiving induction by anti-interleukin-2 

receptor or anti-thymocyte globulin (table 3). Overall, we found very good discriminative ability 

in all the subpopulations for both models. Discrimination, calibration and overall fit summaries 

were comparable between Cox and Fine-Gray model, and overall slightly better for the Cox 

model. 
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DISCUSSION 

Overview  

In this international study comprising 10 546 kidney transplant recipients, we developed 

prediction models for long-term kidney graft failure, with and without accounting for the 

competing risk of death. We performed a thorough assessment of these two models and 

showed consistency of allograft failure determinants, similar stability and comparable 

predictive performance across all validation cohorts. The findings were also consistent in a 

large series of subpopulations and clinical scenarios. To our knowledge, this is the largest 

study investigating in a comprehensive manner predictive performance in a competing and 

non-competing risks framework in large international prospective cohorts of kidney transplant 

recipients.  

 

Rate of competing events and impact on performance 

In our study, the rates of death with a functioning graft were lower than the rates of graft 

loss in the derivation and validation cohorts. The absolute biases were relatively small in the 

overall cohort. In this setting, censoring death with a functioning graft or accounting for this 

competing event in the modelling strategy resulted in similar predictive accuracy. Similarly, a 

recent study by Clift et al.48 showed accurate and comparable discrimination and calibration of 

a standard Cox regression model and a competing risks regression model for long-term breast 

cancer related mortality prediction, in a large cohort where the event of interest was more 

prevalent than the competing event.  

However, considering competing events may be crucial for cumulative incidence 

estimation and model performance when the amount of competing event is similar or higher to 

the amount of the event of interest, or when considering frail populations where patients are at 

higher risk of death, such as older recipients, or with comorbidities (e.g., cardiovascular 

diseases, hypertension, diabetes). This is reflected in our European validation cohort where 

the Fine-Gray model was slightly better calibrated than the Cox model.  
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For instance, in non-transplanted patients with severe chronic kidney disease, where 

the competing event of death is more frequent, several studies have shown that the 

overestimation of the cumulative incidence due to competing risk censoring increased with 

time49,50, and that a Fine-Gray model for kidney replacement therapy prediction achieved better 

discrimination and calibration than a standard Cox model51. Nevertheless, in our derivation 

cohort of kidney transplant recipients, performance in subpopulations including older donors 

and recipients, and in many other clinical scenarios, remained comparable.  

 

 Prognostication and competing risks 

In nephrology research, as well as in other medical specialties, there has been a 

growing call over the past years for the integration of competing risks analysis into prognostic 

modelling7,52,18,19. In contrast, for etiological purposes, hazard ratios from Cox models should 

remain the preferred approach to explore the associations between risk factors and the 

outcome53. In prognostic research, predictive accuracy and generalizability should remain the 

final judgment criterion for the benefit of the patient. If competing events are infrequent, a 

prediction model that does not account for competing risks may still accurately reflect the 

absolute risk for the population from which it was derived. However, if the model is validated 

in other populations where the competing events are more frequent, predictive performances 

may be impacted, although this impact may not be considered clinically significant and has to 

be demonstrated. Therefore, the modelling approach must be chosen based on the study 

design, the research question, the target populations, and the incidence of the competing 

event.  

 

Validation should rely on discrimination, calibration, overall fit  

Validation of these prediction models should rely on an extensive evaluation of their 

discrimination, calibration, and overall fit. A single measure of discrimination and calibration 

does not offer a comprehensive view and is not sufficient to draw conclusions about an 

improvement in performance. This, nonetheless, is a general recommendation that holds true 
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regardless of the modelling framework, and has been recently re-emphasized6. In the present 

study, a total of 15 metrics were used to provide a full picture of Cox and Fine-Gray models’ 

predictions, and showed consistency and stability of their predictions, and comparable 

prediction performance. 

 

Facilitating the implementation of competing risks analysis 

An extensive literature exists on how to assess performance of prediction models in the 

absence of competing risks4,5,6. When handling competing risks, although statistical tools are 

well-known, comprehensive guidance for the evaluation of the same prediction performance 

has only been recently extensively addressed by Van Geloven et al23. Beyond this, calibration 

and discrimination metrics adapted for competing risk settings are scattered across original 

studies or methodological papers. For most of them, their implementation is often less 

straightforward and require more processing such as using pseudo-observations. There is 

therefore a contrast between the high number of studies recommending the use of competing 

risk models, and relatively few papers proposing an analytical framework to facilitate their 

implementation in research. The present study also aimed to contribute to fill that gap. 

 

Competing risks and machine learning 

Further complexity may arise when comparing prediction performance of non-

regression models in a competing and non-competing risks setting. Several machine learning 

survival models have been adapted to handle the presence of competing risks, such as 

random forests54 or neural networks55,56,57,58. However, the literature is still limited. Depending 

on the nature of machine learning models’ predictions, comparing their discrimination and 

calibration performances may be less straightforward since it typically requires further 

prediction transformations. Recent studies suggest that in low-dimensional settings, competing 

risks machine learning models provide similar discrimination but show miscalibration 

compared to competing risks regression models48,59.  
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The advantages of deeply phenotyped cohort compared with registries 

One strength of our study is the use of a large, unselected, prospective, deeply 

phenotyped multicentric cohort of kidney transplant recipients, which comprises key candidate 

risk factors for prognostic research, such as clinical, functional, immunologic, and histologic 

parameters. Using a cohort specifically designed for risk prediction represents an advantage,      

compared to the use of data coming from registries. Registry data may suffer from low quality, 

including lack of complete patient phenotyping, missing data candidate risk factors, long-term 

missing registered deaths or graft losses, and lack of follow-up and updates at fixed time 

points60. These intrinsic shortcomings may prevent them from being fit for purpose for making 

long-term predictions, thus limiting their value for prognostic studies.  

 

Limitations  

This study has limitations. Firstly, we did not investigate other competing risk      

approaches, such as cause-specific Cox or pseudo-observations regression61. We focused 

our analyses on the Fine-Gray model, due to its wide use in medical literature for the analysis 

of time-to-event outcomes in the presence of competing risks. 

Secondly, we did not investigate the clinical utility of these models, using metrics such 

as decision curve and net benefit. We preferred to focus on measures of discrimination, 

calibration, and overall fit, as these are the most crucial steps to evaluate a model before 

considering its clinical usefulness. 

Thirdly, our study focuses on kidney transplant recipients with a low rate of death with 

a functioning graft. Our conclusions might not be generalized to other medical specialties or 

other populations, especially frail individuals highly susceptible to competing risks.  
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Conclusion 

Our study showed in a large, deeply phenotyped population of kidney transplant 

recipients with a low rate of death with a functioning graft, that a competing and non-competing 

risks model performed similarly in predicting long-term kidney graft failure. This is not to be 

interpreted as a general conclusion for competing risks modelling. Depending on the clinical 

scenario and the population considered, competing risks may be crucial to considerer and, 

consequently, competing risks models can contribute to more accurate prediction of graft 

failure. 
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Table 1: Characteristics of the development and validation cohorts (n=10 546) 

 
 

French 
derivation cohort 

N=3941 

 
European 

Validation cohort 
N=3431 

 
North American 
validation cohort 

N=2384 

 
South American 
validation cohort 

N=790 
P 

 n  n  n  n   

Recipient characteristics          

Age (years) mean (SD) 3941 49.8 (13.7) 3431 51.4 (13.6) 2384 49.4 (13.9) 790 43.3 (15.4) <0.001 

Gender male No. (%) 3941 2416 (61.3%) 3431 2170 (63.2%) 2374 1436 (60.5%) 790 483 (61.1%) 0.150 

Cause of end stage renal 
disease 3941  2821  1534  721  <0.001 

Glomerulonephritis No. 
(%)  1070 (27.2%)  818 (29.0%)  380 (24.8%)  178 (24.7%)  

Diabetes No. (%)  432 (11.0%)  394 (14.0%)  386 (25.2%)  80 (11.1%)  

Vascular No. (%)  291 (7.38%)  220 (7.80%)  255 (16.6%)  128 (17.8%)    

Other No. (%)  2148 (54.5%)  1389 (49.2%)  513 (33.4%)  335 (46.5%)  

Donor characteristics          

Age (years) mean (SD) 3941 51.6 (16.3) 3424 50.1 (15.5) 2375 40.8 (14.5) 786 45.0 (14.7) <0.001 

Male gender No. (%) 3941 2123 (53.9%) 2842 1615 (56.8%) 2382 1159 (48.7%) 787 414 (52.6%) <0.001 

Hypertension No. (%) 3847 990 (25.7%) 2070 543 (26.2%) 1654 230 (13.9%) NA NA* <0.001 

Diabetes mellitus No. (%) 3806 228 (5.99%) 1096 64 (5.84%) 1651 73 (4.42%) NA NA* 0.062 

Donor type          

Deceased donor No. (%) 3941 3279 (83.2%) 2995 2718 (90.8%) 2384 1216 (51.0%) 788 543 (68.9%) <0.001 

Death from 
cerebrovascular disease 

No. (%) 
3941 1837 (46.6%) 3006 922 (30.7%) 1168 266 (22.8%) NA NA* <0.001 

Expanded criteria donor 
No. (%) 3936 1387 (35.2%) 1553 507 (32.6%) 1409 212 (15.0%) 746 182 (24.4%) <0.001 

Transplant characteristics          

Prior kidney transplant No. 
(%) 3941 596 (15.1%) 3393 454 (13.4%) 1286 215 (16.7%) 782 83 (10.6%) <0.001 

Cold ischemia time in 
deceased donors (hours) 

mean (SD) 
3917 16.2 (8.99) 2393 15.2 (6.85) 1708 9.98 (11.0) 758 17.1 (10.6) <0.001 

HLA-A/B/DR mismatch 
number mean (SD) 3941 3.82 (1.36) 3392 3.19 (1.42) 1503 3.67 (1.75) 656 2.71 (1.37) <0.001 

Delayed graft function No. 
(%) 3841 1035 (26.9%) 3273 671 (20.5%) 2287 312 (13.6%) 734 340 (46.3%) <0.001 

Time from transplantation 
to risk evaluation (years) 

median (IQR) 
3941 0.98 [0.27;1.07] 3431 1.00 [0.28;1.04] 2384 1.00 [0.53;1.12] 790 1.96 [0.96;3.47] <0.001 

Functional parameters at 
time of risk evaluation          

eGFR (mL/min/1.73 m2) 
mean (SD) 3941 49.8 (19.4) 3431 50.5 (20.9) 2384 48.9 (22.6) 790 38.4 (18.8) <0.001 

Proteinuria (g/g) median 
(IQR) 3941 0.19 (0.10 - 0.39) 3431 0.15 [0.09;0.35] 2384 0.19 [0.05;1.14] 790 0.27 [0.05;0.75] <0.001 

Immunological parameters 
at time of risk evaluation          

Anti-HLA donor specific 
antibody mean 

fluorescence intensity 
3941  3431  2384  790  <0.001 

< 1400 No. (%)  3607 (91.5%)  3217 (93.8%)  2064 (86.6%)  714 (90.4%)  
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≥ 1400 No. (%)  334 (8.48%)  214 (6.24%)  320 (13.4%)  76 (9.62%)  

Outcomes at 7 years post-
risk evaluation          

Graft loss No. (%) 3941 538 (13.7%) 3431 410 (11.9%) 2384 338 (14.2%) 790 148 (18.7%) <0.001 

Death No. (%) 3941 414 (10.5%) 3431 363 (10.6%) 2384 117 (4.91%) 790 45 (5.70%) <0.001 

 
eGFR, estimated glomerular filtration rate; HLA, human leukocyte antigen; IQR, interquartile 
range; NA, not available.  
*Data not available for the South American cohort, P value refers to the 3 other cohorts. 
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Figure 1. Cumulative incidence functions up to 7 years post risk-evaluation in the 

derivation and validation cohorts. Cumulative incidence of graft loss when ignoring the 

competing risk of death was estimated with the Kaplan-Meier estimator, and with the Aalen-

Johansen estimator when accounting for the competing risk of death, in the derivation and 

external validation cohorts, ranging from 0 to 7 years post-risk evaluation.  
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Figure 2. Cox and Fine-Gray multivariable models. Models are presented as their exponentiated coefficients (hazard ratios and subdistribution 

hazard ratios with 95% confidence intervals) for the eight independent determinants of kidney allograft loss assessed at time of post-transplant 

risk evaluation in the derivation cohort. The Cox model is presented in the left panel (A) and the Fine-Gray model in the right panel (B).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
eGFR, estimated glomerular filtration rate; HLA, human leucocyte antigen; DSA, donor-specific antibody; MFI, mean fluorescence intensity; IFTA, 
interstitial fibrosis and tubular atrophy; cg, transplant glomerulopathy; g, glomerulitis; ptc, peritubular capillaritis; i, interstitial inflammation; t, 
tubulitis.

A. Cox model B. Fine-Gray model 
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Figure 3. Fine-Gray model’s predictions against Cox model’s predictions at 7 years 

post-risk evaluation. Distribution of Fine-Gray model’s predictions according to Cox model’s 

predictions in the derivation and external validation cohorts. Cox model’s predictions refer to 

one minus the individual predicted survival probabilities at 7 years post risk-evaluation. Fine-

Gray model’s predictions refer to the individual predicted risks (cumulative incidence) at 7 

years post risk-evaluation. P20 is the proportion of Fine-Gray model’s predictions within 20% 

of Cox model’s predictions.  
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Table 2. Predictive performance of the Cox and Fine-Gray models at 7 years post-risk evaluation. Discrimination, calibration and overall 

accuracy performance metrics for the Cox and Fine-Gray models assessed at 7 years post risk-evaluation in the derivation cohort and in the 

European and North American external validation cohorts, and at 5 years post-risk evaluation in the South American external validation cohort. 

Performance metrics are presented along with 95% confidence intervals, except for the optimism-corrected performance of the derivation cohort 
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O/E ratio: observed/expected ratio; IPA, index of predictive accuracy 
*Performance metrics were assessed at 5 years post-risk evaluation in the South American cohort. 
 

Performance 
metrics:  

7 years post-
evaluation 

Apparent performance  
Internal validation: optimism-

corrected performance 
B=500 bootstraps 

 External validation 

 Derivation cohort 
n=3,941  Derivation cohort 

n=3,941  European cohort 
n=3,431  North American cohort 

n=2,384  South American cohort* 
n=790 

 Cox Fine-Gray  Cox Fine-Gray  Cox Fine-Gray  Cox Fine-Gray  Cox Fine-Gray 

Discrimination               

Harrell’s c-index 0.809  
[0.790;0.827] 

0.800 
[0.781;0.817]  0.807 0.797  0.770 

[0.747;0.792] 
0.762 

[0.739;0.783]  0.814 
[0.789;0.836] 

0.805 
[0.784;0.828]  0.862 

[0.831;0.888] 
0.855 

[0.825;0.882] 

Uno’s c-index 0.791 
[0.769;0.810] 

0.785 
[0.765;0.804]  0.788 0.782  0.758 

[0.732;0.781] 
0.752 

[0.726;0.776]  0.781 
[0.751;0.808] 

0.774 
[0.748;0.801]  0.817 

[0.773;0.855] 
0.812 

[0.774;0.847] 

Calibration               

Slope 1 
[0.931;1.068] 

0.900 
[0.811;0.990]  0.981 0.882  0.696 

[0.625;0.766] 
0.913 

[0.777;1.049]  0.847 
[0.767;0.928] 

0.785 
[0.650;0.920]  1.200 

[1.048;1.352] 
1.056 

[0.773;1.338] 

Intercept 0 
[-0.086;0.083] 

-0.057 
[-0.157;0.044]  -0.010 -0.064  -0.303 

[-0.402;-0.207] 
-0.073 

[-0.194;0.048]  0.057 
[-0.053;0.163] 

-0.034  
[-0.179;0.111]  0.388 

[0.218;0.549] 
0.364 

[0.152;0.577] 

O/E ratio 0.935 
[0.871;1.003] 

0.970 
[0.902;1.042]  0.934 0.970  0.939 

[0.854;1.020] 
0.972 

[0.886;1.054]  0.967 
[0.870;1.066] 

1.034 
[0.928;1.138]  1.186 

[0.994;1.415] 
1.259 

[1.060;1.493] 

Overall fit               

Brier Score 0.102 
[0.094;0.111] 

0.103 
[0.095;0.111]  0.103 0.104  0.120 

[0.109;0.130] 
0.114 

[0.104;0.123]  0.115 
[0.099;0.131] 

0.120 
[0.105;0.135]  0.139 

[0.106;0.172] 
0.141 

[0.111;0.171] 

Integrated Brier 
Score 

0.054 
[0.049;0.059] 

0.054 
[0.050;0.059]  0.054 0.055  0.057 

[0.051;0.062] 
0.054 

[0.050;0.059]  0.069 
[0.062;0.076] 

0.070 
[0.063;0.077]  0.076 

[0.064;0.088] 
0.079 

[0.067;0.090] 

IPA, % 26.4 
[22.5;29.8] 

22.0 
[18.4;25.2]  25.6 21.2  11.4 

[5.1;17.2] 
10.9 

[5.7;15.7]  33.4 
[27.9;39.2] 

28.4 
[23.1;33.4]  29.8 

[17.2;41.3] 
27.0 

[16.3;36.2] 

Royston R2D 0.520 
[0.477;0.561] 

0.487 
[0.441;0.532]  0.510 0.475  0.341 

[0.295;0.386] 
0.342 

[0.294;0.385]  0.518 
[0.469;0.571] 

0.496 
[0.445;0.549]  0.585 

[0.511;0.650] 
0.586 

[0.509;0.643] 
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Figure 4. Calibration curves assessed at 7 years post risk-evaluation in the derivation 

and external validation cohorts. Calibration plots are presented at 7 years post risk-

evaluation in the derivation cohort and in the European and North American external validation 

cohorts, and at 5 years post-risk evaluation in the South American external validation cohort. 

In each group (8 groups for the derivation, European and North American cohorts, and 5 

groups for the South American cohort), the median of the predicted risks (one minus the 

individual predicted survival probabilities for the Cox model and the individual predicted risks, 

i.e., cumulative incidence, for the Fine-Gray model) was plotted against the observed event 

probability estimated by (one minus) the Kaplan-Meier estimator for the Cox model and the 

Aalen-Johansen estimator for the Fine-Gray model, respectively. The diagonal line at the origin 

represents the perfectly calibrated model. The histograms represent the distribution of the Cox 

and Fine-Gray models’ individual predicted risks.  
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Table 3. Predictive performance of the Cox and Fine-Gray models when assessed in different subpopulations and clinical scenarios in 

the derivation cohort at 7 years post risk-evaluation. Discrimination, calibration and overall accuracy performance metrics for the Cox and 

Fine-Gray models assessed at 7 years post risk-evaluation in the derivation cohort.  
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Performance 
metrics: 7 years 
post-evaluation 

    Discrimination  Calibration  Overall fit 

 No 
patients  No events  Harrell’s C-index Uno’s C-index  Slope Intercept O/E ratio  Integrated 

Brier Score IPA, % 

Clinical 
scenarios and 

subpopulations 
  Graft 

loss/Death  Cox Fine-
Gray Cox Fine-

Gray  Cox Fine-
Gray Cox Fine-

Gray Cox Fine-
Gray  Cox Fine-

Gray Cox Fine-
Gray 

In living donors 662  51/28  0.812 0.810 0.755 0.758  1.045 
 0.999 -0.237 

 -0.262 0.760 0.813  0.032 0.032 23.3 22.4 

In deceased 
donors 3279  487/386  0.803 0.793 0.788 0.781  0.987 0.882 0.028 -0.041 0.957 0.987  0.058 0.058 26.3 21.7 

Recipients aged 
> 65 years 651  107/151  0.776 0.757 0.762 0.744  0.898 

 0.715 0.043 
 -0.102 1.048 0.982  0.073 0.072 20.6 11.2 

Recipients aged 
≤ 65 years 

3290  431/263  0.811 
 0.805 0.791 0.789  1.017 0.954 -0.011 -0.038 0.924 0.973  0.050 0.051 26.8 24.2 

Male patients 2416  329/267  0.818 0.810 0.798 0.793  1.030 
 0.941 0.039 

 0.013 0.972 1.006  0.053 0.053 26.5 22.5 

Female patients 1525  209/147  0.796 0.785 0.780 0.772  0.958 0.842 -0.058 -0.168 0.880 0.918  0.055 0.056 26.2 21.3 

Patients BMI  
> 25 1265  183/161  0.790 0.778 0.772 0.764  0.997 

 0.865 -0.021 
 -0.137 0.908 0.931  0.059 0.059 21.7 17.4 

Patients BMI  
≤ 25 

2494  325/229  0.820 0.812 0.799 0.795  1.004 0.924 0.013 
 0.014 0.960 1.003  0.051 0.051 26.8 23.1 
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Donors aged  
> 65 years 807  133/169  0.782 0.765 0.764 0.749  1.007 0.851 -0.041 -0.101 0.981 0.940  0.067 0.066 21.8 14.8 

Donors aged  
≤ 65 years 

3134  405/245  0.812 0.806 0.792 0.790  1 0.915 0.014 -0.037 0.933 0.984  0.051 0.051 26.9 24.0 

ECD donors 1387  258/240  0.781 0.767 0.764 0.754  0.996 
 0.866 0.080 0.016 1.034 1.025  0.073 0.073 23.4 18.0 

Non-ECD donors 2549  279/173  0.810 0.805 0.786 0.785  0.993 0.916 -0.070 -0.131 0.873 0.924  0.044 0.044 25.5 23.4 

In highly 
sensitized 
patients$ 

715  121/81  0.798 0.786 0.769 0.762  0.887 0.756 0.063 0.032 1.056 1.071  0.071 0.071 20.3 16.9 

In non highly 
sensitized 
patients$ 

3226  417/333  0.809 0.800 0.792 0.787  1.025 0.938 -0.018 -0.068 0.913 0.953  0.050 0.051 26.4 22.2 

In patients with 
anti-IL2 receptor 

induction 
1621  206/180  0.787 0.778 0.773 0.769  0.971 0.905 -0.013 -0.098 0.919 0.954  0.052 0.052 23.5 19.3 

In patients with 
anti-thymocyte 

globulin 
induction 

2069  308/220  0.826 0.815 0.804 0.798  1.029 0.916 0.004 -0.034 0.943 0.976  0.055 0.055 29.4 24.9 

In patients with 
CNI 3658  501/383  0.810 0.801 0.769 0.785  1.004 0.889 0.011 -0.037 0.954 0.989  0.054 0.054 25.8 21.8 

In patients 
without CNI 283  37/31  0.801 0.792 0.783 0.779  0.986 1.230 -0.139 -0.295 0.725 0.766  0.053 0.058 35.4 25.7 

In stable 
patients 
(protocol 
biopsy) 

1160  85/91  0.812 0.804 0.789 0.784  1.050 1.019 -0.294 -0.126 0.819 0.845  0.026 0.026 17.3 14.9 
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$Highly sensitized patients defined by panel of reactive antibodies >90%. 
†Ethnicity data was retrieved in the North American validation cohort (n=2384). Black recipients represented 641 (26.9%) patients; non-Black 
recipients represented 1741 (73.1%) patients. 
O/E ratio, observed/expected ratio; IPA, index of predictive accuracy; BMI, body mass index; ECD, expanded criteria donor; IL, interleukin; CNI: 
calcineurin 
 
 
 
 
 

In unstable 
patients (biopsy 

for cause) 
2781  453/323  0.796 0.787 0.780 0.774  0.963 0.862 0.066 -0.044 0.966 1  0.066 0.066 27.2 22.6 

In first year 
after transplant 2300  291/275  0.782 0.772 0.763 0.758  0.914 0.849 -0.016 -0.110 0.924 0.951  0.056 0.055 17.9 14.5 

After 1 year 
post-transplant 1641  247/139  0.843 0.834 0.823 0.817  1.069 0.940 0.019 0.029 0.956 1.005  0.051 0.052 36.1 30.5 

In Black 
population† 641  133/38  0.794  0.787 0.776  0.771  0.771 0.774 0.344 0.473 1.253 1.329  0.097 0.099 28.2 24.5 

In non-Black 
population† 1741  205/79  0.821  0.812 0.779  0.772  0.876 0.834 -0.093 -0.255 0.849 0.909  0.058 0.060 34.2 28.5 
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