1	Early Life Domains as Predictors of Obesity and Hypertension Comorbidity: Findings					
2	from the 1970 British Cohort Study (BCS70)					
3						
4	S Stannard ¹ (ORCID: 0000-0002-6139-1020), RK Owen ² (ORCID: 0000-0001-5977-376X),					
5	A Berrington ³ (ORCID: 0000-0002-1683-6668), N Ziauddeen ¹ (ORCID: 0000-0002-8964-					
6	5029), SDS Fraser ¹ (ORCID: 0000-0002-4172-4406), S Paranjothy ⁴ , RB Hoyle ⁵ (ORCID:					
7	0000-0002-1645-1071), N A Alwan ^{1,6,7} (ORCID: 0000-0002-4134-8463)					
8						
9	¹ School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine,					
10	University of Southampton, Southampton, United Kingdom					
11	² Population Data Science, Swansea University Medical School, Faculty of Medicine, Health					
12	& Life Science, Swansea University, Swansea, United Kingdom					
13	³ School of Economic, Social and Political Sciences, University of Southampton,					
14	Southampton, United Kingdom					
15	⁴ School of Medicine, Medical Sciences and Nutrition, University of Aberdeen					
16	⁵ School of Mathematical Sciences, University of Southampton, Southampton, United					
17	Kingdom					
18	⁶ University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom					
19	⁷ NIHR Applied Research Collaboration Wessex, Southampton, United Kingdom					
20						
21	Corresponding Author:					
22	Sebastian Stannard - <u>S.J.Stannard@soton.ac.uk</u>					
23	University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom					
24	+44(0)23 8059 5000					

25

26 Abstract

28	Background: Obesity and hypertension are major public health problems and are associated
29	with adverse health outcomes. To model realistic prevention scenarios and inform policy, it
30	may be helpful to conceptualise early lifecourse domains of risk and incorporate such
31	information when predicting comorbidity outcomes. We identify exposures across five pre-
32	hypothesised childhood domains and explore them as predictors of obesity and hypertension
33	comorbidity in adulthood.
34	Methods: The analytical sample included 7858 participants in the 1970 British Cohort Study.
35	The outcome was obesity (BMI of \geq 30) and hypertension (blood pressure>140/90mm Hg or
36	self-reported doctor's diagnosis) comorbidity at age 46. Early life domains included:
37	'prenatal, antenatal, neonatal and birth', 'developmental attributes and behaviour', 'child
38	education and academic ability', 'socioeconomic factors' and 'parental and family
39	environment'. We conducted prediction analysis of the outcome in three stages:(1) stepwise
40	backward elimination to select variables for inclusion for each domain (2) calculation of
41	predicted risk scores of obesity-hypertension for each cohort member within each domain (3)
42	multivariable logistic regression analysis including domain-specific risk scores, sex and
43	ethnicity to assess how well the outcome could be predicted. We additionally included
44	potential adult predictors of obesity-hypertension comorbidity as sensitivity analysis.
45	Results: Including all domain-specific risk scores in the same model, all five domains were
46	significant predictors of obesity-hypertension comorbidity. The predictive power of the
47	model, measured by the area under the curve (AUC), was 0.63 (95%CI 0.61-0.65). Including
48	adult predictors increase the AUC to 0.68 (95%CI $0.66-0.70$), and three early life domains -
49	the parental and family environment domain (OR 1.11 95%CI 1.05-1.17) the socioeconomic

50	factors domain (OR 1.09 95% CI 1.04-1.16), and the education and academic ability domain
51	(OR 1.07 95%CI 1.02-1.13) remained predictors of obesity-hypertension comorbidity.
52	Conclusions: We found three robust domains for predicting obesity-hypertension
53	comorbidity. Interventions that address these early life factors could reduce the burden of
54	comorbidity.
55	
56	Introduction
57	Obesity and hypertension are major public health problems [1-2]. In England, 26% of adults
58	have obesity [3], and 30% of adults have hypertension [4]. Both conditions are associated
59	with morbidities later in the lifecourse, including Type 2 diabetes, heart disease, kidney
60	disease, renal disease, strokes, and some cancers, including breast and bowel cancer [5-8].
61	There is evidence suggesting that in England and Scotland since 2014, obesity and excess
62	body fat have contributed to more deaths among people in middle- and old-age than smoking
63	[9]. On a global level, in 2019 and across 204 countries, the leading Level 2 risk factor for
64	attributable deaths was high systolic blood pressure, and between 2010 to 2019, one of the
65	largest increases in risk exposure was for high body-mass index [10].
66	
67	Obesity and hypertension are closely related and often co-occur [11], for example each
68	condition occurs at higher frequency with the other than in a population free of either [12].
69	Research indicates that obesity accounts for 60-70% of hypertension, and individuals with
70	obesity are 3.5 times more likely to have hypertension compared to normal weight
71	individuals [13,14]. The combination of both conditions significantly increases the likelihood
72	of adverse health outcomes such as cardiovascular disease, reduced sexual function, quality
73	of life and mortality [12,15,16]. Previous literature has also identified obesity and

hypertension as common sentinel conditions, defined as the first long-term condition in thedevelopment of multiple long-term conditions [17-20].

76

97

77	A substantial body of evidence suggests that experiences in early life are crucial in
78	determining outcomes such as obesity and hypertension. The aetiology of chronic disease has
79	been strongly linked with environmental exposures in utero and early life [21].
80	Socioeconomic disadvantage in early life is also strongly related to obesity and hypertension
81	[22]. Analyses of the Hertfordshire cohort study demonstrated that paternal social class was
82	associated with future multimorbidity, including hypertension [23]. In the Aberdeen Children
83	of the 1950s cohort, lower father's social class at birth was associated with early-onset
84	multimorbidity, including hypertension [24], and in the 1970 British Cohort Study those with
85	fathers from unskilled occupational groups (vs. professional) at birth had 43% higher risk of
86	early-onset (age 46-48) multimorbidity including hypertension [25].
87	
88	Many wider determinants acting in childhood are likely to increase the risk of disease in
89	adulthood, and in previous research [26,27] we conceptualised exposures across 12 pre-
90	defined childhood domains covering a range of social, economic, developmental, educational
91	and environmental factors. Most previous research focuses on single exposure-outcome
92	relationships, potentially to reduce statistical complexity, or to focus policy attention onto a
93	specific aspect. However, focussing on single exposures does not reflect the reality and
94	complexity of the early life course given children are likely to be exposed to combinations of
95	intersectional factors across these domains, often simultaneously. We argue that analyses
96	must begin to explore exposures as domains (i.e., a group of variables that represent an

98 reasons. First, to provide a combined exposure measure that reflects multiple variables in the

overarching theme) rather than the individual variables that form its components for three

99	data rather than performing multiple statistical testing using all of the components in relation
100	to the study outcomes. Second, to conceptualise the components within wider early life
101	domains provides a better reflection of the childhood conditions in which people grow up.
102	Third considering domains will better inform interventions and policy in childhood as
103	incorporating information from multiple early life domains into the same analysis may help
104	us understand the combined effects of different experiences across a range of early life
105	domains on developing long-term conditions. This can provide actionable insights into
106	developing complex multi-domain interventions in childhood that may help support people to
107	live more healthily for longer across the lifecourse.
108	
109	In this paper we look to address two research questions. Firstly, which early life domain(s)
110	contribute to predicting the risk of obesity-hypertension comorbidity at mid-life? Secondly,
111	which early life domain(s) are more important than others in explaining the variability in
112	obesity-hypertension occurrence?
113	
114	To achieve this, we aimed to predict the outcome of obesity-hypertension comorbidity using
115	five early lifecourse domains. In order to do this while weighting the components of each
116	domain, we also aimed to produce -as a first stage of the analysis- predicted risk scores of the
117	outcome for each of the five pre-defined early life domains [26,27]. In a sensitivity analysis
118	we included potential adult risk factors of obesity-hypertension comorbidity (number of days
119	of exercise per week, highest educational qualification, weekly income, number of cigarettes
120	smoked daily, hours spent on a weekday watching television, hours on a weekday spent on
121	the internet (not for work related reasons), cohabitating with a partner, alcohol consumption

122 and use of e-cigarettes) to explore which early life domains matter most for obesity-

123 hypertension comorbidity taking account of such factors.

1	2	4
-	_	

125	This work forms part of a larger aim to model targeted multimorbidity prevention scenarios
126	as part of the Multidisciplinary Ecosystem to study Lifecourse Determinants and Prevention
127	of Early-onset Burdensome Multimorbidity (MELD-B) project [28].
128	
129	<u>Methods</u>
130	Dataset
131	We used the 1970 British Cohort Study (BCS70) [29] that has followed 17196 cohort
132	members in England, Scotland, Wales born in one week in 1970; to date, there have been 10
133	sweeps of data collection -4 in childhood and 6 in adulthood. The comorbidity outcome of
134	obesity and hypertension was measured at age 46 within a biomedical sweep with
135	measurements conducted by a research nurse. All other variables were collected either at
136	birth or age 10.
137	
138	Outcome
139	The outcome was a combined obesity-hypertension phenotype at age 46. Blood pressure was
140	measured via three systolic and diastolic blood pressure readings during a single appointment
141	and administered by a research nurse. Hypertension was defined as an average blood pressure
142	reading of over 140/90 mm Hg. We additionally classified hypertension if a participant
143	reported (at age 46) that they had received a doctor's diagnosis of high blood pressure or
144	hypertension, even if the blood pressure measurement was less than 140/90 mm Hg, since

145 diagnosed hypertension may be accompanied by intake of antihypertensive medication, thus

- 146 lowering blood pressure readings at the time of cohort measurement. Body mass index (BMI)
- 147 was calculated via height and weight measurements taken during the same nurse appointment
- 148 using the following formula: $BMI = weight (kg) / height (m)^2$. Obesity was defined as a BMI

- 149 of 30 or over. The obesity-hypertension comorbidity variable was considered as a binary
- 150 (no/yes) variable.
- 151

152 Exposures (Five pre-hypothesised domains)

- 153 We previously conceptualised 12 domains of early life risk factors of future multimorbidity
- 154 risk informed through a scoping literature/policy review and patient and public engagement
- 155 [26]. In this paper we focus our analysis on 5 out of the 12 domains chosen because they
- 156 showed unadjusted associations with the outcomes:
- 157 1. Prenatal, antenatal, neonatal and birth domain focused on the period from
- 158 conception to the onset of labour, the circumstances and outcomes surrounding a
- birth, and the period immediately following birth.
- 160 2. *Developmental attributes and behaviour domain* focused on the developmental
- 161 markers of children relating to cognition, coordination, personality types and
- 162 behavioural traits.
- 163 3. *Child education and academic ability domain* related to the process of learning and
 164 educational achievement, especially in educational settings, and the knowledge an
 165 individual gains from these educational institutions.
- 166 4. *Socioeconomic factors domain* included factors relating to differences between
- 167 individuals or groups of peoples caused mainly by their social and economic situation.
- 168 5. Parental and family environment domain incorporated the interactions between
- 169 children and care givers, parenting styles, parental beliefs, attitudes and discipline,
- and wider family factors such as kin networks.
- 171 Supplementary Materials Table 1 includes all the variables that were initially considered
- 172 for each domain. These variables were selected and categorised based on a previous data
- audit and PCA analysis [27] that identified early-life variables from multiple sweeps of

174	data that	fitted in	to five	early-life	domains	of future	multimorbidity	v risk.	This	previous
				-1				1		

- 175 work reduced the dimensionality of the data and structured each of the five domains into
- 176 mutually exclusive groups of variables based on similar characteristics [27].
- 177

178 Analytical sample

- 179 The analytical sample included all cohort members who had measured BMI and blood
- 180 pressure at age 46 (n = 7858); this represented 45.7% of the original birth cohort. To preserve

181 sample size and reduce bias in the estimates due to missing data we used multiple imputation.

- 182 Multiple imputation was conducted by chained equations for missing observations at birth,
- age 10, and 46 [30]. 50 imputation cycles were constructed under the missing-at-random
- assumption [31-33], which has been found to be highly plausible in the British birth cohorts

185 [34]. All variables were included in the imputation process. The outcome was included in the

186 imputed models, but imputed outcome values were not used. For reference we include results

187 based on complete case analysis in Supplementary Materials Tables 2 and 9.

188

189 Statistical analysis

190 Step 1: Stepwise backwards elimination to select variables for inclusion separately for each
191 domain.

192 Firstly, stepwise backward elimination conducted on multiple imputed data, was used to

193 select variables for inclusion separately for each domain. This method started with all

194 potential variables identified for each domain as outlined in Supplementary Materials Table

- 195 1, then variables were removed sequentially based on a series of hypothesis tests. In
- backward elimination, variables were removed sequentially if the p-value for a variable
- 197 exceeded the specified significance level which was set at 0.157. This level was chosen
- 198 conservatively to reduce the risk of overfitting and is the equivalent to the Akaike

199	information criterion (AIC) [35,36]. Table 1 identifies the retained variables following
200	stepwise backwards elimination for each domain in relation to the outcome of obesity-
201	hypertension comorbidity at age 46, the descriptive statistics were based on the specific
202	sample available at the sweep in which the variable was reported or measured.
203	

- 204 Step 2: Predicted risk scores of obesity-hypertension comorbidity for each cohort member
- 205 *within each domain.*
- 206 Secondly, logistic regression models then explored the relationship between retained
- 207 variables within each domain following stepwise backwards elimination and odds of obesity-
- 208 hypertension comorbidity. Based on this logistic regression modelling, and using the 'predict'
- 209 function in STATA [37], predicted risk scores of the obesity-hypertension comorbidity
- 210 outcome for each cohort member within each domain were calculated. In other words, each
- 211 cohort member has five predicted score values in relation to the obesity-hypertension
- 212 comorbidity outcome, one for each of the five domains. These predicted risk scores for each
- 213 individual, and within each domain, were centred on the mean predicted risk score within that
- domain, and were bound between -1 and 1. A Pearson correlation matrix then explored the
- 215 correlation between domain-specific risk scores. We generated predicted risk scores of
- 216 obesity-hypertension for each of the five early life domains to account for the weight of each
- 217 domain component in relation to the outcome rather than assuming each component
- 218 contributes an equal weight to the outcome.
- 219

220 Step 3: A prediction model including five domain-specific risk scores.

221 The third step involved focussing on how well obesity-hypertension could be predicted

- including all five domain-specific risk scores produced in step 2 using a multivariable logistic
- regression model with the 'predict function', and adding sex (at birth) and ethnicity. We

224	produced the area under curve (AUC) statistic to assess the predictive performance of this
225	model. Odds ratios and confidence intervals of the five domains within this model were used
226	to identify the strongest domains that acted as predictors for obesity and hypertension
227	comorbidity taking into account the effect of the other domains.
228	
229	Step 4: A prediction model including five domain-specific risk scores and adult factors
230	(sensitivity analyses)
231	The fourth step involved performing step 3 with the inclusion of adult factors that are
232	potentially linked to both the exposures and the outcome. These were recorded at age 46
233	including number of days of exercise per week, highest educational qualification,
234	occupational social class, weekly income, number of cigarettes smoked daily, hours spent on
235	a weekday watching television, hours on a weekday spent on the internet (not for work
236	related reasons), cohabitating with a partner, alcohol consumption and use of e-cigarettes.
237	
238	Ethical considerations
239	Ethics approval for the MELD-B project has been obtained from the University of
240	Southampton Faculty of Medicine Ethics committee (ERGO II Reference 66810).
241	
242	Results
243	Step 1: Stepwise backwards elimination to select variables for inclusion in each domain.
244	Among the 7858 cohort members at age 46, 597 (7.6%) had obesity-hypertension
245	comorbidity at age 46. Table 1 identifies the retained variables following stepwise backwards
246	elimination for each domain in relation to the outcome of obesity-hypertension comorbidity
247	at age 46. As shown in Table 1, in the socioeconomic factors domain, 9.2% of cohort

248 members whose gross family income at age 10 (per week) was below £49 had obesity-

249	hypertension at age 46, compared to 4.2% of cohort members whose gross family income
250	was above £250. In the prenatal, antenatal, neonatal domain, 8.8% of cohort members whose
251	mothers smoked during pregnancy had obesity and hypertension at age 46 compared to a
252	6.7% prevalence in non-smokers. In the education and academic ability domain 10.1% of
253	cohort members who reported some difficulty with reading at age 10 had obesity-
254	hypertension at age 46 compared to a prevalence of 7.1% in those with no difficulty. Finally,
255	for the parent and family environment domain of cohort members with a father by adoption
256	(10.4%), stepfather (10.3%) or another father figure such as a grandparent (11.2%) at age 10
257	had obesity-hypertension at age 46 compared to 7.4% in those living with a biological father.
258	

259 Table 1. Step 1: Variables retained in the five domains risk scores following stepwise

260 backwards elimination, and the prevalence of obesity-hypertension comorbidity at age 46.

			Obesity and High Blood Pressure		
			No	Yes	Total
			N (%)	N (%)	Sample ¹
Prenatal,	Mother's parity at	0	2849	251	3100
antenatal,	birth of cohort member		(91.9%)	(8.1%)	
neonatal and		1	2475	183	2658
birth domain			(93.1%)	(6.9%)	
(variables		2	1127	89	1216
recorded at			(92.7%)	7.3%	
birth)		3	460	34	494
			(93.1%)	(6.9%)	
		4	201	24	225
			(89.3%)	(10.7%)	
		5+	148	17	165
			(89.7%)	(10.3%)	
	Maternal smoking	Non-smoker	3190	229	3419
	during pregnancy		(93.3%)	(6.7%)	
		Stopped pre/during	1272	993	1371
			(92.8%)	(7.2%)	

		Smoker	2758	266	3024
			(91.2%)	(8.8%)	
	Birthweight	No obesity-hypertension -		3318g	7254
		mean (SD)		(523g)	
		Yes obesity-hypertension -		3246g	596
		mean (SD)		(483g)	
	Maternal age at birth	No obesity-hypertension -		26.0	7220
	of cohort member	mean (SD)		(5.3)	
		Yes obesity-hypertension -		25.6	594
		mean (SD)		(5.6)	
Education and	Ability spelling –	Good ability	3210	234	3444
academic ability	cohort member's		(93.2%)	(6.9%)	
domain	assessment	Poor ability	2605	258	2863
(variables			(91.0%)	(9.0%)	
recorded at age	Difficulty writing –	No difficulty	5173	396	5569
10)	teacher's assessment		(92.9%)	(7.1%)	
		Some difficulty	1050	114	1164
			(90.2%)	(9.8%)	
		Great difficulty	127	7	134
			(94.8%)	(5.2%)	
	Difficulty reading –	No difficulty	5260	402	5662
	teacher's assessment		(92.9%)	(7.1%)	
		Some difficulty	950	107	1057
			(89.9%)	(10.1%)	
		Great difficulty	161	11	172
			(93.6%)	(6.4%)	
	Edinburgh Reading	No obesity-hypertension -		42.5	5776
	Test Scores	mean (SD)		(12.1)	
		Yes obesity-hypertension -		40.1	493
		mean (SD)		(12.2)	
Parent and	Father interest in	Very interested	2200	150	2350
family	education - teacher's		(93.6%)	(6.4%)	
environment	assessment	Moderate interest	1136	97	1233
domain			(92.1%)	(7.8%)	
(variables		Very little interest	178	18	196
recorded at age			(90.8%)	(9.2%)	

	Uninterested	144	12	156
		(92.3%)	(7.7%)	
	Cannot say/no father	1658	172	1830
		(90.6%)	(9.5%)	
Mother interest in	Very interested	3058	203	3281
education – teacher's		(93.2%)	(6.8%)	
assessment	Moderate interest	1694	151	1845
		(91.8%)	(8.2%)	
	Very little interest	242	26	268
		(90.3%)	(9.7%)	
	Uninterested	99	10	109
		(90.8%)	(9.2%)	
	Cannot say/no mother	636	75	711
		(89.5%)	(10.6%)	, 11
Family go on outings	Often	3570	281	3851
r annry go on outnigs	onen	(92.7%)	(7.3%)	5051
	Sometimes	2602	220	2831
	Sometimes	(01.00/)	(9, 10/)	2031
	Dougly on norma	(91.9%)	(0.1%)	222
	Rarely or never	210	(7, 20())	233
		(92.7%)	(7.3%)	2622
Father helps manage	Equal or similar amount	3346	287	3633
cohort member		(92.1%)	(7.9%)	
	Smaller part than mother	2118	154	2272
		(93.2%)	(6.8%)	
	Very small part	437	36	473
		(92.4%)	(7.6%)	
	Does not help	442	43	485
		(91.1%)	(8.9%)	
Father Figure	Biological father	5584	440	6024
		(92.7%)	(7.4%)	
	Father by adoption	86	10	96
		(89.6%)	(10.4%)	
	Step father	235	27	262
		(89.7%)	(10.3%)	
	Other	111	14	125
		(88.8%)	(11.2%)	
			. ,	

		No father figure	415	38	453
			(91.6%)	(8.4%)	
Developmental	Rutter behaviour	No obesity-hypertension -		424.0	6047
attributes and		mean (SD)		(209.2)	
behaviour		Yes obesity-hypertension -		449.7	497
domain		mean (SD)		(196.8)	
(variables	Number of steps	No obesity-hypertension -		15.7	5975
recorded at age	walking backwards	mean (SD)		(5.4)	
10)		Yes obesity-hypertension -		15.0	488
		mean (SD)		(5.6)	
	Hand control rating	No obesity-hypertension -		30.3	5815
		mean (SD)		(12.2)	
		Yes obesity-hypertension -		28.2	496
		mean (SD)		(12.2)	
Socioeconomic	Parental social class	I professional	439	27	466
factors domain			(94.2%)	(5.8%)	
(variables		II managerial	1691	106	1797
recorded at age			(94.1%)	(5.9%)	
10)		III non-manual	710	55	765
			(92.8%)	(7.2%)	
		III manual	2432	226	2658
			(91.5%)	(8.5%)	
		IV partly skilled	762	89	851
			(89.5%)	(10.5%)	
		V Unskilled	206	18	224
			(91.9%)	(8.1%)	
	Gross Income per	£250+	408	16	426
	week		(95.8%)	(4.2%)	
		£200-£249	421	35	456
			(92.3%)	(7.7%)	
		£150-£199	1061	68	1129
			(94.0%)	(6.0%)	
		£100-£149	2072	188	2260
			(91.7%)	(8.3%)	
		£50-£99	1602	158	1760
			(91.0%)	(9.0%)	
			. ,	. /	

	Under £49	334	34	368
		(90.8%)	(9.2%)	
Housing tenure	Owned outright	737	55	792
		(93.1%)	(6.9%)	
	Private rent	191	14	205
		(93.2%)	(6.8%)	
	Being purchased (mortgage)	3585	270	3855
		(93.0%)	(7.0%)	
	Council rent	1685	177	1862
		(90.5%)	(9.5%)	
	Other	198	17	215
		(92.1%)	(7.9%)	

¹*The total sample size was based on the specific sample available at the sweep in which the*

262 *variable was reported or measured.*

263

264 Step 2: Generation of domain-specific predicted risk scores of obesity-hypertension

265 *comorbidity for each cohort member.*

266 Supplementary Materials Figure 1. presents a histogram of the distribution of domain-specific

267 predicted risk scores, generated in step 2, following logistic regression modelling that

268 explored the relationship between retained variables following stepwise backwards

269 elimination (step 1) and obesity-hypertension comorbidity for the five early life domains. In

270 Supplementary Materials Tables 4-8, we include the regression coefficients of obesity-

271 hypertension for these models, and for each domain separately. The domain risk scores were

272 centred on the mean predicted risk score (for each domain) and bound between -1 and 1. As

shown the largest range of domain predicted risk scores was for the prenatal, antenatal,

neonatal and birth domain (range -0.05 - 0.14) and the smallest range was for the parental

and environmental domain risk score (range -0.03 - 0.08).

277	Given there was likely to be correlation between domain risk scores, in Supplementary
278	Materials Table 3 we present a Pearson correlation matrix exploring correlation across
279	domains. The highest correlation was between both the developmental attributes and
280	behaviour domain and the child education and academic ability domain (coefficient
281	0.29), and between the parental and family environment domain and the socioeconomic
282	factors domain (coefficient 0.32), and therefore the correlation between predicted risk scores
283	for each domain was low.
284	
285	Step 3: Prediction modelling of obesity-hypertension including five domain-specific risk
286	scores.
287	We calculated the area under curve (AUC) (included in Supplementary Materials 10) for the
288	prediction model that included all five domain specific risk scores (produced in step 2),
289	ethnicity and sex. Overall, the area under the curve was 0.63 (95%CI 0.61-0.65). Table 2
290	presents the odds ratios of obesity-hypertension at age 46 for the prediction model that
291	included all five domain specific risk scores (produced in step 2), sex and ethnicity. As
292	shown, all domain risk scores were significant predictors of obesity-hypertension
293	comorbidity, with the strongest being the parental and family environment domain (OR 1.11
294	95%CI 1.05-1.17) and the socioeconomic factors domain (OR 1.11 95%CI 1.05-1.17). The
295	weakest domain predictors included the prenatal, antenatal, neonatal and birth domain (OR
296	1.06 95%CI 1.01-1.12) and the education and academic ability domain (OR 1.07 95%CI
297	1.01-1.12).
298	
299	Table 2. Step 3: Odds ratios of obesity-hypertension at age 46 in relation to domain-specific
300	risk score of obesity-hypertension for five early life domains. Multiple imputed data (50

301 Imputations).

	Odds	95% Confidence
	ratios	interval
Developmental attributes and behaviour domain	1.08	1.03 - 1.15
Prenatal, antenatal, neonatal and birth domain	1.06	1.01 - 1.12
Parent and family environment domain	1.11	1.05 - 1.17
Education and academic ability domain	1.07	1.01 - 1.12
Socioeconomic factors domain	1.11	1.05 - 1.17
Child's sex: Women (base – men)	0.77	0.64 - 0.91
Mother ethnic group: Other (base – white)	1.05	0.69 - 1.61
Number of observations		7858

302

303 Step 4: Prediction modelling of obesity-hypertension comorbidity including five domain-

304 specific risk scores and potential adult predictors (sensitivity analysis).

305 Table 3 presents the odds ratios of obesity-hypertension at age 46 for the prediction model

that included all five domain specific risk scores (produced in step 2) ethnicity, sex and adult

307 predictors. Overall the inclusion of adult predictors increased the area under the curve to 0.68

308 (95%CI 0.66-0.70) (Supplementary table 11). As shown, after the inclusion of adult

309 predictors, the prenatal, antenatal, neonatal and birth domain (OR 1.05 95%CI 0.99-1.11) and

the developmental attributes and behaviour domains (OR 1.07 95% CI 1.00-1.13) were no

311 longer significant predictors of obesity-hypertension comorbidity. The other three domains

312 remained significant predictors for obesity and hypertension comorbidity. These domains

313 included the parental and family environment domain (OR 1.11 95%CI 1.05-1.17), the

socioeconomic factors domain (OR 1.09 95% CI 1.04-1.16), and the education and academic

315 abilities domain (OR 1.07 95%CI 1.02-1.13).

- 317 Table 3. Step 3: Odds ratios of obesity-hypertension at age 46 in relation to domain-specific
- 318 risk score of obesity-hypertension for five early life domains including adult predictors.
- 319 Multiple imputed data (50 Imputations).

	OR	95% Confidence
		Interval
Developmental attributes and behaviour domain	1.07	1.00 - 1.13
Prenatal, antenatal, neonatal and birth domain	1.05	0.99 - 1.11
Parent and family environment domain	1.11	1.05 - 1.17
Education and academic ability domain	1.07	1.02 - 1.13
Socioeconomic factors domain	1.09	1.04 - 1.16
Child's sex: Women (base – men)	0.75	0.62 - 0.91
Mother ethnic group: Other (base – white)	0.89	0.58 - 1.37
Number of cigarettes smoked a day	0.99	0.98 - 1.01
TV hours per weekday:1 to 2 hours (base - 1 hour or less)	1.72	1.24 - 2.39
2 to 3 hours	1.46	1.03 - 2.06
3 to 4 hours	1.49	1.02 - 2.17
More than 4 hours	1.90	1.26 - 2.86
Internet hours per weekday: 1 to 2 hours (base -1 hour or less)	1.12	0.91 - 1.38
2 to 3 hours	1.37	1.04 - 1.80
3 to 4 hours	1.37	0.95 - 1.98
More than 4 hours	1.47	1.03 - 2.09
Cohabitating: No (base – yes)	1.04	0.85 - 1.27
Alcohol consumption: Does not drink alcohol (base - normal)	1.39	1.08 - 1.81
High risk drinking	1.23	1.00 - 1.51
Social class: Lower managerial (base - higher managerial)	1.10	0.82 - 1.49
Intermediate occupations	1.12	0.77 - 1.63
Small employer	0.95	0.63 - 1.43
Lower supervisor	1.04	0.71 - 1.55
Semi-routine	0.89	0.59 - 1.35
Routine	0.82	0.52 - 1.28
Not stated	1.15	0.80 - 1.67
Not applicable	0.75	0.48 - 1.17
Days exercise per week: 1 (base $- 0$)	0.75	0.54 - 1.05
2	0.74	0.55 - 0.99

3	0.74	0.55 - 0.99
4	0.67	0.47 - 0.97
5	0.80	0.59 - 1.07
6	0.56	0.32 - 0.98
7	0.54	0.41- 0.72
Educational qualification: GCSE (base - no qualification)	1.32	1.06 - 1.64
A/AS level	1.24	0.81 - 1.91
Diploma	1.39	0.99 - 1.95
Degree	1.20	0.89 - 1.63
Higher degree	1.01	0.58 - 1.75
Weekly income	1.00	0.99 - 1.00
Managing financially: doing all right (base - doing well)	1.06	0.86 - 1.30
Just about getting by	1.24	0.95 - 1.61
Finding it quite difficult	1.72	1.16 - 2.53
Finding it very difficult	1.65	0.99 - 2.78
E-cigarettes: Previously smoked (base- never smoked)	0.97	0.62 - 1.39
Occasionally smoke	1.43	0.97 - 2.14
Smoke daily	0.82	0.56 - 1.21
Number of observations		7858

320

321 Discussion

322	Using the BCS70 data, early life domains showed associations with obesity-hypertension
323	comorbidity at age 46 even after accounting for each other, with the strongest domain
324	predictors for obesity-hypertension being the parental and family environment domain and
325	the socioeconomic factors domain. After accounting for adult predictors including number of
326	days of exercise per week, highest educational qualification, occupational social class,
327	weekly income, number of cigarettes smoked daily, hours spent on a weekday watching
328	television, hours on a weekday spent on the internet (not for work related reasons),
329	cohabitating with a partner, alcohol consumption and use of e-cigarettes, associations with
330	the outcome for the parental and family environment domain, the socioeconomic factors
331	domain, and the education and academic abilities domain remained robust.

332

333	In this paper we have quantified the effect of a combination of risk factors in early life in the
334	shape of life domains on comorbidity outcomes. We recognise that prevention policy choices
335	are rarely feasible or practical for one isolated risk factor and thinking in terms of domains
336	may help addressing the early wider determinants of later health. Therefore, our motivation
337	for this analysis stems from the observation that health research tends to investigate single
338	exposure-outcome relationships, while children's experiences across a variety of early
339	lifecourse behavioural, social, economic and transgenerational domains are intersecting, and
340	therefore research needs to be able to incorporate information from multiple domains into the
341	same analysis. However, it is also important that health research reflects on modifiable risk
342	factors for ill health that focus on both direct and indirect factors including wider systemic
343	and structural determinants of disease and health inequalities [38].

344

345 Previous research has indicated that early life factors, including environmental exposures in 346 utero, socioeconomic disadvantage, and father's occupation are associated to the individual 347 outcomes considered in this paper [21-25]. We extended this previous work to demonstrate 348 that combinations of early-life risk factors represented through domains are also associated to 349 obesity-hypertension comorbidity. In particular our results support research for different 350 cohort studies including the Hertfordshire cohort study and the Aberdeen Children of the 351 1950s cohort suggesting that early life socioeconomic disadvantage including paternal social 352 class and occupational social class are key in shaping multimorbidity [22-25]. We have 353 demonstrated that this relationship remains even after considering the role of other early life 354 domains and adult predictors.

355

The finding that the parental and family environment domain remains important indicate that there may be lifelong health impacts stemming from the interaction between children and the primary care giver, parenting styles, parental beliefs, attitudes and discipline, and wider family factors such as kin networks in childhood.

360

361 Our results support recent policy directions such as those stated in the 2022 Public Heath 362 Wales report and the 2021 The Best Start for Life report which highlight that the relationship 363 between the parent and child, between the child's parents, and the family's relationships with 364 their wider family, are key components of both children's wellbeing and early child 365 development [39,40]. Additionally, we add to literature that has found parenting and family 366 support, parenting warmth and parenting styles to be important determinants of psychiatric 367 comorbidity [41]. These results highlight the importance of current UK policy interventions 368 and research endeavours such as 'A Better Start', 'Family Hubs' and 'Start for Life' 369 programmes that aim to give children and families the best start in life [42,43]. Identifying 370 and supporting vulnerable families to develop parenting skills, ensuring children have a 371 healthy and safe home environment are all interventions that may reduce multimorbidity in 372 later life. In addition, continued efforts are needed to address the wider determinants of health 373 such as income and equitable access to good quality housing and healthy food to support 374 people to have healthy lives for longer.

375

376 Calculating domain-specific risk scores and using these within the same prediction model 377 was our approach to reduce dimensionality of the individual variables within the domain, 378 while weighing their components, preserving the structure of the key domains, and providing 379 the opportunity to move beyond simple counts of binary variables as an indicator of risk.

380	Additionally, this method was developed building on previous work that derived each
381	variable (within each domain) into a binary (yes/no) outcome, and then summed these binary
382	variables to produce domain risk scores that described a count of adversity [44]. A limitation
383	of this previous approach was that we were required to assume that all variables within each
384	domain and all domain risk scores carried equal weight, and this was particularly problematic
385	when we compared the relative importance of each domain adjusting for the other domains.
386	A further issue was that by deriving variables into a binary indicator we disregarded
387	information contained within the original data structure and we were required to implement
388	arbitrary cut-off points. The methods developed here represent an alternative method that
389	adjusted for the weighting of the individual domain risk scores (in the final prediction
390	model), whilst maintaining the original data structure of the variables.
391	
392	Strengths and limitations
393	Data from a large cohort study allowed us to capture a wide array of biological, social,
394	environmental, behavioural and family variables in childhood to represent five early
395	lifecourse domains. This depth of information would not have been available from most
396	electronic health care records in either primary or secondary care. The data also afforded the
397	opportunity to analyse objective measures of both obesity and hypertension.
398	
399	However, the cohort is representative of births occurring in Britain in 1970 and as such lacks
400	ethnic diversity. Additionally, no differentiation was made between the burdensome impact

- 401 of different diseases or disease severity to the individual. For example, mild controlled
- 402 hypertension or just making the threshold for obesity is unlikely to have the same impact on
- 403 an individual's quality of life compared to unmanaged hypertension or clinically severe
- 404 obesity (BMI over 40). Further, despite using measured rather than self-reported BMI, the

BMI measurement continues to have a risk of overestimating body fat in those who havemuscular builds.

407

408	It is also important to consider the possibility that we have over-adjusted within our models,
409	resulting in overadjustment bias through adjusting for mediators or colliders [45]. This was
410	unavoidable given our particular approach to the analysis given our domains were combined
411	risk factors rather than individual variables. Further, children's experiences across a variety
412	of early life course domains are intersecting and we argue that research needs to be able to
413	incorporate information from multiple domains into the same analysis. We therefore felt it
414	was important to explore multiple domains simultaneously to attempt to disentangle the
415	strongest predictor for obesity-hypertension comorbidity. We considered taking a more
416	traditional, epidemiological approach where we would consider the relationship between a
417	single domain or a single variable within a domain and odds of obesity-hypertension,
418	controlling for select individual variables from the other domains. However, the choice of
419	domain would have been arbitrary, and this method would not have addressed this paper's
420	research questions.

421

Finally, it is important to expand the methods presented here to consider the relationship to other multimorbidity clusters and outcomes that develop a more sophisticated understanding of multimorbidity, including focussing on burdensomeness and complexity. In previous research [27] we audited the early life variables available in two other cohort datasets. The data available in these datasets provide the opportunity to validate and compare our results across cohorts.

428

429 Conclusions

430	We found the most robust domains for predicting obesity-hypertension were for the parental
431	and family environment domain, the socioeconomic factors domain and the education and
432	academic abilities domain. Developing methods for exploring the multidetermined nature of
433	combined childhood risk factors for health such as the work presented here, can help to
434	challenge existing understanding of the aetiology of health, develop new ideas and solutions,
435	and facilitate improvements in developing and recognising health as a complex and
436	multidetermined concept from a lifecourse perspective.
437	
438	Conflict of Interest
439	R.O. is a member of the National Institute for Health and Care Excellence (NICE)
440	Technology Approved Committee, member of the NICE Decision Support Unit (DSU) and
	reciniology Appraisal Committee, member of the NICE Decision Support Unit (DSU), and
441	associate member of the NICE Technical Support Unit (TSU). She has served as a paid
441 442	associate member of the NICE Technical Support Unit (TSU). She has served as a paid consultant to the pharmaceutical industry and international reimbursement agencies,
441 442 443	associate member of the NICE Technical Support Unit (TSU). She has served as a paid consultant to the pharmaceutical industry and international reimbursement agencies, providing unrelated methodological advice. She reports teaching fees from the Association of

444 British Pharmaceutical Industry (ABPI). R.H. is a member of the Scientific Board of the

445 Smith Institute for Industrial Mathematics and System Engineering.

446 Author Contributions

447 S.F., N.A., R.H., S.P., R.O., S.S. and A.B. contributed to the conceptualisation of the MELD-

448 B project. S.S., N.A., and S.F. obtained the datasets. All authors contributed to the

449 conceptualisation of the paper. S.S., and N.A. led the design and planning of the paper. R.O.

450 led the design of the statistical analysis. S.S., N.A., A.B., N.Z., R.H., and R.O. supported the

- 451 design, planning and reviewing of the statistical analysis. S.S. performed the statistical
- 452 analysis with support from N.Z. S.S. prepared all figures and graphs. S.S., and N.A. produced
- 453 the initial draft of the manuscript. All authors were involved in editing and reviewing the

- 454 manuscript, and approved the final manuscript. S.S., N.A., and S.F. take responsibility for the
- 455 data and research governance.

456 Data Availability Statement

- 457 The BCS70 datasets generated and analysed in the current study are available from the UK
- 458 Data Archive repository (available
- 459 here: <u>http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=795</u>).

460 Acknowledgement

- 461 We would like to acknowledge all other members of the MELD-B Consortium, and we thank
- the participants of the BCS70 cohort study. We would also like to thank Jack Welch and our
- 463 other PPIE colleagues.

464 **References**

- 465 1. National Health Service. Obesity Statistics. 2022.
- 466 <u>https://www.nhs.uk/conditions/obesity/</u>.
- 467 2. Mills KT, Stefanescu A, & He J,T. Global epidemiology of hypertension. Nat. Rev.
- 468 Nephrol. 2020; 16: 223–237.
- 469 3. House of Commons Library. Obesity Statistics. 2023.
- 470 <u>https://commonslibrary.parliament.uk/research-</u>
- 471 briefings/sn03336/#:~:text=Adult%20obesity%20in%20England,is%20classified%20
- 472 <u>as%20%27overweight%27</u>.
- 473 4. National Health Service Digital. Health Survey for England Part 2. 2021.
- 474 https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-
- 475 england/2021-part-2/adult-health-hypertension

4/0 J. WOIIII K I, CAISOII K, COIUILZ OA. ODESILY AND CAICEL. THE ONCOLOGISL 20	GA. Obesity and cancer. The Oncologist. 2010; 15:
---	---

- 477 556–565. pmid:20507889
- 478 6. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al.
- 479 Endocrine Society, American Diabetes Association, & European Association for the
- 480 Study of Diabetes Obesity and type 2 diabetes: what can be unified and what needs to
- 481 be individualized?. Diabetes Care. 2011; 34: 1424–1430.
- 482 7. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al.
- 483 Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart
- 484 Association. Circulation. 2021; 143: e984–e1010. pmid:33882682
- 485 8. Weldegiorgis, M., Woodward, M. The impact of hypertension on chronic kidney
 486 disease and end-stage renal disease is greater in men than women: a systematic review
 487 and meta-analysis. *BMC Nephrol* 21, 506 (2020).
- 488 9. Ho FK, Celis-Morales C, Petermann-Rocha F, Parra-Soto SL, Lewsey J, Mackay,
- 489 D et al. Changes over 15 gears in the contribution of adiposity and smoking to
- 490 deaths in England and Scotland. *BMC Public Health. 2021;* **21**, 169.
- 491 doi:10.1186/s12889-021-10167-3
- 492 10. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204
- 493 countries and territories, 1990–2019: a systematic analysis for the Global Burden of
- 494 Disease Study 2019. The Lancet. 2019:396(10258): 1223 1249.
- 495 11. Leggio M, Lombardi M, Caldarone E, Severi P, D'Emidio S, Armeni M et al. The
- relationship between obesity and hypertension: an updated comprehensive overview
 on vicious twins. *Hypertens Res.* 2017;40: 947–963.
- 498 12. Frohlich ED, Messerli FH, Reisin E, Dunn FG. The problem of obesity and
- 499 hypertension. Hypertension 1983;5:III71.

500	13. Mokdad AH	. Ford ES.	Bowman BA.	Dietz WH	Vinicor F.	Bales VS.	. et al.
000	101101104401111	,		,	,	200000000	,

- 501 Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA.
- 502 2003;289(1):76-9.
- 503 14. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden 504 associated with overweight and obesity. JAMA. 1999;282(16):1523-9.
- 505 15. Natsis M, Antza C, Doundoulakis I, Stabouli S, Kotsis V. Hypertension in Obesity:

506 Novel Insights. Curr Hypertens Rev. 2020;16(1):30-36.

- 507 16. Alidu H, Owiredu WKBA, Amidu N, Gyasi-Sarpong CK, Dapare PPM, Bawah AT, et
- 508 al. Hypertension and obesity comorbidities increases coronary risk, affects domains of
- 509 sexual function and sexual quality of life. Int J Impot Res. 2018;30(1):8-13.
- 510 17. Freisling H, Viallon V, Lennon H, Bagnardi V, Ricci C, Butterworth AS, et
- 511 al. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic

512 diseases: a multinational cohort study. BMC Med. 2020;18(1).

- 513 18. Haug N, Deischinger C, Gyimesi M, Kautzky-Willer A, Thurner, S Klimek, P. High-
- 514 risk multimorbidity patterns on the road to cardiovascular mortality.
- 515 Med. □ 2020; □ 18(1): 44.
- 516 19. Jørgensen IF, Aguayo-Orozco A, Lademann M, Brunal, S. 🗆 Age-stratified

517 longitudinal study of Alzheimer's and vascular dementia patients. Alzheimer's

- 518 Dementia. 2020; 16(6): 908–917.
- 519 20. Strauss VY, Jones PW, Kadam UT, Jordan, KP. Distinct trajectories of multimorbidity 520
- in primary care were identified using latent class growth analysis. \Box J Clin

521 Epidemiol. 2014; 67(10): 1163–1171.

- 522 21. Gluckman PD, Buklijas T, Hanson MA. The developmental origins of health and
- 523 disease (DOHaD) concept: Past, present, and future. In Rosenfeld CS, editor. The
- 524 Epigenome and Developmental Origins of Health and Disease; 2016. pp. 1-15.

525	22.	Harper S, Lynch J, Smith GD. Social determinants and the decline of cardiovascular
526		diseases: understanding the links. Annual Review of Public Health. 2011;32:39-69.
527	23.	Humphreys J, Jameson K, Cooper C, Dennison E. Early-life predictors of future
528		multi-morbidity: results from the Hertfordshire Cohort. Age Ageing. 2018;47(3):474-
529		478.
530	24.	Johnston MC, Black C, Mercer SW, Prescott GJ, Crilly MA. Impact of educational
531		attainment on the association between social class at birth and multimorbidity in
532		middle age in the Aberdeen Children of the 1950s cohort study. BMJ Open.
533		2019;9(1):e024048.
534	25.	Gondek D, Bann D, Brown M, Hamer M, Sullivan A, Ploubidis GB. Prevalence and
535		early-life determinants of mid-life multimorbidity: evidence from the 1970 British
536		birth cohort. BMC Public Health. 2021;21(1):1319. doi: 10.1186/s12889-021-11291-
537		W.
538	26.	Stannard S, Berrington A, Paranjothy S, Owen RK, Fraser SDS, Hoyle RB, et al. A
539		conceptual framework for characterising lifecourse determinants of multiple long-
540		term condition multimorbidity. Journal of Multimorbidity and Comorbidity. 2023;13.
541	27.	Stannard S, Berrington A, Fraser SDS, Paranjothy S, Hoyle RB, Owen RK, et al.
542		Mapping domains of early life determinants of future multimorbidity across three UK
543		longitudinal cohort studies. Sci Rep. 14, 21454 (2024).
544	28.	Fraser SDS, Stannard S, Holland E, Boniface M, Hoyle RB, Wilkinson R, et al.
545		Multidisciplinary ecosystem to study lifecourse determinants and prevention of early-
546		onset burdensome multimorbidity (MELD-B) – protocol for a research collaboration.
547		Journal of Multimorbidity and Comorbidity. 2023;13.
548	29.	Sullivan A, Brown M, Hamer M, Ploubidis G. Cohort Profile Update: The 1970
549		British Cohort Study (BCS70). International J Epidemiol. 2022; dyac148.

550	30. Little RJA, Rubin DB. Statistical Analysis with Missing Data. 2nd edition. Hoboken,

- 551 NJ: Wiley; 2002.
- 31. Horton NJ, Lipsitz SR. Multiple imputation in practice: comparison of software
 packages for regression models with missing variables. American Statistical
- 554 Association. 2001; 55: 244–54.
- 555 32. Jakobsen JC, Gluud C, Wetterslev J. When and how should multiple imputation be
- used for handling missing data in randomised clinical trials–a practical guide with
- flowcharts. BMC Medical Research Methodology. 2017; 17: 162.
- 558 33. Collins LM, Schafer JL, Kam CM. A Comparison of inclusive and restrictive
- strategies in modern missing data procedures. Psychological Methods. 2001; 6: 330–
 351.
- 34. Mostafa T, Narayanan M, Pongiglione B. Improving the plausibility of the missing at
 random assumption in the 1958 British birth cohort: A pragmatic data driven
- 563 approach. CLS working paper number 2020/6. UCL Centre for Longitudinal Studies.
- 564 35. Heinze G, Wallisch C, Dunkler D. Variable selection A review and
- recommendations for the practicing statistician. Biometrical Journal. 2018; 60(3):
 431–449.
- 567 36. Atkinson, A.C. A note on the generalized information criterion for choice of a model.
 568 Biometrika. 1980;67, 413-418.
- 569 37. STATA predict function. 2024. <u>https://www.stata.com/manuals13/p_predict.pdf</u>
- 57038. Alwan NA, Stannard S, Berrington A, Paranjothy S, Hoyle RB, Owen RK, et al. Risk
- factors for ill health: How do we specify what is 'modifiable'? PLOS Glob Public
 Health. 2024; 4(3): e0002887.
- 573 39. Public Health Wales. First 1000 Days, Developing a Public Health Approach to
 574 Supporting Parents Technical Report. 2022.

- 575 https://phw.nhs.wales/publications/publications1/developing-a-public-health-
- 576 <u>approach-to-supporting-parents-technical-report/</u>
- 40. HM Government. The Best Start for Life. 2021.
- 578 <u>https://assets.publishing.service.gov.uk/media/605c5e61d3bf7f2f0d94183a/The_best_</u>
- 579 start for life a vision for the 1 001 critical days.pdf
- 580 41. Kalmijn M. Intergenerational transmission of health behaviors in a changing
- 581 demographic context: The case of smoking and alcohol consumption. Soc Sci

582 Med. 2022; 296: 114736.

- 583 42. The National Lottery Community Fund. A Better Start. 2015. <u>A Better Start | The</u>
 584 <u>National Lottery Community Fund (tnlcommunityfund.org.uk)</u>
- 585 43. Department of Health and Social Care and the Department for Education. Family
- 586 Hubs and Start for Life Programme Guide. 2022. <u>Family Hubs and Start for Life</u>
 587 Programme Guide (publishing.service.gov.uk)
- 588 44. Abstract from the 2024 Society for Social Medicine and Poupoulation Health Annual
- 589 Scientific Meeting. Stannard S, Berrington A, Fraser SDS, Hoyle RB, Paranjothy S,
- 590 Owen RK, et al. P03 Domains of early-life risk and obesity-hypertension
- 591 comorbidity: findings from two prospective birth cohorts. J Epidemiol Community

592 Health 2024;**78:**A48.

- 593 45. Lu H, Cole S, Platt R, Schisterman E. Revisiting Overadjustment Bias. Epidemiology.
- 594 2021; 32(5):p e22-e23.
- 595