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Abstract 
 
Background and purpose 

Timely identification of local failure after stereotactic radiotherapy for brain metastases allows for 

treatment modifications, potentially improving outcomes. Previous studies showed that adding 

radiomics or Deep Learning (DL) features to clinical features increased Local Control (LC) prediction 

accuracy. However, no study has integrated radiomics, DL, and clinical features into machine learning 

algorithms to predict LC. We examined whether a model using all these features achieves better 

accuracy than models using only a subset.  

Materials and methods 

We collected pre-treatment brain MRIs and clinical data for 129 patients at the Gamma Knife Center of 

the Elisabeth-TweeSteden Hospital. Radiomics features (extracted using the Python radiomics feature 

extractor) and DL features (extracted using a 3D ResNet model) were combined with clinical features. 

Performance of a Random Forest classifier was compared across four models trained with: clinical 

features only; clinical and radiomics features; clinical and DL features; and clinical, radiomics, and DL 

features. 

Results 

The prediction model utilizing only clinical variables provided an Area Under the receiver operating 

characteristic Curve (AUC) of 0.82 and an accuracy of 75.6%. Adding radiomics features increased the 

AUC to 0.88 and accuracy to 83.3%, while adding DL features resulted in an AUC of 0.86 and accuracy of 

78.3%. The best performance came from combining clinical, radiomics, and DL features, achieving an 

AUC of 0.89 and accuracy of 87%. 

Conclusion 
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Integrating radiomics and DL features with clinical characteristics improves LC prediction after 

stereotactic radiotherapy for brain metastases. These findings demonstrate the potential for early 

outcome prediction, enabling timely treatment modifications to improve patient management. 

 

Index Terms: Brain metastases, Deep learning, Local control, Radiomics, Stereotactic radiotherapy 

 

Clinical and Translational Impact Statement: Our study holds great clinical value, as the increased 

prediction accuracy can lead to tailored and effective interventions, resulting in better outcomes for 

brain metastases patients treated with stereotactic radiotherapy. 

 

Introduction: 
 

Metastatic brain tumors represent the most prevalent form of intracranial malignancies [1]. 

Brain metastases manifest in approximately 20 to 40% of individuals diagnosed with cancer [2, 3]. While 

any tumor has the potential to spread to the brain, the predominant types include lung cancer, breast 

cancer, melanoma, and gastrointestinal cancers [1]. The prevalence of brain metastases is increasing [4]. 

The adoption of sophisticated imaging methods for diagnosis, alongside the implementation of 

innovative chemotherapeutic approaches for systemic cancer treatment, may contribute to the 

increased likelihood of finding and developing brain metastases [1]. 

 

Currently, the prognosis of patients with brain metastases is poor with median overall survival 

of a few weeks to months in untreated patients [5]. The survival of patients with brain metastases 

depends upon prompt diagnosis and treatment efficacy. The standard treatment options are surgical 

resection and radiotherapy [5]. Surgery is recommended for patients with a single large tumor in a 

reachable location [6]. The three principal modalities of radiotherapy for brain metastases are Whole-

Brain Radiation Therapy (WBRT), Single-fraction Stereotactic Radiosurgery (SRS), and hypo-fractionated 

Stereotactic Radiotherapy (SRT). WBRT was the main treatment in the past for patients with multiple 

brain metastases [7]. There has been a shift from WBRT to SRT and SRS due to the adverse effects of 

WBRT, such as fatigue and cognitive decline [8]. Through SRS, multiple nonparallel beams are converged 

to deliver a single, high radiation dose to a targeted region whereas SRT delivers multiple, smaller doses 

of radiation over time. In SRS and SRT, the delivered radiation is confined to the lesion and there is a 

rapid dose fall-off at the edge of the treatment volume. Since the radiation dose is not delivered to the 
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healthy brain tissue, there is a reduced likelihood of posttreatment neurocognitive decline compared to 

WBRT [9]. 

 

The assessment of Local Control (LC) of brain metastases is an important clinical endpoint. A 

stable disease after treatment is categorized as LC while a progressive disease indicates a Local Failure 

(LF) [10]. It may require several months before local changes of the treated lesions become evident on 

follow-up scans. Considering that the median survival of patients with brain metastases following 

radiotherapy can range between 5 months and 4 years [11, 12], timely identification of LF subsequent to 

radiotherapy is crucial as it offers the opportunity for timely tailored treatment modifications, ensuring 

that patients receive the most effective care and maximizing their chances of a favorable prognosis. 

  

Cancer imaging analysis driven by Artificial Intelligence (AI) has the potential to revolutionize 

medical practice by revealing previously undisclosed characteristics from routinely obtained medical 

images [13]. These features can serve as valuable inputs for the development of machine learning 

models aimed at predicting the treatment response or LC of brain metastases [13]. This is particularly 

important given the advancement in Graphical Processing Unit (GPU) processing capabilities and the 

availability of large amounts of training data which have led to a rapid expansion in neural networks and 

deep learning techniques for regression and classification tasks [14]. Deep learning models have 

demonstrated significant potential in identifying crucial and unique features within medical image data 

across a range of applications, including cancer treatment [15, 16, 17]. Deep learning uses artificial 

neural networks to automatically learn features from raw data. In medical imaging, deep learning 

methods are applied directly to the images themselves, learning hierarchical representations of the 

data. Deep learning has been particularly successful in tasks like image classification, object detection, 

and segmentation [18]. The information extracted by the deep learning models from the tumor images 

can be used to predict treatment outcome [18, 19, 20]. Jalalifar et al [21] introduced a novel deep 

learning architecture to predict the outcome of LC in brain metastasis treated with stereotactic radiation 

therapy using treatment-planning magnetic resonance imaging (MRI) alongside standard clinical 

attributes [21]. Their findings highlighted that the addition of deep learning features to the clinical 

features significantly enhanced the prediction accuracy. 

 

Radiomics is another research domain for extracting quantitative features from medical images 

for different clinical applications [22]. Radiomics focuses on extracting quantitative features from 
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medical images, such as texture, shape and intensity characteristics. These features are then used to 

characterize tumors or other abnormalities in the images. While both radiomics and deep learning are 

used in medical imaging, radiomics focuses on extracting handcrafted features (such as the manually 

delineated tumor segmentations) from images while deep learning learns features directly from raw 

data using neural networks [18, 20]. Numerous studies have underscored the efficiency of radiomic-

based machine learning algorithms in predicting treatment outcomes across different medical 

conditions [23, 24]. The radiomic-based machine learning algorithms have also been efficiently applied 

for the prediction of LC of brain metastases after radiotherapy [25, 26, 27]. Karami et al [25] proposed a 

radiomics framework to predict the LC in patients with brain metastasis treated with SRT. Based on the 

radiomics features, Kawahara et al [28] proposed a neural network model for predicting the local 

response of metastatic brain tumor to Gamma Knife Radiosurgery (GKRS). Liao et al [26] and Andrei et al 

[27] demonstrated the value of combining radiomic features and clinical features to enhance the 

prediction of brain metastases responses after GKRS. Their findings show that the addition of radiomic 

features to the clinical features improved the accuracy of the prediction models for LC of brain 

metastases.  

 

The studies that used either radiomics or deep learning features together with the clinical 

features to predict LC of brain metastases after SRT showed that the addition of either radiomics or 

deep learning features increased the prediction accuracy of the models. But to the best of our 

knowledge, there is no study that combined both radiomics and deep learning features together with 

clinical features to develop machine learning algorithms to predict LC of brain metastases. A model 

trained with all these combined features might predict LC with a higher accuracy than the other models 

trained with a subset of these features, offering a more comprehensive understanding of treatment 

response, potentially leading to more tailored and effective interventions which may result in improved 

treatment outcomes, prolonged patient survival, and enhanced quality of life. Hence, the objective of 

this study was to predict the LC of brain metastases after SRT using the combination of deep learning, 

radiomics and clinical features.  

 

 

 

Methods 
 
Data collection 
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 We retrospectively collected the clinical data from 199 brain metastases patients from the 

Gamma Knife Center of the Elisabeth-TweeSteden Hospital (ETZ) at Tilburg, The Netherlands. This study 

was approved by the ETZ science office and by the Ethics Review Board at Tilburg University. The 

patients underwent GKRS at the Gamma Knife Center. After excluding the patients with incomplete 

data, we included 129 patients. For these 129 patients, pre-treatment contrast-enhanced (with triple 

dose gadolinium) brain MRIs were collected using a 1.5T Philips Ingenia scanner (Philips Healthcare, 

Best, The Netherlands) with a T1-weighted sequence (TR/TE: 25/1.86 ms, FOV: 210x210x150, flip angle: 

30°, transverse slice orientation, voxel size: 0.82 x 0.82 x 1.5mm). These high-resolution whole-brain 

planning scans were made as part of clinical care at the Gamma Knife Center of the ETZ between 2015 

and 2021. For all patients, the segmentations of the baseline Ground Truth (GT) were manually 

delineated by expert oncologists and neuroradiologists at ETZ. These 129 patients were randomly 

divided into 103 patients for training and 26 patients for testing. At ETZ, the FU MRI scans were made at 

3, 6, 9, 12, 15, and 21 months after treatment. A tumor was defined as progressive if there was a 

relative increase in tumor volume on any of these follow-up MRIs compared to pretreatment MRI. A 

stable tumor after treatment is categorized as LC while a progressive tumor indicates a LF. The pre-

processing, feature extraction, model training, and evaluation were performed in Python (version 3.11). 

Preprocessing 

As a first preprocessing step, all the MRI scans were registered to standard MNI space using 

Dartel in SPM12 (Wellcome Trust Center for Neuroimaging, London, UK), implemented in Python using 

the Nipype (Neuroimaging in Python–Pipelines and Interfaces) software package (version 1.8.6) [29]. 

The voxel size of the normalized image was set to 1*1*1 mm
3
. For all other normalization 

configurations, the default values offered by SPM12 were used. One other preprocessing step was to 

combine the GT labels for patients with more than one brain metastasis in one single GT mask. FSL 

library (Release 6.0) was used for this integration. Pre-processing was applied to improve the reliability 

of radiomics and deep learning feature extraction [30]. 

Clinical features 

The list of clinical factors that we collected from the Gamma Knife Center of ETZ were gender, 

survival status, diagnosis of brain metastases within 30 days after diagnosis of primary tumor, prior 

brain treatment, prior SRS, prior WBRT, prior surgery, prior systemic treatment, presence of extracranial 
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metastases, presence of lymph node metastases, presence of seizure, number of metastases at 

diagnosis, Karnofsky Performance Status score (KPS), occurrence of new metastases after GKRS, 

presence of extracranial metastases, primary tumor type, age at diagnosis of brain metastases, age at 

diagnosis of primary tumor, presence of local recurrence, tumor volume and treatment dose. For the 

treatment dose, we took the average value from the dose range. We extracted the tumor volume from 

the segmentations of the baseline GT and added it to the clinical data. We took the total tumor volume 

across the metastases for patients with more than one brain metastasis. The clinical data was converted 

to a python dataframe.  

Radiomics features 

The segment-based radiomics features were extracted from the T1 weighted pre-treatment MRI 

scans using the radiomics feature extractor of the python radiomics package. The seven groups of 

features extracted from the Region Of Interest (ROI) of the tumor segmentations were shape-based 

features (14 features), first-order features (18), Gray Level Cooccurrence Matrix (GLCM) (24) features, 

Gray Level Dependence Matrix (GLDM) (14) features, Gray Level Run Length Matrix (GLRLM) (16) 

features, Gray Level Size Zone Matrix (GLSZM) (16) features, and Neighbouring Gray Tone Difference 

Matrix (NGTDM) (5) features. The resulting 107 radiomics features were considered in this study. The list 

of radiomics features extracted are listed in the appendix. The mathematical definitions of these 

radiomics features are given in the Pyradiomics feature documentation 

(https://pyradiomics.readthedocs.io/en/latest/features.html). The radiomics features were then 

combined with the clinical features to form a combined python dataframe. 

Deep learning features 

A 3D ResNet model [31, 32] pre-trained on the ImageNet challenge dataset [33] was used to 

extract the deep learning features from the manually segmented masks. Prior to input, the images were 

rescaled to 256 × 256 × 256 using spline interpolation order 3, improving the accuracy of the model [34]. 

Additionally, the pixels were also sample-wise scaled between -1 and 1. These preprocessing steps 

contribute to optimizing the performance of the 3D ResNet model in extracting meaningful features 

from the images [35].  
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A 3D convolution was applied on the training data. This convolutional layer was designed with 

50 filters and a large kernel size of (7, 7, 7), while also employing a stride of (2, 2, 2) for down sampling. 

The purpose of this stride is to efficiently reduce the spatial dimensions of the input data, capturing 

broader information across the dataset while managing computational complexity [36]. 

 

To fine-tune this convolutional layer, we applied batch normalization and Rectified Linear Unit 

(ReLU) activation. Batch normalization helps the model to adapt to our dataset, improving its 

performance, stability and ability to generalize. ReLU is like a simple on/off switch for a neuron in a 

neural network. ReLU helps the neural networks learn by letting positive signals pass through 

unchanged while ignoring negative ones and thus enables neural networks to learn complex patterns 

effectively. ReLU transforms the features from the images to be compatible with the pretrained model, 

maintain consistency with the original training, and facilitate efficient gradient propagation during the 

fine-tuning process [37, 38].  

 

Following this, we incorporated three fine-tuned ResNet blocks into the model. After adding the 

ResNet blocks, we applied global average pooling to reduce the spatial dimensions to 1x1x1. Finally, a 

dense layer with softmax activation was added for classification. The deep learning features were 

extracted using this fine-tuned 3D ResNet model and then combined with the clinical and radiomics 

features to form a combined python dataframe. 

  

The complete process of pre-processing and feature extraction is summarized in Figure 1. 
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Figure 1: The process of pre-processing, feature extraction, and combining the data. 

Model training 
 

The features with low variance (<0.01) were determined and excluded from the combined 

dataset to improve prediction accuracy. The list of the excluded features is included in the Appendix. 

The data was then normalized and was supplied to the Random Forest classifier. Experimental results 

from Chen et al. [39] demonstrated that the Random Forest machine learning algorithm achieves a 

better classification performance compared to other classification algorithms. Hence, we choose the 

Random Forest machine learning algorithm to predict LC from the combined data. The model was 

trained with the training data set and then tested with the test data set. The process of training and 

evaluation of the models is shown in Figure 2. The binary outcome used in training and validation was 

the LC after treatment taken from the list of clinical features. The different models that we created 

were: 

1.  Random Forest classifier trained with clinical features only. 

2.  Random Forest classifier trained with the combination of clinical and deep learning features. 

3.  Random Forest classifier trained with the combination of clinical and radiomics features. 

4.  Random Forest classifier trained with the combination of clinical, radiomics and deep learning 

features. 

 

 

Figure 2: Model training, evaluation and prediction. 
 

Model evaluation 
 

The performance of the model was evaluated by measuring the following metrics: classification 

accuracy, precision, F1 score, recall and AUC. The classification accuracy is the ratio of the number of 

correct predictions to the total number of input samples. The precision is the ability of the classifier not 

to label as positive a sample that is negative and recall is the ability of the classifier to find all the 

positive samples. In other words, precision is the ratio of true positive predictions to the total number of

positive predictions made by the model, while recall is the ratio of true positive predictions to the total 

 

f 
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number of actual positives in the dataset. The F1 score in percentage gives the balance between how 

often the model is correct (precision) and how well it finds all the positive instances (recall). A Receiver 

Operating Characteristic (ROC) is a graphical plot which is created by plotting the true positive rate vs 

the false positive rate at various threshold settings. The AUC computes the area under the ROC curve. By 

doing so, the curve information is summarized in one number. Similar to the F1 score, the AUC reaches 

its best value at 1. 

 

A K-fold cross validation was applied on the model. The different values that we used for K 

during cross-validation were 2, 3, and 5. The average accuracy and other metrics across the different 

folds was calculated. From the trained models, we also extracted the importance of the various factors 

for predicting the LC.  

 

Results: 
 
Patient characteristics 
 

Table 1 shows the characteristics of patients included in our study.  Among the 129 patients, 

42% were male and 58% were female. The patients had an average age of 63 and an average tumor 

volume of 17,445 mm
3
. Sixty-nine % of the patients had a primary lung cancer and 94% of the patients 

had less than 10 brain metastases. 

Gender 

            Male 

            Female 

 

     54 (42%) 

     75 (58%) 

Extracranial tumor activity 

            Yes 

            No 

 

     39 

     90 

Diagnosis of brain metastases within 30 days after 

diagnosis of primary tumor 

            Yes 

            No 

    

 

     39 

     90 

Prior brain treatment 

            Yes 

            No 

 

     23 

     106 

Prior SRS 

            Yes 

            No 

 

     15 

     114 

Prior WBRT 

            Yes 

            No 

 

     7 

     122 

Prior surgery 

            Yes 

            No 

 

     8 

     121 

Prior systemic treatment  
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            Yes 

            No 

     76 

     53 

Presence of extracranial metastases 

            Yes 

            No 

 

     54 

     75 

Presence of lymph node metastases 

            Yes 

            No 

 

     68 

     61   

Presence of seizure 

            Yes 

            No 

 

     18 

     111 

KPS score 

             60 

             70 

             80 

             90 

            100 

 

     3 

     14 

     31 

     38 

     43 

Occurrence of new metastases after GKRS 

            Yes 

            No 

 

     62 

     67 

Presence of local recurrence 

            Yes 

            No 

Total tumor volume (mm
3
) 

            Average 

Treatment dose (Gy) 

           Average (minimum – maximum) 

Age at diagnosis of brain metastases (years) 

           Average (minimum – maximum) 

 

     40 

     89 

 

17,445 (88-88,029) 

 

22 (14 – 25) 

 

63 (36 – 85) 

Primary tumor type 

           Lung 

           Melanoma 

           Breast 

           Others 

 

     89 

     8 

     3 

     29 

  

Number of brain metastases 

            1 

            2 -3 

            4-10 

            >10 

 

 

     30 

     50 

     41 

     8 

Table 1: Patient characteristics. 

The average performance metrics for the four models across the cross-validation datasets are 

shown in Table 2. In bold is the value of the best score for the corresponding performance metric.  
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Model Accuracy (%) Precision (%) 
 

Recall (%) 
 

F1 score (%) AUC 
 

RF trained with clinical features 
only 

75.6 83.6 71.0 75.3 0.82 

RF trained with the 
combination of clinical and 
deep learning features 

78.3 77.6 86.3 80.6 0.86 

RF trained with the 
combination of clinical and 
radiomics features 83.3 86.6 82.0 84.0 0.88 

RF trained with the 
combination of clinical, 
radiomics and deep learning 
features 87.0 90.0 86.6 87.6 0.89 

Table 2: Average performance of the models on the validation datasets. 
 

The accuracy of the Random Forest (RF) model trained with clinical features only was 75.6%. The 

model trained with the combination of clinical and deep learning features had an improved accuracy of 

78.3%. The model trained with the combination of clinical and radiomics features was even higher at 

83.3%. But the model with the highest prediction accuracy of 87% was the model trained with the 

combination of clinical, radiomics and deep learning features. This model also achieved the highest 

precision of 90%, recall of 86.6%, F1 score of 87.6% and the best AUC of 0.89. The model trained with 

the combination of clinical and radiomics features showed the second highest accuracy of 83.3%, 

precision of 86.6%, F1 score of 84% and an AUC of 0.88. Interestingly, this model had a recall of 82% 

which is lower than the recall score (86.3%) of the model trained with the combination of clinical and 

deep learning features. However, the F1 score (which is the balance between the precision and recall) 

was higher for the model trained with clinical and radiomics features when compared with the model 

trained with the combination of clinical and deep learning features. The model with the lowest 

prediction accuracy of 75.6% was the model trained with clinical features only. This model also achieved 

the lowest recall of 71%, F1 score of 75.3% and the lowest AUC of 0.82. Though this model had better 
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precision than the model trained with the combination of clinical and deep learning features, it still had 

a lower F1 score when compared to the model trained with the combination of clinical and deep 

learning features. The ROC curve of the model trained with the combination of clinical, radiomics and 

deep learning features is shown in Figure 3. The ROC curve of the other three models were added to the 

Appendix. 

 

  Figure 3: ROC curve of model trained with clinical, deep learning and radiomics features.

 

 The variable importance of the top 10 factors for predicting the LC for each of the models were 

added to the appendix. For the model trained with the combination of clinical, radiomics and deep 

learning features, the top 10 features associated with the prediction of LC were 

original_glrlm_LowGrayLevelRunEmphasis, original_firstorder_Entropy, original_shape_LeastAxisLength,

original_gldm_LargeDependenceHighGrayLevelEmphasis, original_shape_Elongation, 

original_firstorder_skewness, age at brain metastases diagnosis, original_shape_Maximum3DDiameter, 

age at primary tumor diagnosis, and original_glcm_SumSquares.  Except for age at brain metastases 

diagnosis and age at primary tumor diagnosis which are clinical features, the rest of these top 10 

features are radiomics features. There were no deep learning features in this list. 

 

. 

, 
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Discussion 

Brain metastases patients treated with SRT are at risk of developing local failure. Prompt 

diagnosis of local failure might increase treatment options and hence improve treatment outcomes. In 

this study, we trained and tested machine learning algorithms to predict the local failure using clinical 

features and T1-weighted MR imaging features. Four distinct models were developed: One model was 

trained with clinical features only, one with the combination of clinical and deep learning features, one 

with the combination of clinical and radiomics features and one with the combination of clinical, 

radiomics and deep learning features. Notably, the model incorporating all three feature sets 

outperformed the others, demonstrating the significance of integrating clinical, radiomics and deep 

learning features into predictive models. 

 Jalalifar et al [21] introduced a novel deep learning architecture to predict the outcome of LC in 

brain metastasis treated with stereotactic radiation therapy using treatment-planning magnetic 

resonance imaging and standard clinical attributes. The accuracy of the model developed with only the 

clinical features was 67.5%, but the addition of deep learning features to the clinical features increased 

the prediction accuracy to 82.5%. Our model trained with only the clinical and deep learning features 

provided a prediction accuracy of 78.3% (vs. 75.6% with clinical features only). Kawahara et al [28] 

proposed a neural network model using only the radiomics features for predicting the local response of 

metastatic brain tumor to GKRS. This proposed network provided a prediction accuracy of 78%. Karami 

et al [25] produced a radiomics framework to predict the outcome of SRT for brain metastases using the 

clinical and radiomics features. The framework predicted LC with an accuracy of 82%. Our model trained 

with only the clinical and radiomics features provided a prediction accuracy of 83.3%. To the best of our 

knowledge, the current study marks the first attempt to combine both radiomics and deep learning 

features with clinical features to predict LC of brain metastases. The model incorporating all these 

features predicted LC with an accuracy of 87%, surpassing all models trained with a subset of these 

features. This increased prediction accuracy holds promises for improved treatment outcomes for the 

patients. Furthermore, insights into the variable importances provided by the model could offer valuable 

insights into the features associated with the LC of brain metastases, potentially guiding future research 

and clinical decision-making. 

 The ability to predict LC with high accuracy before initiating SRT treatment offers an invaluable 

opportunity for tailoring treatment strategies for the best outcomes. Providing clinicians with 
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information on the risk of local recurrence for individual patients empowers them to discuss these risks 

with patients prior to SRT. The capability to predict LC prior to treatment not only aids in informed 

decision-making regarding SRT but also opens avenues to consider alternative treatment modalities 

such as systemic therapy or WBRT. Additionally, it can enable clinicians to explore alternative 

radiotherapy approaches such as fractionated SRT or SRS with higher dose, depending on the predicted 

risk of local recurrence. Conversely, in cases where the risk of local recurrence is deemed low, SRT may 

be favored over other treatment options. Ultimately, pre-treatment prediction of LC serves as a valuable 

tool for both clinicians and patients, facilitating shared decision-making and optimizing treatment plans 

tailored to the needs and risk profiles of individual patients. 

Although this study focused on creating a model for predicting the LC after SRT, the same 

approach can be extended to other treatment options and to the prediction of other clinical endpoints 

like overall survival. 

  One notable strength of this study lies in the meticulous brain metastases segmentation 

procedure. Expert oncologists and neuroradiologists at ETZ manually delineated the segmentations of 

the baseline GT on all the planning MRI scans used in this study. This ensures accurate regions of 

interest (ROIs) for the extraction of segment-based radiomics features. 

It is important to note that in this study, we exclusively used the T1 weighted MRI scans. 

Exploring additional sequences and extracting radiomics and deep learning features from them could 

potentially improve the accuracy of the prediction models even more. In addition, for a more rigorous 

evaluation of the efficacy and robustness of the models, further investigations involving larger patient 

cohorts, preferably with multi-institutional data are warranted. Furthermore, the inclusion of an 

external validation dataset could significantly improve the generalizability of the prediction model, 

strengthening confidence in its clinical applicability across diverse patient populations and healthcare 

settings. 

Conclusion 

The findings of this study show that the machine learning model trained with the combination of 

clinical, radiomics and deep learning features predict LC of brain metastases with high accuracy, 

outperforming models trained with the subset of these features. The increased prediction accuracy can 

lead to more tailored and effective interventions, resulting in improved treatment outcomes, prolonged 

patient survival, and enhanced quality of life. 
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List of abbreviations 

SRS Stereotactic Radiosurgery 

LC Local Control 

ETZ Elisabeth-TweeSteden Hospital 

AUC Area Under the receiver operating 

characteristic Curve 

WBRT Whole-Brain Radiation Therapy 

SRT hypo-fractionated Stereotactic 

Radiotherapy 

LF Local Failure 

AI Artificial Intelligence 

GKRS Gamma Knife Radiosurgery 

GT Ground Truth 

MRI Magnetic Resonance Imaging 

KPS Karnofsky Performance Status score 

ROC Receiver Operating Characteristic 

RF Random Forest model 

GPU Graphical Processing Unit 

ReLU Rectified Linear Unit 
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Appendix 
 
Full list of Radiomics features: 
original_shape_Elongation 
original_shape_Flatness 
original_shape_LeastAxisLength 
original_shape_MajorAxisLength 
original_shape_Maximum2DDiameterColumn 
original_shape_Maximum2DDiameterRow  
original_shape_Maximum2DDiameterSlice 
original_shape_Maximum3DDiameter 
original_shape_MeshVolume 
original_shape_MinorAxisLength 
original_shape_Sphericity 
original_shape_SurfaceArea 
original_shape_SurfaceVolumeRatio 
original_shape_VoxelVolume 
original_firstorder_10Percentile 
original_firstorder_90Percentile 
original_firstorder_Energy  
original_firstorder_Entropy 
original_firstorder_InterquartileRange  
original_firstorder_Kurtosis  
original_firstorder_Maximum 
original_firstorder_MeanAbsoluteDeviation 
original_firstorder_Mean 
original_firstorder_Median 
original_firstorder_Minimum 
original_firstorder_Range 
original_firstorder_RobustMeanAbsoluteDeviation 
original_firstorder_RootMeanSquared 
original_firstorder_Skewness 
original_firstorder_TotalEnergy 
original_firstorder_Uniformity 
original_firstorder_Variance 
original_glcm_Autocorrelation 
original_glcm_ClusterProminence 
original_glcm_ClusterShade 
original_glcm_ClusterTendency 
original_glcm_Contrast 
original_glcm_Correlation 
original_glcm_DifferenceAverage 
original_glcm_DifferenceEntropy 
original_glcm_DifferenceVariance 
original_glcm_Id 
original_glcm_Idm 
original_glcm_Idmn 
original_glcm_Idn 
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original_glcm_Imc1 
original_glcm_Imc2 
original_glcm_InverseVariance 
original_glcm_JointAverage  
original_glcm_JointEnergy 
original_glcm_JointEntropy 
original_glcm_MCC 
original_glcm_MaximumProbability  
original_glcm_SumAverage 
original_glcm_SumEntropy 
original_glcm_SumSquares 
original_gldm_DependenceEntropy  
original_gldm_DependenceNonUniformity 
original_gldm_DependenceNonUniformityNormalized 
original_gldm_DependenceVariance 
original_gldm_GrayLevelNonUniformity 
original_gldm_GrayLevelVariance 
original_gldm_HighGrayLevelEmphasis  
original_gldm_LargeDependenceEmphasis 
original_gldm_LargeDependenceHighGrayLevelEmphasis 
original_gldm_LargeDependenceLowGrayLevelEmphasis 
original_gldm_LowGrayLevelEmphasis  
original_gldm_SmallDependenceEmphasis 
original_gldm_SmallDependenceHighGrayLevelEmphasis 
original_gldm_SmallDependenceLowGrayLevelEmphasis 
original_glrlm_GrayLevelNonUniformity  
original_glrlm_GrayLevelNonUniformityNormalized 
original_glrlm_GrayLevelVariance 
original_glrlm_HighGrayLevelRunEmphasis  
original_glrlm_LongRunEmphasis 
original_glrlm_LongRunHighGrayLevelEmphasis  
original_glrlm_LongRunLowGrayLevelEmphasis 
original_glrlm_LowGrayLevelRunEmphasis  
original_glrlm_RunEntropy  
original_glrlm_RunLengthNonUniformity  
original_glrlm_RunLengthNonUniformityNormalized 
original_glrlm_RunPercentage 
original_glrlm_RunVariance  
original_glrlm_ShortRunEmphasis 
original_glrlm_ShortRunHighGrayLevelEmphasis  
original_glrlm_ShortRunLowGrayLevelEmphasis 
original_glszm_GrayLevelNonUniformity 
original_glszm_GrayLevelNonUniformityNormalized 
original_glszm_GrayLevelVariance 
original_glszm_HighGrayLevelZoneEmphasis 
original_glszm_LargeAreaEmphasis  
original_glszm_LargeAreaHighGrayLevelEmphasis 
original_glszm_LargeAreaLowGrayLevelEmphasis 
original_glszm_LowGrayLevelZoneEmphasis 
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original_glszm_SizeZoneNonUniformity 
original_glszm_SizeZoneNonUniformityNormalized 
original_glszm_SmallAreaEmphasis  
original_glszm_SmallAreaHighGrayLevelEmphasis 
original_glszm_SmallAreaLowGrayLevelEmphasis 
original_glszm_ZoneEntropy 
original_glszm_ZonePercentage 
original_glszm_ZoneVariance  
original_ngtdm_Busyness  
original_ngtdm_Coarseness 
original_ngtdm_Complexity  
original_ngtdm_Contrast  
original_ngtdm_Strength 
 
List of excluded features: 
original_firstorder_Uniformity 
original_glcm_Id 
original_glcm_Idm 
original_glcm_Idmn 
original_glcm_Idn 
original_glcm_Imc2 
original_glcm_InverseVariance 
original_glcm_JointEnergy 
original_glcm_MCC 
original_glcm_MaximumProbability 
original_gldm_LowGrayLevelEmphasis 
original_gldm_SmallDependenceLowGrayLevelEmphasis 
original_glrlm_GrayLevelNonUniformityNormalized 
original_glrlm_LowGrayLevelRunEmphasis 
original_glrlm_RunLengthNonUniformityNormalized 
original_glrlm_RunPercentage 
original_glrlm_ShortRunEmphasis 
original_glrlm_ShortRunLowGrayLevelEmphasis 
original_glszm_GrayLevelNonUniformityNormalized 
original_glszm_LowGrayLevelZoneEmphasis 
original_glszm_SmallAreaEmphasis 
original_glszm_SmallAreaLowGrayLevelEmphasis 
original_ngtdm_Coarseness 
DL_5 
DL_13 
DL_31 
DL_34 
DL_43 
DL_48 
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Variable importance: 
 

Figure 4. Variable importance for LC in decreasing order of significance for top 10 factors.  A - model trained with 

clinical factors only.  B - model trained with clinical and deep learning factors.  C- model trained with clinical and 

radiomics features. D - model trained with the combination of clinical, radiomics and deep learning features.  

 

 

ROC Curves: 

Figure 5: ROC curve of model trained with clinical features only. 
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Figure 6: ROC curve of model trained with clinical and deep learning features. 

Figure 7: ROC curve of model trained with clinical and radiomics features. 
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