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Abstract. The intricate interplay between somatic mutations and copy number alterations critically
influences tumour evolution and patient prognosis. Traditional genomic studies often overlook this
interplay by analysing these two biomarker types in isolation. Leveraging an innovative computational
model capable of detecting allele-specific copy number alterations from clinical targeted panels without
matched normal, we conducted a comprehensive analysis of over 500,000 mutations across 60,000
clinical samples spanning 39 cancer types. Our findings uncovered 11 genes and 6 hotspots exhibiting
recurrent tumour-specific patterns of co-existing mutations and copy-number alterations across 17
tumours. By stratifying more than 24,000 patients based on these composite genotypes across multiple
oncogenes and tumour suppressor genes, we identified 66 groups with distinct prognostic significance,
25% more than using a standard mutation-centric stratification. Notably, 7 groups displayed a heightened
propensity for metastasis, while 16 were associated with site-specific patterns of metastatic
dissemination. This augmented insight into genomic drivers enhances our understanding of cancer
progression and metastasis, holding the potential to significantly foster biomarker discovery.

Statement of significance
By leveraging large datasets and new computational modelling, this study demonstrates the
critical interplay between somatic mutations and copy number alterations in driving patient
prognosis, tumour progression and metastatic tropism. This work implies a shift towards a
more integrative and comprehensive approach in clinical sequencing, with significant
implications for biomarker discovery and target identification.
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Introduction
Cancerogenesis is a complex, multi-step process involving various genetic and epigenetic
changes1. Central to this process are somatic mutations and copy number alterations (CNAs),
which stochastically confer a proliferative advantage to certain cancer cell subpopulations,
leading to the dominance of specific clones2–4. Genetic biomarkers derived from such
alterations have significantly impacted our understanding of cancer and its treatment, given the
expanding repertoire of actionable mutations5,6. Indeed, these genomic markers not only provide
insights into cancer prognosis but also guide treatment strategies by indicating specific
biological vulnerabilities. Despite several successes, however, understanding the prognostic and
predictive implications of somatic mutations in key genes remains a challenge7,8, promoting
research towards other genomic levels, e.g. epigenomic alterations9,10.

Many of the current drawbacks of clinical sequencing stem from a mutation-focused approach.
First, biomarkers are often investigated separately for mutations and CNAs, overlooking the
intricate interplay and epistasis within cancer genotypes where these alterations can co-occur
(Figure 1a). Second, while the size of currently available datasets is increasing, the number of
samples available for every combination of tumour type, clinical condition and treatment
regimen is still limited given the high levels of tumour heterogeneity observed in patients11.
Third, current targeted sequencing for clinical use is not optimised for copy number estimation, as it
involves sequencing a very limited fraction of the genome and is performed only on tumour samples
without the support of information from a matched normal sample.

However, understanding and improving the detection of genetic events that can be exploited in
the clinical setting remains crucial, prompting a re-evaluation of current tools and data,
especially in light of the recent availability of large clinical cohorts of samples analysed for
mutations in hundreds of cancer-related genes through targeted sequencing12,13. In this work, we
leverage new computational modelling inspired by high-resolution whole-genome sequencing to
develop INCOMMON, an open-source tool for the inference of allele-specific copy number and
mutation multiplicity from clinical targeted sequencing. INCOMMON uses somatic mutation
read-count data and bulk sample purity to infer, for every mutation, the number of mutant copies
(mutation multiplicity) and the genome ploidy at the locus (Figure 1b). Together, these
measurements provide the allele-specific copy number state of the mutation and allow for the
interpretation of the joint effect of mutations and aneuploidy on suppressor inactivation or
oncogene activation. Notably, INCOMMON uses conventional bulk metrics (sample purity and
read counts) from the tumour and, therefore, can be applied without matched normal.

We use INCOMMON to determine the patterns of co-occurrence of mutations and CNAs from
500.000 alterations detected in 39 principal solid cancer types and over 60,000 clinical cancer
samples. For the first time, we use large-scale clinical targeted panel data to determine tumour
genotypes that combine mutations with CNA, unravelling states of complete suppressor
inactivation or oncogene activation from thousands of samples14. Notably, we establish a
resource that highlights 11 cancer-associated genes and 6 hotspots with mutations frequently
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associated with CNAs, 66 groups based on the mutational and CNA profile of whole genes and
hotspots that determine patient prognosis (e.g. PIK3CA E542K with amplification in breast and
colorectal cancers, KRAS G12C with amplification, ARID1A and KEAP1 with LOH in lung
adenocarcinomas, KRAS G12D and G12V with amplification in pancreatic adenocarcinomas,
CDK12 with LOH in prostate adenocarcinomas) and augment the resolution of a standard
mutation-centric approach (gain of 24.5% using INCOMMON), 7 groups with increased rate of
metastasis (CDH1 with LOH, PIK3CA H1047R and E545K with amplification in breast cancers,
EGFR E746_A750del in lung adenocarcinomas, PIK3CA with amplification in endometrial
cancers) and 16 that explain metastatic tropism (e.g. PTPRD with LOH diffusing from primary
melanoma sites to the brain, KRAS G12V and G12D in pancreas diffusing without amplification
to the lymphatic system and with amplification to the liver). Our work proposes a novel
perspective on genomic alterations in cancer and how these can be used to identify new
biomarkers, enhancing our understanding of key cancer biology, such as patterns of survival and
metastatic spread.

Results

The INCOMMON copy-number and mutation multiplicity classifier
INCOMMON (Data and software availability) is a classifier that assigns a copy-number state and
mutation multiplicity to a mutation. The model is inspired by Bayesian15 mixtures to leverage an
informative classification prior (Figure 1c, Supplementary Figures S1,S2) and report a notionψ
of classification uncertainty (Figure 1d). The prior is derived from 2,777 samples released with
the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort, the largest resource of primary
tumours with available WGS to date16. This prior is built from curated17 CNAs and can be
tumour-specific or pan-cancer (Methods, Supplementary Note; Supplementary Table S1), and
serves to inject into our model existing evidence from the most advanced bulk sequencing
technology.

For a mutation, INCOMMON computes a classification probability from the mixture likelihood

which depends on four parameters linked to the sequencing assay, technology and sample
quality. Here, is the number of reads that cover that mutation locus, of which harbour𝑁 𝑛 < 𝑁
the mutant allele. Instead, is the sample purity, i.e., the proportion of tumour DNA in0 < π ≤ 1
the sequenced sample, determined either by sequencing or pathology assessment. Finally, the
Beta-Binomial likelihood depends on , the sequencing dispersion that can be hold fixedρ ≥ 0
based on sequencing features, and the known parameters of the distribution (Methods).𝑓

η
(π)
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The classes predicted by INCOMMON are triples , where and are the major andη (𝑛
𝐴

, 𝑛
𝐵

, 𝑚) 𝑛
𝐴

𝑛
𝐵

minor allele copies of the genome at the mutation site so that the tumour genome ploidy is
and the mutation is present in copies (Figure 1d). The𝑝 = 𝑛

𝐴
+ 𝑛

𝐵
𝑚 ≤ max (𝑛

𝐴
, 𝑛

𝐵
)

multiplicity also defines the fraction of mutant alleles, and the fraction of𝑚 𝑚/𝑝 (𝑝 − 𝑚)/𝑝
wild-type (WT) alleles. INCOMMON can classify 6 configurations, of which 5 identify clonal
mutations (present in 100% of the tumour) associated with CNAs characterised by a high
fraction ( ) of mutant alleles. These somatic alterations were defined as Tier-1𝑚/𝑝 > 1/3
because they emerge early in tumour development, and include heterozygous mutant diploid
states without copy numbers (HMD; ); loss-of-heterozygosity in single-copy𝑛

𝐴
= 𝑛

𝐵
= 𝑚 = 1

(LOH; ) and copy-neutral states (CNLOH; ), trisomy𝑛
𝐴

= 𝑚 = 1,  𝑛
𝐵

= 0 𝑛
𝐴

= 𝑚 = 2,  𝑛
𝐵

= 0

and tetrasomy ( ) amplifications (AM) of mutant(𝑛
𝐴

= 3,  𝑛
𝐵

= 𝑚 = 2) 𝑛
𝐴

=  𝑛
𝐵

= 𝑚 = 2

alleles. The sixth configuration is instead Tier-2, and captures subclonal (present less than 100%
of tumour cells) or clonal mutations with high-ploidy and/or low-multiplicity ( ). Note𝑚/𝑝 ≤ 1/3
that Tier-1 classes associated with copy-gains (CNLOH and AM) capture temporal ordering, with
mutation preceding amplification. For example, for CNLOH the copy-gain after LOH carries the
mutant allele to multiplicity , whereas mutations arising after copy-gain CNLOH/AM are𝑚 = 2
Tier-2 because the mutant is only present in one copy ( ). Our distinction is meant to𝑚 = 1
prioritise mutation-focused evolutionary paths sustained by aneuploidy3,4,18.

INCOMMON computes a posterior probability for the assignment to class as𝑧
η

= 1 η

and from it derives the uncertainty in the class prediction using the notion of entropy17,19.𝑧
η

η

The complete mathematical formulation of the model and its implementation is available as
Methods. Mutations mapping to oncogenes or tumour-suppressor genes (TSG) classified by
INCOMMON can be interpreted (Figure 1d): mutant TSG inactivation is determined by lack of WT
alleles (LOH/CNLOH classes), and oncogene hyper-activation by mutant copy-gains
(AM/CNLOH classes). A limitation that affects TSGs for models like INCOMMON is that, without
haplotyping, inactivations by concurrent mutations are impossible to determine.

We assessed the performance of INCOMMON with 17,950mutations detected by whole-exome
sequencing in 910 samples from The Cancer Genome Atlas (TCGA)20, with validated17

allele-specific CNAs, and quantified model accuracy as the fraction of correct predictions. Since
TCGA contains data with different quality, we tested how the performance changes if we reject
classifications with excessive uncertainty or samples with low effective coverage (sample purity
times sequencing depth)(Figure 1e, Supplementary Figure S3). In the former case, the model
achieved a maximum accuracy of 75.4% retaining classifications with entropy below 55%. The
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latter test achieved generally higher accuracy with a maximum of 86.4% for effective coverage
of 420, and of 77.5% at the median effective coverage of the MSK-MetTropism (MSK) cohort.
Since for high enough effective coverage (above 100) the accuracy did not change by varying
values of the entropy cutoff, we decided to drop it in the classification, which allowed
maximisation of the numerosity of patient groups in survival and metastatic pattern analysis.
Overall, we found good agreement between the proportions of each class (Supplementary
Figure S4), with a tendency to under-estimate the fraction of HMD mutations (7% decrease in
TSGs, 5% in oncogenes) in favour of CNLOH events.

Pan-cancer patterns of mutation and copy numbers
We used INCOMMON (default parameters) to analyse the MSK MetTropism (MSK) cohort with
24,755 samples profiled using MSK-IMPACT panels (versions IMPACT341, IMPACT468 and
IMPACT410), and the GENIE-DFCI (DFCI) cohort with 39,152 samples profiled using the
DFCI-ONCOPANEL panels (versions 1.0, 2.0, 3.0 and 3.1). These panels covered a shared set of
237 genes, of which 137 were TSGs and 100 oncogenes according to the COSMIC Cancer Gene
Census21 (version 98). We classified 545,531 mutations across 39 tumour types and derived
statistics for both whole genes and gene hotspots. We determined the enrichment of each gene
towards one of the two interpreted genotypes (with or without LOH for TSGs and with or without
amplification for oncogenes), using a one-tailed Chi-squared test, with tumour-specific expected
frequencies derived by average separately for TSGs and oncogenes (Supplementary Figure S5).
We corrected p-values for multiple hypotheses testing using the Benjamini-Hochberg method
and considered the enrichment significant if the adjusted p-value was p 0.05. Selected results≤
are reported in Figure 2a, while extended results are shown in Supplementary Figures S6,S7 and
the full table is in Supplementary Table S2. Our results are also available as a web-based
resource that is freely available at https://ncalonaci.shinyapps.io/incommon/, that allows
immediate inspection of our and new analyses.

Overall, 112,169 mutations were associated with CNAs (45.5% of total): 12.9% with
amplifications, 8.3% with LOH and 24.3% with CNLOH (31,790, 20,380 and 59,999 mutations).
We classified 23.3% (57,552 mutations) of the total as Tier-2 (Figure 2b). The genotypes with
co-existing mutations and CNAs were observed in 59% (53,258 mutations) of the cases for
TSGs, and 46% (25,193 mutations) for oncogenes; the different incidence was statistically
significant (p < 0.0001, Figure 2c). Among variants represented in at least 100 samples, we
found 85 tumour-specific gene/hotspot alterations enriched toward a genotype either with (11
genes, 5 hotspots) or without (19 genes, 1 hotspot) CNA, across 17 cancer types. For a
complete description of the results, including cases significant in only one cohort (MSK or
DFCI), see the Supplementary Note.

Consistently with previously reported whole-exome data22, TP53 was the most commonly
altered TSG23,24 in both datasets and across all tumour types (10,989 samples with Tier-1
mutations in MSK; 14,481 in DFCI). These mutations were almost systematically associated
with LOH in MSK (10,628 samples, 96.7%) and DFCI (13,392 samples, 92.5%) with significant
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enrichment in all 9 most abundant tumour types (Figure 2a): lung adenocarcinoma (LUAD),
colorectal cancer (CRC), breast cancer (BRCA), pancreatic adenocarcinoma (PAAD), prostate
adenocarcinoma (PRAD), melanoma (MEL), endometrial cancer (UCEC), ovarian cancer (OV)
and bladder cancer (BLCA).

KRAS was the most frequently mutated oncogene25 in LUAD, CRC, PAAD and UCEC with 4,595
samples having Tier-1 mutations in MSK, and 4,715 in DFCI. KRAS mutations were frequently
associated with amplification in MSK (2,178 samples, 47.4%) and DFCI (1,830 samples, 38.8%),
although not enriched in any of the tumour types. KRAS-induced oncogenesis26 is linked with
activating mutations or amplification of the wild-type (WT) allele. Recently27, a refined view
underscores that KRAS mutant allelic imbalance is as frequent as heterozygosity, and that
homozygosity is typically due to loss of WT with subsequent amplification (i.e., CNLOH) of the
mutant allele. In agreement with these observations, we found heterozygous KRASmutations in
52.6% of the MSK and 61.2% of the DFCI cases (2,417 and 2,885 samples), and that amplified
mutations co-occur with WT loss in 40% of the cases (overall MSK and DFCI).

Tier-1 mutations of the PI3K/AKT/mTOR signalling pathway were also ubiquitous. For PIK3CA,
these were observed in 4,108 CRC, BRCA and UCEC samples, for PTEN and PIK3R1 in 2,797
CRC, BRCA, PRAD and UCEC samples. Extensive genomic, transcriptomic and proteomic
analyses highlighted a recurrent alteration pattern of this pathway, with PTEN inactivating
mutations often undergoing LOH, whereas PIK3CA and PIK3R1 undergo single-hit point
mutations or WT amplifications28. We found mutations in PIK3CA and PIK3R1 systematically
associated with no copy number, while in PTEN with LOH (largest p = 0.006). Related to the
mTOR pathway, the association with LOH was also significant for STK11 in LUAD (MSK and
DFCI p < 0.0001). Our findings were consistent with previous works28.

Besides genes with significant co-occurrence of mutations and CNA in multiple cancers, we
observed additional associations at unprecedented resolution in the largest groups of cancers
(LUAD, CRC, BRCA, PAAD, PRAD, MEL, UCEC, OV, BLCA). In LUAD, we found a tendency of EGFR29

mutations to co-occur with amplification, with p < 0.0001 in MSK, but not significant (n.s.) in
DFCI, and the general trend of KRAS without amplification also held for G12C hotspot mutations
(n.s. in MSK, DFCI p < 0.0001). Mutations in KEAP1, CDKN2A and RB1 were enriched with LOH
(largest p = 0.01), with ATM and SMARCA4 presenting a similar tendency. In CRC we found
association of APC and SMAD4mutations30 with LOH (largest p < 0.0001). Among the mutations
most frequently co-occurring with LOH emerged the R282W hotspot of TP53 (largest p <
0.0001), and TCF7L2 with amplification (MSK p < 0.0001, n.s. in DFCI). NOTCH1 and ARID1B
curiously presented opposite trends in MSK and DFCI. In BRCA we found an association of
CDH1 (n.s. in MSK, DFCI p = 0.005) mutations with LOH, and an opposite trend for GATA3 (larges
p < 0.0001). In PAAD, the hotspots G12V and G12D presented an analogous trend of general
KRAS mutations without amplification, while CDKN2A mutations31 were associated (larges p <
0.0001) with LOH, as well as SMAD4 (largest p < 0.0001). In PRAD, APC mutations frequently
co-occurred with LOH (MSK p = 0.006, n.s. in DFCI), whereas FOXA1 (n.s. in MSK, p = 0.003 in
DFCI) and SPOP (largest p < 0.0001) occurred mostly without CNA. In MEL, TERT and its
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promoter were associated with the absence of amplification (largest p = 0.001), CDKN2A with
LOH (largest p < 0.0001), whereas the tendency for NRAS was not consistent across the two
cohorts. In UCEC, mutations in ARID1A were associated with no LOH (larges p = 0.004), whereas
FGFR2 was associated with amplification (MSK p < 0.0001, n.s. in DFCI). In BLCA, KDM6A
mutations were associated with LOH (largest p < 0.0001), while TERT and its promoter and
KMT2D presented the opposite trend, and mutant FGFR3 hotspot S249C co-occurred with
amplification (MSK p < 0.0001, n.s. In DFCI).

Prognostic effects of mutations and CNAs at the single gene level
After establishing patterns of mutations and CNAs in cancer genes, we used INCOMMON to
test if mutations with or without CNA added prognostic value to a baseline classification of
“Mutant” (mutation regardless of its copy number state) versus wild-type (WT) (Methods). We
measured as outcome the overall survival (OS) available in the MSK-MET cohort (Supplementary
Note), and compared OS via the Kaplan-Meier estimator and a multivariate Cox regression
adjusted for sex, age, and tumour mutational burden (TMB). We reported hazard ratios (HR) and
p-values computed via the Wald test with false-discovery rate correction (cutoff p 0.05 for the≤
adjusted p-value) in three settings: the baseline setting (HR of mutants vs WT), the INCOMMON
analysis (HR of mutants with/without LOH or amplification vs WT) and one in which we
computed the HR of the mutants with LOH or amplification versus without. The output of this
analysis provides, therefore, an estimation of whether mutations are prognostic per se or if the
combination with CNAs highlight different prognosis scenarios, and of how much the presence
of CNA decreases survival.

Notably, out of 191 groups (considering both whole genes and gene hotspots), we found more
prognostic groups compared to the baseline. In total (Figure 3a), 66 groups correlated with
either a negative or a positive influence on OS after INCOMMON classification, whereas only 53
were prognostic at baseline (24.5% increase). Considering 138 cases that failed to be
prognostic at baseline, we found 20 of them prognostic with INCOMMON (15% recovery),
showing that our method offers more valuable insights. Only in 7 cases prognostic at baseline,
the groups discriminated by INCOMMON had no prognostic power when taken individually, due
to the resulting groups becoming too small to achieve statistical significance. Survival curves
for any grouping can be browsed at https://ncalonaci.shinyapps.io/incommon/.

Overall, mutations with CNA systematically exacerbated the negative prognostic impact on
survival. The trend was similar (Kruskal-Wallis rank sum test p = 0.62) for TSGs and oncogenes,
with median HR = 1.32 for mutant TSGs with versus without LOH and HR = 1.43 for mutant
oncogenes with versus without amplification (Figure 3b).

In 28 cases (Figure 3c) INCOMMON classes demonstrated statistically significant prognostic
value (adjusted p 0.05) that recapitulates two distinct scenarios: i) when the baseline test≤
lacked prognostic capability, but INCOMMON did not and ii) when the baseline was prognostic,
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and INCOMMON clarified if the presence or absence of CNAs was prognostic. All results are in
Supplementary Figures S8-S9, where we also report other significant associations that however
deviate from this explanation. All hazard ratios (HR) and 95% confidence intervals (CI) are
available in Supplementary Table S3 and omitted (in most cases) for the sake of brevity in this
text.

The baseline test lacked prognostic capability that was recovered by INCOMMON in 20 cases
(Figure 3c): in BRCA for GATA3 without LOH (HR = 0.67, p = 0.035), in CRC for KRAS G13D (HR =
1.61, p = 0.001, Figure 4a), PIK3CA (HR = 1.50, p = 0.003, Figure 3d) with its hotspot E545K (HR =
1.93, p = 0.004, Figure 4b) with amplification and KDR without (HR = 0.29, p = 0.014), in LUAD for
APC (HR = 1.56, p = 0.03) and ARID1A with LOH (HR = 1.99, p = 0.007), CTNNB1 (HR = 0.63, p =
0.034) without amplification, ERBB2 (HR = 1.41, p = 0.04) and KRAS hotspots G12C (HR = 1.34, p
= 0.007, Figure 4c), G12D (HR = 1.47, p = 0.036) and G12V (HR = 1.38, p = 0.05) with
amplification and SETD2 without LOH (HR = 0.66, p = 0.03), in MEL for BRAF without
amplification (HR = 0.66, p = 0.025), TERT (HR = 0.68, p = 0.02) and its promoter (HR = 0.69, p =
0.027) without LOH, in PAAD for KRAS G12V (HR = 1.27, p = 0.039 with amplification, HR = 0.77,
p = 0.029 without), in PRAD for APC (HR = 1.69 p = 0.011) and CDK12 with LOH (HR = 1.94, p =
0.008, Figure 4d), and in UCEC for KRAS without amplification (HR = 0.47, p = 0.015).

In 8 cases the baseline classification was prognostic, and INCOMMON clarified the class driving
the prognosis: PIK3CA without amplification in BRCA (HR = 0.63, p < 0.0001), KRAS with
amplification in CRC (HR = 1.53, p < 0.0001), KRAS with amplification (HR = 1.40, p < 0.0001)
and KEAP1 with LOH (HR = 2.16, p < 0.0001, Figure 3e) in LUAD, KRAS (HR = 1.86, p < 0.0001)
and its hotspot G12D (HR = 1.52, p < 0.0001) with amplification in PAAD, PIK3R1 without LOH
(HR = 0.36, p = 0.0002, Figure 4e) in UCEC.

In all cases where an INCOMMON class was prognostic, mutations with CNAs determined a
negative prognosis, whereas we also identified mutations that, without CNAs, indicated a
positive prognostic effect. The case of KRAS G12V in PAAD (Figure 3f) was exemplary, as the
presence and absence of amplification determined negative and positive prognosis,
respectively. A unique case where the mutation with CNA signalled a positive prognosis (albeit
worse than without) was EGFR in LUAD (HR = 0.56, p < 0.0001 without amplification, HR = 0.85,
p = 0.049 with, Figure 4f). This instance might reflect conditions of mutual exclusivity with other
driving genomic or biological factors that are predominant in WT cases.

Prognostic signatures of mutations and CNAs from two genes
Cancer develops from the accumulation of multiple somatic mutations, so we investigated
whether mutant gene pairs, with or without CNAs, could manifest some degree of interaction in
determining prognosis. We chose to analyse gene pairs to avoid too small groups achieved with
more complex pairings (Supplementary Figure S10).
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We repeated the MSK-MET analysis with gene pairs (Methods) significantly associated with OS
from the last section (Figure 3), estimating Kaplan-Meier curves and computing hazard ratio
coefficients with multivariate Cox regression and Walt test for statistical significance. We
selected the top 5 frequently mutated per tumour type and retained only groups with at least 30
samples using, as reference group, joint mutants without CNAs (Supplementary Note). All
results are in Supplementary Table S4.

In 9 cases (60%, 8 significant) the group with the worst outcome was that with combined
mutation and CNA on both genes, in 4 cases (27%, 1 significant) the one with additional CNA
only on one gene and in 2 cases (13%) the group with no CNA in either genes. All the analyses
are shown in Supplementary Figure S11 (multi-page figure). Overall, our INCOMMON analysis
confirmed that, for almost every pair of genes considered, the joint effect of CNAs in the
background of double-gene mutants generally has effects on OS, with a median hazard ratio of
HR = 1.94.

In CRC the amplification of KRAS (Figure 5a) and PIK3CA (Figure 5b) mutants worsened the
overall survival outcome regardless of the presence or absence of LOH in APC. On the other
hand, contrary to what we observed at the single-gene level (Figure 3b), LOH of APC did not
worsen survival in the context of KRAS or PIK3CA mutations. Similarly, amplifications of KRAS
did not decrease survival outcomes when considered together with mutations in PIK3CA (Figure
5c), and we found an analogous effect for mutant STK11 with LOH samples in the context of
KRAS mutants in LUAD samples. In MEL, for BRAF and TERT the significant decrease in survival
between mutants without and with CNA was confirmed also when we considered combined
mutations on both genes, and similarly for ARID1A and PTEN in UCEC.

Copy number-associated metastatic propensity and tropism
Last, we investigated if INCOMMON can be used to determine trends of metastatic propensity
and organotropism (Methods). By comparing primary tumour samples from metastatic (10,345
samples) versus non-metastatic (3,372 samples) patients (Supplementary Note), we computed
the Odds Ratio (OR) via logistic regression for the likelihood of metastasis associated with
mutations having CNA (control group: mutations without CNA; p-values computed via the Wald
test corrected for false discovery rate).

Overall, across 3 tumour types, we found 7 statistically significant (adjusted p-value 0.05)≤
mutant cases (3 whole genes and 3 hotspots; Figure 6a,b) that, with CNAs, had a significantly
increased risk of metastasis (OR > 2, p 0.05). In one case, instead, the presence of mutations≤
and CNAs determined a significant decrease in risk (OR < 0.5, p 0.05). All results are reported≤
in Supplementary Table S5, summarised in Supplementary Figure S12 and available for
browsing at https://ncalonaci.shinyapps.io/incommon/.

The most prominent case was that of E746_A750del exon 19 deletions of EGFR in LUAD (OR =
3.55, p = 0.015, Figure 6a,b), with a more than three-fold metastasis risk increase by
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amplification. Also non-hotspot mutations showed a similar effect, albeit with a lower impact
(OR = 1.98, p = 0.002). Interestingly, PIK3CAmutations with amplification were associated with
increased metastatic risk both in BRCA (OR = 2.12, p = 0.0002), particularly for the hotspots
E545K (OR = 2.47, p = 0.039) and H1047R (OR = 2.93, p = 0.0021), and in UCEC (OR = 2.26, p =
0.014), reflecting the decrease in overall survival (Figure 3c and Supplementary Figure S8). In
BRCA, also CDH1 mutations with LOH showed an increase in metastatic propensity (OR = 2.45,
p = 0.032).

We then analysed organ-specific patterns of metastasis (Figure 6c,d) from 7,829 metastasis
samples. For each gene (whole-genes and hotspots) and tumour type we computed the OR of
mutants with CNA to metastasise to a specific organ with respect to mutants without CNAs,
using logistic regression and Wald test. All results are reported in Supplementary Table S5,
summarised in Supplementary Figure S13 and available for browsing at
https://ncalonaci.shinyapps.io/incommon/.

Overall, we found 16 significant associations, 6 of which involving mutations with CNA, and 10
without. Notably, tropism of mutants without CNA tended to target sites physically located close
to the spreading tumour, like intra-abdominal tissues, the lymphatic system and bones, or pleura
for lung cancer, whereas mutants with CNA showed diffusion to further organs. In contrast,
mutants with CNA demonstrated a broader dispersion to distant organs.

The strongest association was for amplified KRASmutations and CNS/Brain metastases in CRC
(OR = 7.87, p = 0.049), with a similar tendency, with lower impact, for APCmutants with LOH (OR
= 2.84, p = 0.11). KRAS mutations with amplification were associated with metastatic spread to
the liver in PAAD (OR = 2.48, p < 0.0001), particularly for the hotspots G12D (OR = 2.45, p <
0.0001) and G12V (OR = 3.32, p < 0.0001), and LUAD (OR = 2.84, p = 0.027), reflecting the
association of these genotypes to worse survival outcomes. In PAAD, KRAS mutations with
amplifications were associated with reduced spread to the intra-abdominal area, with respect to
non-amplified mutants (OR = 0.59, p = 0.048) and the lymphatic system (OR = 0.16, p = 0.0003).
We observed a similar trend for PTPRD and NF1, for which mutations with LOH in MEL were
associated with diffusion to the CNS/Brain (PTPRD OR = 5.70, p = 0.027, NF1 HR = 3.39, p =
0.056) whereas they showed lower rates of diffusion to the lymphatic system with respect to
mutations without LOH (PTPRD OR = 0.43, p = 0.033, NF1 HR = 0.44, p = 0.046). Also for STK11
and bone metastases (OR = 0.40, p = 0.024) and EGFR and pleura metastases (OR = 0.55, p =
0.024), in particular for its hotspot mutation L858R (OR = 0.16, p = 0.0004), the presence of LOH
and amplification, respectively, were associated with decreased tropism from primary LUAD
cancers. Conversely, we observed a tendency, albeit over the threshold of significance, to
metastasise in the liver for STK11 (OR = 4.89, p = 0.13) and KEAP1 (OR = 2.97, p = 0.15) mutants
with LOH, and for EGFR mutant hotspot E746_A750del with amplification (OR = 4.71, p = 0.14),
all genotypes that were associated with negative prognosis. In BRCA, TP53 mutants with LOH
were associated with lower rates of skin metastasis (OR = 0.16, p = 0.03), and we found a
tendency of amplified PIK3CA mutants, which significantly increased the risk to metastasise, to
diffuse to the CNS/Brain (OR = 3.48, p = 0.059).

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.24307238doi: medRxiv preprint 

https://ncalonaci.shinyapps.io/incommon/
https://doi.org/10.1101/2024.05.13.24307238
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion

We have presented INCOMMON, a computational tool which advances the analysis of clinical
cancer genomic data by elucidating the interplay between somatic mutations and CNAs.
INCOMMON is particularly effective with targeted panel sequencing from clinical samples,
which are routinely not matched with a normal sample. We used our tool to process publicly
available targeted data for 62,548 patients and characterised prognostic biomarkers from
complex genomic interactions in various cancer types. First, we identified 11 genes and 6
hotspots whose mutations were frequently associated with CNAs in at least one tumour type.
We found 66 groups that were prognostic, making INCOMMON classification 24.5% more
informative than standard analyses that use just mutations. Overall, we retrieved 20 prognostic
alterations missed when one tests for mutations without considering CNAs.

From a functional perspective, we observed an enhanced potential of mutations with
co-occurrent CNAs, a phenomenon evident for both oncogenes and TSGs. Previous research
has highlighted a pattern where activating mutations of KRAS and EGFR in NSCLC, and BRAF in
MEL are often associated with copy-gain events32. For KRAS, an emblematic oncogene, this
pattern was additionally linked to increased aggressiveness33. We found analogous patterns,
extending the observations concerning KRAS to CRC, PAAD and UCEC also highlighting the
hotspots where this trend is exacerbated. We observed a similar influence for PIK3CAmutations
in BRCA, a phenomenon previously documented in the literature34, extending this finding to
UCEC and CRC. When considering TSGs, the accompanying CNAs typically involved CNLOH or
LOH events. The effect of such a condition on prognosis was found to be detrimental in our
study, as observed for KEAP1, ARID1A and APC in LUAD, TERT in MEL, CDK12 and APC in PRAD
and PIK3R1 in UCEC. Similar to our findings, previous studies have also reported worse
outcomes associated with LOH juxtaposed to inactivating mutations of CDK12 in PRAD35 and
KEAP1 in LUAD36, offering initial insights into their biological mechanisms. Despite these hints, a
comprehensive understanding of these mechanisms remains elusive.

Recent research has suggested that chromosomal imbalance inherent in aneuploidy can propel
tumour heterogeneity and adaptability without the direct influence of specific driver gene
mutations37. Complementing this perspective, further experiments of unbiased aneuploidy
screens in normal human epithelial cells have identified a repeated selection of CNAs linked to
cancer in a tissue-specific manner, in the absence of classic driver mutations38. The contrast
between the direct impact of mutations and the more systemic influence of aneuploidy
highlights the complexity of cancer evolution. Moreover, efforts have been recently directed
towards modelling the selection dynamics impacting double-hit events involving mutations and
CNAs, within both tumour suppressor genes and oncogenes39,40. In our study, we bridge these
insights by examining the effect of CNAs in the presence of clonal driver mutations in target
genes. Our findings suggest that CNAs not only contribute to the genomic landscape shaped by
aneuploidy but also interact with mutations in a manner that significantly influences cancer
prognosis. The emergence of joined mutations and CNAs as novel factors offers innovative
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insights into the prognostic impact of known genomic alterations, and helps de novo biomarkers
discovery. This also extends to other aspects of tumorigenesis, such as metastatic potential
and tropism. In lung cancers, EGFRmutations usually associated with favourable outcomes due
to the availability of targeted therapies29,41, presented a contrasting prognostic value when
accompanied by CNAs. The concurrent presence of amplifications indicated a higher tendency
to metastasise, with a distinct pattern of diffusion toward the liver, and a decreased overall
survival. These observations potentially reflect reduced treatment sensitivity and, therefore, also
a predictive value. Similarly in BRCA, concurrent amplifications of mutant PIK3CA increased the
metastatic propensity and the rate of brain metastases, offering possible explanations for the
negative prognostic impact of these conditions. Among the novelties, we observed
tumour-specific biomarkers like CDH1 mutations with LOH in BRCA, increasing the metastatic
propensity, and amplified PIK3CAmutations in CRC leading to decreased survival outcomes.

Conclusion

The practical application of INCOMMON in clinical settings could significantly enhance the
management of cancer patients, informing personalised therapeutic strategies by identifying
genomic signatures associated with metastatic risk, organ tropism, and response to therapies.
Our approach therefore carries profound clinical significance to enhance precision cancer
medicine. By revealing the interplay of complex genetic alterations, INCOMMON enables patient
stratifications that can potentially guide more tailored treatments and unravel mechanisms of
intrinsic or acquired resistance to target therapies. Indeed, the co-existence of an actionable
mutation with CNAs might identify patients with oncogene-addicted tumours as characterised
by lower sensitivity to matched inhibitors.

While we use INCOMMON to analyse the largest clinical cohorts available to date, our study
acknowledges intrinsic limitations linked to data and methodologies. The adopted cohorts
present mostly unmatched primary or metastatic samples, whereas longitudinal data would
better capture trends of metastatic tropism. Moreover, the lack of survival data available for the
GENIE-DFCI cohort prevents the validation of our groups derived from the MSK-MET cohort. At
the methodological level our tool is not designed to process longitudinal data, whereas a better
classification could be achieved once longitudinal data are popular and our algorithms updated.
Moreover, our model neglects events of copy numbers independent of mutations, such as
amplifications of WT oncogenes. While these are not ubiquitous across primary tumours
(Supplementary Figure 14) they might have an important role in determining altered pathway
functions. However, to detect these events one requires depth-of-sequencing data through the
genome42, an information that we did not find available in targeted panels from our clinical
cohorts.

In summary, this research highlights key aspects of cancer genomics and introduces
INCOMMON as a transformative tool for interpreting clinical targeted sequencing data. Our
insights, encompassing both established and novel biomarkers, lay a robust foundation for
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future investigations and clinical applications, contributing to advanced personalised cancer
therapy and our understanding of the unknown biology behind these genomic alterations. The
clinical relevance of our findings suggests a promising potential to improve patient care.

Methods

1 Bayesian inference using INCOMMON
INCOMMON is a mixture model15 to classify single mutations, in terms of their copy number and
multiplicity status. The read counts of a mutation, characterised by the total number of(𝑛,  𝑁)
reads covering the mutation site and the number of reads carrying the variant are assumed to𝑁
be distributed according to a Beta-Binomial mixture

.
It is necessary to know a priori the purity of the sample , for instance from sequencing orπ
pathology assessment. The mixture components (classes), weighted by the mixing proportions
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The sixth configuration identifies Tier-2 mutations, which contain subclonal (present less than
100% of tumour cells) or clonal mutations with high-ploidy and/or low-multiplicity ( ).𝑚/𝑝 ≤ 1/3

The assignment of a mutation to one of the K classes is modelled by the latent randomη
variable z that has a 1-of-K representation, i.e. a single element of the vector is equal to 1 and𝑧
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The posterior probability of the assignment conditioned on the observed read counts𝑧
η

= 1

is, by Bayes’ theorem(𝑛,  𝑁)

.

Given that the copy number and multiplicity of a mutation is , the probability ofη =  (𝑛
𝐴

, 𝑛
𝐵

, 𝑚)

collecting a read with the variant is equal to its expected variant allele frequency, which is known
to be

.

The mixing proportions can be specified in terms of the prior probability of the assignmentψ
η

such that𝑧
η

= 1

Consequently, they must satisfy and .0 ≤ ψ
η

≤ 1
η
∑ ψ

η
= 1

1.1 Empirical prior from whole-genome sequencing
In general, it can be very hard to infer the copy number and mutation multiplicity of a mutation,
especially when the sequencing depth is low. In order to improve our classification and inject
biological prior knowledge into the model, we relied on empirical priors. We thus built byψ

η

considering the frequency distribution of the supported copy number configurations in the
large-scale (2778 samples) PCAWG cohort of primary tumours16. This whole genome
sequencing dataset comprises driver gene and tumour type annotations, as well as copy
number calls and phased mutations generated by a multi-cohort effort and recently validated
computationally17.

We empirically estimated the prior distribution over the K classes supported by INCOMMON
specific to genes and tumour types, by estimating the frequency at which a gene is mutant in a
tumour type from PCAWG. We selected only cases with a reasonable number of observations: if
a gene was mutated in at least 5% of samples from a tumour type, and at least in 20 samples,
we built a tumour-specific prior, otherwise we pooled from all tumour types a pan-cancer prior.

To build the prior we used the copy number calls validated by quality control and converted to
INCOMMON classes. To deal with missing observations of specific INCOMMON classes, we
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first initialised the prior to a reasonable configuration. Using the heterozygous mutant diploid
class (HMD) as the baseline, we assigned this class the maximum probability 25%, and 12.5%
to all the other classes. Then we replaced the probability of any observed class with its

empirical frequency in the dataset, and normalised the final distribution to ensure that .
η
∑ ψ

η
= 1

The prior parameters estimated from PCAWG are available as Supplementary Table S1.

1.2 Classification
The posterior probability of the assignment variable z is proportional to

INCOMMON classifies mutations by assigning it to the class with the maximum a posteriori
(MAP) probability, thus estimating

In other words, INCOMMON estimates the most likely class given both the data and prior
knowledge from a higher-resolution (WGS) validated dataset. The probabilistic model has the
advantage of returning a probability of assignment to each one of the tested classes, a piece of
information that we use to derive a confidence metric for the prediction.

1.3 Prediction uncertainty
INCOMMON quantifies the uncertainty associated with each classification. This is particularly
valuable for cases in which the read counts do not strongly and uniquely indicate a specific copy
number configuration, which tends to occur especially for tumour samples with low purity or low
sequencing depth.

We compute uncertainty by examining the variability in the posterior probabilities assigned to
different classes for each mutation. High variability indicates that the mutation could reasonably
belong to multiple classes, while low variability suggests a more confident classification.
INCOMMON adopts the concept of entropy to quantitatively measure the uncertainty associated
with the classification of a data point. The entropy associated with read counts is(𝑛,  𝑁)
computed using the posterior probabilities
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A higher entropy value indicates greater uncertainty, as the probabilities are spread out across
multiple classes. Conversely, lower entropy implies more certain classification, with one class
having a significantly higher probability. This is inspired by popular clustering methodologies
that seek to induce sparsity in their inferences 19,43,44.

Data and software availability
Software availability

INCOMMON is an open-source R package at https://caravagnalab.github.io/INCOMMON. The
tool webpage contains RMarkdown vignettes to run analyses, visualise inputs and outputs, and
parametrise the tool.

All analyses presented in this paper, from data gathering and analysis results, are available in
Zenodo at https://zenodo.org/records/10927218.

INCOMMON is also available as a ShinyApp that can be used to browse analysis results and run
online similar analyses. The app is available online at https://ncalonaci.shinyapps.io/incommon/.

Data availability

PCAWG and TCGA data used in this paper ( mutations with matched validated CNAs) are
available at https://doi.org/10.5281/zenodo.6410935, following 42.

MSK MetTropism data has been downloaded from cohort “msk_met_2021” at the CBioPortal,
following link https://www.cbioportal.org/study/summary?id=msk_met_2021.

AACR GENIE-DFCI data has been downloaded at https://www.synapse.org/# through access
codes syn50678641, syn50678411, syn50678410, syn50678644, syn50678531, syn50678642,
syn50678530, syn50678532, syn50678295, syn50678640, syn50678653, syn50678296.

Supplementary Tables
● Supplementary table S1: Empirical prior distributions obtained from PCAWG.
● Supplementary table S2: Summary statistics and enrichment of INCOMMON classes.
● Supplementary table S3: Survival Analysis (multivariate Cox regression) with

INCOMMON classes, single gene-level.
● Supplementary table S4: Survival Analysis (multivariate Cox regression) with

INCOMMON classes, two genes-level.
● Supplementary table S5: Metastatic propensity with INCOMMON classes.
● Supplementary table S6: Metastatic tropism with INCOMMON classes.
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Main Figures

Figure 1. Copy-number and mutation multiplicity inference with INCOMMON. a. Clonal expansions from
a normal cell that acquires first a mutation in a tumour suppressor gene (TSG) or an oncogene, then a
copy number alteration (CNA) on the mutant locus, pictured as a loss of the wild-type (WT) allele or an
amplification of the mutant one. b. INCOMMON processes read counts that define the variant allele
frequency (VAF) of a mutation (the total number of reads , and the number of mutant𝑁 ≫ 1 𝑛 ≤ 𝑁
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reads). For example, a clonal mutation with LOH has and VAF 1, whereas VAF 0.5 if the𝑛 =  𝑁 = =
mutation harbours a diploid heterozygous site. c. Pan-cancer or tumour-specific Bayesian classification
prior obtained from validated copy-number calls in PCAWG16. d. INCOMMON identifies Tier-1 clonal
heterozygous mutant diploid (HMD) states, deletion of the WT allele in monosomy (LOH) or copy-neutral
(CNLOH) states, amplifications (AM) of the mutant allele in trisomy and tetrasomy states. It also detects
Tier-2 mutations compatible either with subclonal frequencies or with high-ploidy low-multiplicity states.
Genotypes are interpreted in terms of mutant TSGs with/without LOH and oncogenes with/without
amplification. The uncertainty of each classification is estimated via the entropy. e. We measured the
performance of INCOMMON using ground truth data from TCGA20, determining the accuracy of copy
number and multiplicity estimates, which can be controlled through a cutoff on the entropy not needed for
high effective coverage (sequencing depth times sample purity).
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Figure 2. INCOMMON classification of mutations in 61,690 clinical samples. a. Classification of
gene-level or hotspot mutations for the MSK-MET (MSK) and GENIE-DFCI (DFCI) cohorts. The map
reports results for the most common tumour type (on the left the most frequently mutated entries, on the
right the ones with the strongest statistical association with copy numbers). For each entry, we report a
Chi-squared test for the enrichment of mutants without CNAs, against mutants with CNAs (Mutant+CNA).
Genes are also colour-coded to denote suppressors (TSG) and oncogenes (ONC). b. Gene-level and
hotspot mutations were included by filtering tumour types with at least 1000 samples and considering
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gene mutants in at least 100 samples in both cohorts. c,d. Pan-cancer distribution of INCOMMON classes
and genotypes across both cohorts.
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Figure 3. The INCOMMON classification increases the number of prognostic markers. a. Increase in the
number of prognostic versus non-prognostic groups between the baseline survival analysis (mutants
irrespective of CNAs vs WT) and the one enabled by INCOMMON (mutant with or without CNAs vs WT).
Prognostic power is estimated by computing hazard ratios (HR) from multivariate Cox regression,

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.24307238doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24307238
http://creativecommons.org/licenses/by-nc-nd/4.0/


accounting for sex, age and tumour mutational burden (TMB), and using the Wald test for statistical
significance. b. The overall trend of HR is similar for TSGs and oncogenes with CNAs (worse prognosis)
vs without. c. Results per gene or hotspot mutation, split by tumour type. HR values with 95% confidence
intervals are reported for every group. d-f. Kaplan-Meier curves annotated with numbers at risk and HR for
PIK3CA in colorectal cancers, KEAP1 in lung adenocarcinoma and KRAS G12V in pancreatic
adenocarcinomas, evidence the better resolution provided by INCOMMON classification in stratifying
patients. Forest plots show the contribution of each covariate in the model.
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Figure 4. Survival analysis for INCOMMON groups. Comparison (as in Figure 3c-e) of the baseline
analysis (mutant with/without CNAs vs WT) and the one enabled by INCOMMON (mutant with or without
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CNAs vs WT). a,b. Results for KRAS G13D and PIK3CA E545K in colorectal cancers, c. Results for KRAS
G12C in lung adenocarcinoma. d. Results for CDK12 in prostate adenocarcinoma. e. Results for PIK3R1 in
lung adenocarcinoma. f. Results for EGFR in lung adenocarcinoma. Other survival curves and results of
Cox regression are in Supplementary Figure S9.

Figure 5. Survival outcome for paired genes classifications with INCOMMON. a,b,c. Paired survival
analysis for APC and KRAS, APC and PIK3CA and KRAS and PIK3CA in colorectal cancers. d. Paired
analysis of lung adenocarcinoma samples for KRAS and STK11 mutations. The colours in the risk table
reflect the group for the gene. In this analysis, the baseline group contains TP53-mutants without LOH and
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KRAS-mutants without amplification e. Paired analysis of melanoma samples for BRAF and TERT
mutations. f. Paired analysis of endometrial cancer samples for ARID1A and PTEN mutations.
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Figure 6. Metastatic propensity and organotropism analysis of 18,000 samples. a. Odds ratio (OR) of
primary tumours with mutant TSGs with LOH vs without or mutant oncogenes with amplification vs
without, of giving rise to metastasis. Reported is the adjusted p-value (log10 scale) against the OR (log2
scale). Genes and specific hotspots significant are labelled. b. Odds ratios with 95% confidence intervals
for the significant cases. c. Combinations of mutations and CNAs that affect organotropism in metastatic
samples with OR under the 10th and over the 90th percentile. The number of metastatic samples per
group and metastatic site is also reported (right panel). Significant cases are highlighted d. Organotropic
patterns associated with the combination of mutations and CNAs, represented by arrows starting from
the primary site and pointing to the metastatic site. Thicker arrows represent patterns with at least one
significant association, indicated by an asterisk.
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