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Main Text  

Abstract  
 
Background/purpose: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding 
rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the 
need for effective uncertainty quantification (UQ) methods. The purpose of this study was to 
scope existing literature related to UQ in RT, identify areas of improvement, and determine 
future directions.     
 
Methods: We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the 
population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy 
applications) framework to structure our search and screening process. We conducted a 
systematic search spanning seven databases, supplemented by manual curation, up to January 
2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and 
data extraction was performed in Covidence. Data extraction categories included general study 
characteristics, RT characteristics, AI characteristics, and UQ characteristics.  
 
Results: We identified 56 articles published from 2015-2024. 10 domains of RT applications 
were represented; most studies evaluated auto-contouring (50%), followed by image-synthesis 
(13%), and multiple applications simultaneously (11%). 12 disease sites were represented, with 
head and neck cancer being the most common disease site independent of application space 
(32%). Imaging data was used in 91% of studies, while only 13% incorporated RT dose 
information. Most studies focused on failure detection as the main application of UQ (60%), with 
Monte Carlo dropout being the most commonly implemented UQ method (32%) followed by 
ensembling (16%). 55% of studies did not share code or datasets.  
 
Conclusion: Our review revealed a lack of diversity in UQ for RT applications beyond auto-
contouring. Moreover, there was a clear need to study additional UQ methods, such as 
conformal prediction. Our results may incentivize the development of guidelines for reporting 
and implementation of UQ in RT. 
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Introduction  
  
Artificial intelligence (AI) in healthcare has become increasingly important due to its potential to 
enhance diagnosis, treatment, and prognostic prediction [1]. A significant obstacle to the clinical 
implementation of AI that is receiving growing attention is a relative absence of model 
uncertainty quantification (UQ) [2]. The ability of an AI model to characterize and communicate 
its uncertainty, in other words, learning when to say “I don’t know” [3], could enhance clinician 
trust and facilitate the integration of AI into clinical practice [4–6].  
 
Radiotherapy (RT) is a fundamental pillar of cancer treatment used in approximately 50% of all 
malignancies [7]. Due to the highly quantitative and structured nature of the RT clinical 
workflow, AI-based methodologies — namely, machine learning (ML) and deep learning (DL) — 
have been increasingly investigated to automate and improve a variety of tasks [8]. Advances in 
DL algorithms trained on increasingly larger, diverse datasets have allowed for impressive 
performance in a variety of RT-related applications such as image synthesis [9], registration 
[10], contouring [11], dose prediction [12], and outcome prediction [13–15]. However, despite 
the impressive performance of these models in research studies, to date there are relatively few 
standard AI-based tools that are routinely used in RT workflows. This hesitation could be 
partially attributed to insufficient clinician trust [16,17]. Enhanced UQ could bridge this trust gap, 
fostering greater confidence in AI applications within the RT field. 
 
Conventionally there are two types of uncertainty: aleatoric and epistemic [18]. Aleatoric 
uncertainty arises from the noise inherent in the data. An example is the inherent variation in 
contour “ground truth” among radiation oncologists, each can be “right” but likely slightly 
different [19]. Epistemic uncertainty stems from incomplete information. For instance, a head 
and neck tumor contouring model may have limited exposure to certain rare malignancies (e.g., 
salivary gland cancer) and may generate poor contours with high epistemic uncertainty as these 
cases were underrepresented in model development. Models trained outside of medicine are 
often trained on datasets with >1 million samples [20]. Medical datasets, especially in RT, are 
considerably smaller [21], often ranging from hundreds to thousands of patient samples. Thus, 
epistemic uncertainty estimation would be particularly important for RT model development. 
Together, aleatoric and epistemic uncertainty account for the total predictive uncertainty [22]. 
Illustrative figures related to aleatoric and epistemic uncertainty concepts are shown in 
Appendix A Figure A1.   
 
Within the UQ literature, there exists several methods for providing estimates of uncertainty. 
Contemporary methods for estimating uncertainty in ML often adopt a Bayesian perspective, 
treating model predictions as probability distributions rather than single point values. For 
instance, when predicting if a patient will develop xerostomia after radiation therapy, the model 
might output an 80% probability instead of simply stating "yes" or "no". These probabilistic 
measures could enable safer model deployment in various clinical applications [22]. For 
example, UQ could be used in auto-segmentation for failure detection, flagging cases with a low 
probability of an accurate segmentation (i.e., high uncertainty) for additional clinical review. UQ 
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methods such as Monte Carlo dropout and ensembles, which are suggested to be grounded in 
Bayesian principles [23,24], have surged in popularity in recent years [25]. However, emerging 
techniques, such as conformal prediction [26], are increasingly drawing on more traditional 
statistical methodologies.  
 
Finally, worthy of note is that UQ has historically been closely linked to calibration, which 
measures the agreement between predicted probabilities and observed frequencies. Large-
scale ML models — particularly DL models with numerous parameters — often show poor 
calibration, with output probabilities being higher than observed probabilities, subsequently 
leading to overconfident predictions [27]. UQ methods can help quantify and mitigate poor 
calibration; for example Monte Carlo dropout and ensembles often inherently improve 
confidence calibration [28,29]. For readers interested in more technical reviews on UQ concepts 
generally and specific to RT, we refer to comprehensive narrative works by Hullermeier & 
Waegeman et al. [18] and van den Berg & Meliadò [30], respectively.  
 
While previous systematic and scoping reviews have covered the topics of UQ in healthcare 
generally [25,31] and in relation to medical imaging [32–34], these studies lacked any explicit 
focus on RT-related applications. Therefore, we conducted this scoping review to synthesize 
current trends for UQ in RT and provide an outlook for the future of this important research area 
for clinicians and researchers. An overview of our study is illustrated in Appendix A Figure A2.  
 

Materials and Methods 
 
This scoping review was conducted in line with the reporting guidelines of Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) [35]. The pre-registration for this scoping review was performed using the Open Science 
Foundation Generalized Systematic Review Registration template and can be found online 
(https://doi.org/10.17605/OSF.IO/E3DQG). We utilized Covidence [36] — a standardized web-
based literature review collaboration software platform  — to perform all initial study screening 
and data extraction.  
 

Eligibility Criteria  
 
This scoping review was conducted to summarize the state of literature that implemented AI UQ 
for RT. We utilized the population, concept, context (PCC) framework to develop a focus 
question as recommended by the Joanna Briggs Institute Scoping Review Methodology Group 
[37]. Population was defined as human patients undergoing RT for cancer treatment, concept 
was defined as utilization of AI and UQ, and context was defined as RT applications (e.g., 
image acquisition and synthesis, tumor and organ at risk contouring, dose prediction, outcome 
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prediction, etc.). Additional details on the PCC eligibility criteria and its integration into the 
search strategy are discussed in Appendix B. 
 

Search Strategy 
 
A medical research librarian (D.P.F.) searched MEDLINE (Ovid), Embase (Ovid), PubMed 
(NLM), Cochrane Library (Wiley), and Web of Science Core Collection (Clarivate) from inception 
to November 17, 2023, with the search executed on November 20, 2023. A supplementary 
search of Web of Science Preprint Citation Index (Clarivate) and Google Scholar (Alphabet Inc.) 
from inception to December 12, 2023 was executed on December 13, 2023 in order to 
adequately query gray literature such as preprints and conference proceedings. After 
consultation with the research team, the librarian developed and tailored the search strategy to 
each database and selected controlled vocabulary (MeSH and Emtree) and natural language 
terms for the concepts of AI, UQ, and RT. No language, publication date, or other limiters or 
published search hedges were used. A total of 8974 results were retrieved from the five 
databases including an original set of 9 key articles supplied by the research team (MEDLINE = 
1084; Embase = 1708; PubMed = 1154; Cochrane = 42; Web of Science Core Collection = 
4358; Web of Science Preprint Citation Index = 428; Google Scholar = 200). The full search 
strategy inputs for each database is available in Appendix C. Notably, we incorporated 6 
additional manuscripts that were not captured in the initial eligibility screening post-hoc via 
manual citation searching up to January 19, 2024; these manuscripts were principally added 
because they were formally indexed after the initial search date and were deemed relevant to 
ensure a more up-to-date review. Search results were uploaded to Covidence; after 
deduplication, 6017 unique results were identified for eligibility screening. The full PRISMA-ScR 
flow diagram is shown in Appendix A Figure A3.  
 

Study Selection  
 
Initial screening to ensure studies broadly fit within our defined PCC framework was performed 
by 2 independent reviewers (K.A.W., Z.Y.K.) based on titles and abstracts. Disagreements were 
mediated by an independent third senior reviewer (M.J.D.). All disagreements were discussed in 
a group setting with the 3 reviewers; in cases where no consensus was reached the decision of 
the senior reviewer was implemented. A second full text review of these articles was performed  
to ensure all inclusion criteria were fully satisfied (additional details in Appendix B). Only full 
English-language preprints, conference proceedings, and standard peer-reviewed publications 
were included for this study; conference abstracts were excluded. Conference proceedings and 
preprints were deemed appropriate for inclusion due to their ubiquitous nature in computational 
fields [38]. Preclinical and animal studies were not included in this review. 56 articles were 
ultimately selected for final inclusion (Appendix A Figure A3). All screening was performed 
through the Covidence online platform. 
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Data Extraction 
 
Two reviewers extracted data from the final manuscripts (K.A.W., Z.Y.K.). All extractions were 
cross-checked by both reviewers and a final third reviewer (M.J.D.) when disagreements 
occurred. Data were initially extracted using a template generated in Covidence, focusing on 
four categories: general study characteristics, RT characteristics, AI characteristics, and UQ 
characteristics. General study characteristics included manuscript type, publication year, 
geographic location of the study authors, and code/data availability. RT characteristics included 
intended RT application space (e.g., contouring, dose planning, etc.), specific data types used 
(e.g., CT, MRI, etc.), and patient cancer type. AI characteristics included algorithmic approach, 
training/validation/testing sample sizes, and properties of the validation/testing (e.g., separate 
set, cross-validation, etc.). AI characteristics were adapted from existing related guidelines 
including TRIPOD [39] and CLAIM [40]. UQ attributes included application category, method 
type, evaluation metrics, self-described uncertainty type (i.e., aleatoric vs. epistemic), and use of 
quantitative or qualitative evaluation methods. UQ application categories and definitions were 
adapted from Kahl et al. [22] and Lambert et al. [34]. Additional specific considerations for each 
category in the data extraction process are described in detail in Appendix B.  
 

Analysis  
 
The final extracted data were analyzed using Python v. 3.10. Descriptive statistics and visual 
plots were generated using the pandas, seaborn, matplotlib, numpy, geopandas, and squarify 
Python libraries. We also compared the overlap of extracted publications in our study and 
publications extracted in previous systematic and scoping reviews in similar topic domains (i.e., 
UQ in medical applications). To accomplish this, we compiled a comprehensive list of all 
publications referenced in these studies during the data extraction process along with their 
respective titles and digital object identifiers (DOIs). Initially, we attempted to automatically 
match DOIs from studies in our scoping review with those in the existing literature. If no DOI 
match was found, we proceeded to automatically compare titles using the difflib Python library, 
setting a sequence match ratio threshold of at least 0.75. All identified matches were then 
subsequently manually verified.  
 

Data and Code Availability  
 
A CSV file containing the final studies and corresponding extracted data for this scoping review 
are made publicly available through Figshare (doi: 10.6084/m9.figshare.25535017). All Python 
code used in the analysis can be found on Github (URL: 
https://github.com/kwahid/RT_UQ_scoping_review/tree/main).  
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Results  
 
Table 1 presents an overview of the extracted data from the final 56 manuscripts included in 
this review.   
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Table 1. Comprehensive listing of final studies analyzed in this scoping review. Data of interest were split into four main categories: 
general study characteristics, radiotherapy (RT) characteristics, artificial intelligence (AI) characteristics, and uncertainty 
quantification (UQ) characteristics. Rows are ordered by ascending publication year and study ID. Additional abbreviations: organ at 
risk = OAR, machine learning = ML, cross validation = CV, failure detection = FD, active learning = AL, ambiguity modeling = AM, out 
of distribution detection = OODD, Gaussian Process = GP, Ensemble = ENS, Other Bayesian = OB, Platt Scaling = PS, MC Dropout 
= MCD, Test-time Augmentation = TTA, Evidential Deep Learning = EDL, Direct softmax output = DSO.  
 

General Study Characteristics RT Characteristics AI Characteristics UQ Characteristics 
Study ID Paper 

type 
Year Location Data 

avail. 
Code 
avail. 

RT 
applic. 

Image 
data 

Addition
al data 

Cancer 
type 

ML type Training 
patients 

Valid. 
patients 

Valid. 
type 

Testing 
patients 

Testing 
type 

UQ 
applic. 

UQ type UQ 
method 

UQ 
metric 

UQ 
experime

nts 

Bukhari 
2015 [41] 

Standard 
pub. 2015 Korea No No 

Motion 
tracking NA 

Repirator
y trace Lung Supervised 31 31 CV 31 

Separate 
set 

[internal] FD 
Unspecifi

ed GP 
Variance-

based Quant. 

Lee 2015 
[42] 

Standard 
pub. 2015 Canada No No 

Outcome 
related NA Clinical Lung Supervised 53 

Unspecifi
ed 

Unspecifi
ed 200 Bootstrap Calib. 

Unspecifi
ed ENS; OB Other Quant. 

Bragman 
2018 [43] 

Conf. 
proc. 2018 UK No No Multiple 

Multimod
al OAR Prostate Mixed 10 

Unspecifi
ed 

Unspecifi
ed 5 

Cross 
validation FD Both MCD; OB Other 

Quant. + 
Qual. 

Jungo 
2018a 
[44] 

Conf. 
proc. 2018 SUI No No 

Contourin
g MRI Target Brain Supervised 25 

Unspecifi
ed 

Unspecifi
ed 5 

Cross 
validation FD 

Unspecifi
ed MCD 

Entropy-
based 

Quant. + 
Qual. 

Jungo 
2018b 
[45] 

Conf. 
proc. 2018 SUI No No 

Contourin
g MRI Target Brain Supervised 25 

Unspecifi
ed 

Unspecifi
ed 5 

Cross 
validation FD 

Unspecifi
ed MCD; OB 

Entropy-
based 

Quant. + 
Qual. 

Ninomiya 
2018 [46] 

Conf. 
proc. 2018 Japan No No 

Contourin
g CT 

Target+O
AR Prostate Supervised 43 

Unspecifi
ed 

Unspecifi
ed 1 

Cross 
validation FD 

Unspecifi
ed OB 

Probabilit
y-based Quant. 

Qin 2018 
[47] 

Standard 
pub. 2018 China No No 

Contourin
g CT OAR Liver Supervised 90 

Unspecifi
ed 

Unspecifi
ed 10 

Cross 
validation FD 

Unspecifi
ed DSO 

Entropy-
based Qual. 

Sentker 
2018 [48] 

Conf. 
proc. 2018 Germany Yes Yes 

Image 
registratio

n CT 

Registrati
on_transf

orms Multiple Supervised 59 
Unspecifi

ed 
Unspecifi

ed 16 

Separate 
set 

[multiple 
external] FD 

Unspecifi
ed MCD 

Variance-
based 

Quant. + 
Qual. 

Karimi 
2019 [49] 

Standard 
pub. 2019 Canada No No 

Contourin
g 

Ultrasoun
d Target Prostate Supervised 540 

Unspecifi
ed 

Unspecifi
ed 135 

Cross 
validation AL; Calib. Both 

MCD; 
ENS; PS Other 

Quant. + 
Qual. 

Lipkova 
2019 [50] 

Standard 
pub. 2019 Germany Yes Yes 

Tumor 
growth 

modeling 
Multimod

al Target Brain Supervised 8 
Unspecifi

ed 
Unspecifi

ed 8 Other AL; Calib. 
Unspecifi

ed OB 
Variance-

based Quant. 

Chen 
2020 [51]  

Standard 
pub. 2020 China No No 

Contourin
g CT Target Breast Supervised 520 80 

Separate 
set 80 

Separate 
set 

[internal] FD 
Unspecifi

ed DSO Other Quant. 
Dohopols
ki 2020 

[52] 
Standard 

pub. 2020 USA No No 

Nodal 
classificati

on PET/CT 
Target+O

AR 
Head and 

neck Supervised 
Unspecif

ied 
Unspecifi

ed 
Separate 

set 
Unspecifi

ed 

Separate 
set 

[internal] FD Both 
MCD; 
TTA 

Entropy-
based Quant. 

Gustafsso
n 2020 

[53] 
Standard 

pub. 2020 Sweden Yes Yes 
Contourin

g MRI Fiducial Prostate Supervised 326 49 CV 39 

Separate 
set 

[internal] FD 
Unspecifi

ed DSO Other Quant. 

Hansch 
2020 [54] 

Standard 
pub. 2020 Germany No No 

Contourin
g 

Multimod
al OAR Brain Supervised 27 9 

Separate 
set 9 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Entropy-
based 

Quant. + 
Qual. 
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Maspero 
2020 [55] 

Standard 
pub. 2020 NL No No 

Image 
synthesis 

Multimod
al OAR Brain Supervised 30 10 CV 20 

Separate 
set 

[internal] FD 
Unspecifi

ed ENS 
Variance-

based 
Quant. + 

Qual. 

Nomura 
2020 [56] 

Standard 
pub. 2020 Japan Yes No 

Dose 
prediction CT Dose 

Head and 
neck Supervised 116 39 

Separate 
set 38 

Separate 
set 

[internal] FD 
Unspecifi

ed Other 
Variance-

based 
Quant. + 

Qual. 

vanHarte
n 2020 

[57] 
Conf. 
proc. 2020 NL No No 

Image 
synthesis 

Multimod
al NA Brain 

Unsupervis
ed 30 2 

Separate 
set 74 

Separate 
set 

[multiple 
external] FD 

Unspecifi
ed ENS Other 

Quant. + 
Qual. 

Balagopal 
2021 [58] 

Standard 
pub. 2021 USA No Yes 

Contourin
g CT 

Target+O
AR Prostate Supervised 290 29 CV 50 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Variance-

based 
Quant. + 

Qual. 

Dasgupta 
2021 [59] 

Standard 
pub. 2021 Canada No No Multiple MRI Target Brain Supervised 42 8 CV 49 

Separate 
set 

[internal + 
external] Calib. 

Unspecifi
ed Other; PS 

Probabilit
y-based Quant. 

Diao 2021 
[60] 

Standard 
pub. 2021 China Yes Yes 

Contourin
g PET/CT Target Multiple* Supervised 99 14 

Separate 
set 28 

Separate 
set 

[internal] AL Both Other 
Entropy-
based 

Quant. + 
Qual. 

Kajikawa 
2021 [61] 

Standard 
pub. 2021 Japan No No 

Image 
synthesis CT OAR Lung* Supervised 60 12 CV 11 

Separate 
set 

[internal] FD Epistemic MCD 
Variance-

based 
Quant. + 

Qual. 

Lei 
2021[62] 

Standard 
pub. 2021 China Yes Yes 

Contourin
g CT OAR 

Head and 
neck Supervised 177 

Unspecifi
ed 

Unspecifi
ed 48 

Separate 
set 

[internal] FD 
Unspecifi

ed ENS 

Entropy-
based; 

Variance-
based 

Quant. + 
Qual. 

Luo 2021 
[63] 

Conf. 
proc. 2021 China No Yes 

Contourin
g MRI Target 

Head and 
neck Supervised 180 20 

Separate 
set 58 

Separate 
set 

[internal] AL 
Unspecifi

ed Other Other 
Quant. + 

Qual. 

Mei 
2021[64] 

Standard 
pub. 2021 China Yes Yes 

Contourin
g CT Target 

Head and 
neck Supervised 40 

Unspecifi
ed 

Unspecifi
ed 10 

Separate 
set 

[internal] FD 
Unspecifi

ed ENS 

Entropy-
based; 

Variance-
based 

Quant. + 
Qual. 

Nguyen 
2021 [65] 

Standard 
pub. 2021 USA Yes No 

Dose 
prediction CT Dose 

Head and 
neck Supervised 200 40 

Separate 
set 100 

Separate 
set 

[internal] FD 
Unspecifi

ed 
MCD; 
ENS 

Variance-
based 

Quant. + 
Qual. 

Nomura 
2021 [66] 

Standard 
pub. 2021 USA Yes No 

Image 
correction CT NA 

Head and 
neck* Supervised 3 1 

Separate 
set 1 

Separate 
set 

[internal] FD; Calib. Both 
ENS; 
Other Other Quant. 

Remy 
2021 [67] 

Standard 
pub. 2021 Canada No No 

Motion 
tracking MRI Target Multiple* Supervised 10 

Unspecifi
ed 

Unspecifi
ed 10 Other FD 

Unspecifi
ed OB 

Variance-
based Quant. 

vanRooij 
2021 [68] 

Standard 
pub. 2021 NL No No 

Contourin
g CT OAR 

Head and 
neck Supervised 

Unspecif
ied 

Unspecifi
ed 

Separate 
set 

Unspecifi
ed 

Separate 
set 

[internal] FD; Calib. 
Unspecifi

ed MCD 
Probabilit
y-based 

Quant. + 
Qual. 

Zhang 
2021 [69] 

Standard 
pub. 2021 China Yes No 

Contourin
g CT 

Target+O
AR Lung Supervised 48 10 CV 28 

Separate 
set 

[internal + 
external] AL 

Unspecifi
ed MCD Other Qual. 

Dohopols
ki 2022 

[70] Preprint 2022 USA No Yes 
Outcome 
related CT Dose 

Head and 
neck Supervised 217 

Unspecifi
ed CV 54 

Separate 
set 

[internal] FD Both 

MCD; 
TTA; CP; 

EDL 

Entropy-
based; 
Other Quant. 

Li 2022a 
[71] 

Standard 
pub. 2022 USA No No 

Contourin
g CT Target Prostate Supervised 306 1 

Separate 
set 3 

Separate 
set 

[internal] AL; AM 
Unspecifi

ed Other Other Qual. 

Li 2022b 
[72] 

Standard 
pub. 2022 USA No No Multiple NA Clinical Liver Supervised NA NA 

Separate 
set 182 

Separate 
set 

[external] AL 
Unspecifi

ed GP 
Probabilit
y-based Quant. 

Lin 2022 
[73] 

Standard 
pub. 2022 China No No 

Outcome 
related CT 

Target+Cl
inical 

Esophage
al Supervised 171 57 

Separate 
set 57 

Separate 
set 

[internal] AL 
Unspecifi

ed Other Other Quant. 

Liu 2022 
[74] 

Standard 
pub. 2022 China Yes No 

Contourin
g CT 

Target+O
AR 

Pancreati
c Supervised 62 

Unspecifi
ed 

Unspecifi
ed 21 

Cross 
validation AL 

Unspecifi
ed MCD Other Qual. 

Lyu 2022 
[75] Preprint 2022 USA Yes No 

Image 
synthesis 

Multimod
al NA Multiple 

Unsupervis
ed 17 

Unspecifi
ed 

Unspecifi
ed 2 

Separate 
set 

[internal] FD 
Unspecifi

ed Other 
Variance-

based 
Quant. + 

Qual. 
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Mody 
2022a 
[76] 

Conf. 
proc. 2022 NL Yes Yes 

Contourin
g CT OAR 

Head and 
neck Supervised 33 

Unspecifi
ed 

Unspecifi
ed 25 

Separate 
set 

[internal + 
external] FD; Calib. 

Unspecifi
ed 

MCD; 
Other 

Entropy-
based 

Quant. + 
Qual. 

Mody 
2022b 
[77] 

Conf. 
proc. 2022 NL Yes Yes 

Contourin
g CT OAR 

Head and 
neck Supervised 33 5 

Separate 
set 25 

Separate 
set 

[internal + 
external] FD; Calib. Both OB 

Entropy-
based Quant. 

Sun 2022 
[78] 

Standard 
pub. 2022 USA No No 

Outcome 
related NA 

Dose+Cli
nical Lung 

Reinforcem
ent 67 

Unspecifi
ed 

Unspecifi
ed 67 Other 

FD; AL; 
Calib. 

Unspecifi
ed GP 

Variance-
based Quant. 

Wang 
2022 [79] 

Standard 
pub. 2022 USA No Yes 

Outcome 
related PET/CT 

Target+Cl
inical 

Head and 
neck Supervised 135 45 CV 45 

Cross 
validation FD Both 

TTA; 
Other 

Entropy-
based; 

Probabilit
y-based Quant. 

Yang 
2022 [80] 

Standard 
pub. 2022 China No No 

Dose 
prediction NA Dose Multiple* Supervised 

Unspecif
ied 

Unspecifi
ed 

Separate 
set 

Unspecifi
ed 

Separate 
set 

[internal + 
external] 

AL; 
Calib.; 

FD; 
OODD Both MCD 

Entropy-
based Quant. 

Zabiholla
hy 2022 

[81] 
Standard 

pub. 2022 USA No No 
Contourin

g MRI 
Target+O

AR Cervical Supervised 112 
Unspecifi

ed 
Separate 

set 13 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Variance-

based Qual. 

Cubero 
2023 [82] 

Conf. 
proc. 2023 Spain No No 

Contourin
g CT OAR 

Head and 
neck Supervised 40 

Unspecifi
ed CV 8 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Entropy-
based 

Quant. + 
Qual. 

DeBiase 
2023 [83] 

Standard 
pub. 2023 NL No No 

Contourin
g PET/CT Target 

Head and 
neck Supervised 113 37 CV 25 

Separate 
set 

[internal] FD 
Unspecifi

ed ENS 
Probabilit
y-based Quant. 

Ebadi 
2023 [84] 

Standard 
pub. 2023 USA Yes Yes 

Contourin
g CT Target Lung Supervised 438 

Unspecifi
ed CV 3 

Cross 
validation FD; Calib. 

Unspecifi
ed 

MCD; 
ENS 

Entropy-
based; 

Variance-
based 

Quant. + 
Qual. 

Galapon 
2023 [85] 

Standard 
pub. 2023 NL No No 

Image 
synthesis 

Multimod
al NA 

Head and 
neck 

Unsupervis
ed 71 10 

Separate 
set 20 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Variance-

based 
Quant. + 

Qual. 

Grewal 
2023 [86] 

Conf. 
proc. 2023 NL No Yes 

Contourin
g CT OAR Cervical Supervised 1108 

Unspecifi
ed CV 95 

Separate 
set 

[internal] AL Epistemic Other 
Entropy-
based Quant. 

Huttinga 
2023 [87] 

Standard 
pub. 2023 NL No No 

Motion 
tracking MRI K-space Cardiac* Supervised 1 

Unspecifi
ed 

Unspecifi
ed 1 Other FD 

Unspecifi
ed GP 

Probabilit
y-based Quant. 

Luan 
2023 [88] 

Standard 
pub. 2023 China Yes No 

Contourin
g CT OAR 

Head and 
neck Supervised 70 

Unspecifi
ed CV 68 

Separate 
set 

[multiple 
external] AL 

Unspecifi
ed DSO 

Probabilit
y-based 

Quant. + 
Qual. 

Min 2023 
[89] 

Standard 
pub. 2023 AU No No 

Contourin
g MRI Target Prostate Supervised 393 5 

Separate 
set 49 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Variance-

based 
Quant. + 

Qual. 

Outeiral 
2023 [90] 

Standard 
pub. 2023 NL No Yes 

Contourin
g MRI Target Multiple Supervised 181 

Unspecifi
ed 

Separate 
set 

Unspecifi
ed 

Separate 
set 

[internal] FD 
Unspecifi

ed DSO 
Probabilit
y-based 

Quant. + 
Qual. 

Sahlsten 
2023 [91] Preprint 2023 USA Yes No 

Contourin
g PET/CT Target 

Head and 
neck Supervised 224 45 CV 67 

Separate 
set 

[external] FD Both 
MCD; 
ENS 

Entropy-
based; 

Variance-
based 

Quant. + 
Qual. 

Smolders 
2023 [92] 

Standard 
pub. 2023 SUI No Yes 

Image 
registratio

n CT NA Multiple Mixed 50 10 
Separate 

set 10 

Separate 
set 

[multiple 
external] FD; Calib. 

Unspecifi
ed OB; Other 

Variance-
based 

Quant. + 
Qual. 

Tian 2023 
[93] 

Standard 
pub. 2023 Germany Yes No 

Image 
synthesis 

Multimod
al NA Pelvic Supervised 10 4 

Separate 
set 5 

Separate 
set 

[internal] FD 
Unspecifi

ed MCD 
Variance-

based Quant. 

DeBiase 
2024 [94] 

Standard 
pub. 2024 NL No No Multiple PET/CT 

Dose+Cli
nical+Tar
get+Prob

ability 
map 

Head and 
neck Supervised 168 

Unspecifi
ed CV 100 

Separate 
set 

[internal] FD; Calib. 
Unspecifi

ed ENS 
Probabilit
y-based Quant. 
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Li 2024 
[95] 

Standard 
pub. 2024 SUI No No Multiple 

Multimod
al Dose Brain 

Unsupervis
ed 64 8 CV 10 

Separate 
set 

[internal] FD 
Unspecifi

ed OB Other 
Quant. + 

Qual. 

Rusanov 
2024 [96] 

Standard 
pub. 2024 AU No No 

Image 
synthesis CT NA Prostate 

Unsupervis
ed 40 5 

Separate 
set 5 

Separate 
set 

[internal] FD; Calib. Both 
MCD; 
TTA 

Variance-
based 

Quant. + 
Qual. 

 
* Dataset specific notes. Nomura 2021 – phantom replicas derived from human head and neck patient data. Remy 2021 – volunteer 
data but with specific application to radiotherapy applications. Diao 2021 – utilized two disease sites (soft tissue sarcoma and 
lymphoma) but combined data into one dataset. Kajikawa 2021 – patients had primary diseases that were not cancer but application 
of study was specific to radiotherapy. Yang 2022 – primary study involved glioma, lung, and liver cancer patients, out-of-distribution 
experiments involved breast, cervical, esophageal, tongue, and lung cancer patients. Huttinga 2023 – in vivo studies using 
volunteers and a ventricular tachycardia patient who received radioablation.
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General Study Characteristics 
 
Twelve countries of origin were represented, with the majority of studies emanating from the 
United States (23%), China (20%), or Netherlands (20%) (Fig 1A, Fig 1B). Most studies were 
standard peer-reviewed publications (75%) (Fig 1A). The range of publication dates included in 
this study was 2015-2024, with most studies taking place in 2021, 2022, or 2023 (Fig 1C). The 
majority of studies did not publicly release data or code (55%), with only 32% releasing data, 
29% releasing code, and 16% releasing both data and code; relative code and data availability 
increased in 2021, 2022, and 2023 (Fig 1C).  
 

 
Figure 1. General study characteristics. (A) Stacked barplot showing total number of 
publications per country by publication type. (B) Heatmap of the number of studies by continent 
where green indicates a low number of publications and blue indicates a high number of 
publications; continents where no studies were extracted from are represented in white. (C) 
Stacked barplot showing code and data availability over time. Each item in the barplots 
corresponds to one study.  
 

Radiotherapy Characteristics  
 
Multiple disease sites were included: head and neck, prostate, brain, lung, cervical, liver, 
esophageal, pancreatic, cardiac, breast, pelvic. Most studies were applied to head and neck 
cancer patient populations (32%) (Fig 2A). Ten RT application domains were involved: 
contouring, image synthesis, outcome-related, motion tracking, dose planning, image 
registration, nodal classification, tumor growth modeling, image correction. Most applications 

A B

C
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were focused on contouring (50%) (Fig 2A). Most used medical imaging data in some capacity 
— 45% of studies utilized CT data (Fig 2B); only 9% did not utilize medical imaging. The 
majority of studies also utilized target structures (29%), OARs (21%), or both (11%) as input 
data in their algorithms (Fig 2B); only 13% of included studies used RT dose in their algorithms.  
 

 
Figure 2. Radiotherapy characteristics. (A) Stacked barplot showing cancer disease site per 
each radiotherapy application domain. “Other” category for cancer type included cervical, liver, 
esophageal, pancreatic, cardiac, breast, pelvic. “Other” category for radiotherapy application 
included nodal classification, tumor growth modeling, and image correction. (B) Stacked barplot 
showing additional data per each imaging modality represented. “Other” category for additional 
data included registration transforms, respiratory trace, K-space, fiducial, clinical data, 
target+clinical data, dose+clinical data, and dose+clinical data+target+probability map. Each 
item in the barplots correspond to one study.  
 

AI Characteristics 
 
The vast majority of the studies (88%) used labeled data for model training, i.e., supervised 
learning. Median (interquartile range) patient sample sizes were 63 (145.25), 10 (31.5), and 25 
(46) for training, validation, and test datasets (Fig 3A). Most studies used a separate dataset for 
model validation (40%) compared to cross-validation approaches (30%), while 30% did not 
mention their validation methods. Most studies used a separate test set composed of internal, 
i.e., single source data (55%); only 7% of studies used multiple external validation datasets for 
testing (Fig 3B).  
 

A B
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Figure 3. Artificial intelligence characteristics. (A) Scatter plot showing number of training, 
validation, and testing patients used in studies. Only studies that explicitly reported patient-level 
sample sizes are included. The three studies with the highest sample sizes in each category are 
annotated. (B) Bar plot showing types of testing strategies used in studies. Each item in the 
barplot corresponds to one study. 
 

Uncertainty Quantification Characteristics 
 
Most studies investigated failure detection applications (60% of reported applications) followed 
by calibration (19%) and active learning (18%), with only a few studies investigating ambiguity 
modeling or out-of-distribution detection (Fig 4A). The majority of studies used MC Dropout 
(32% of reported methods), followed by ensembles (16%) and other methods (16%), with a 
smaller number of studies using other Bayesian methods, direct softmax outputs, test-time 
augmentation, gaussian processes, Platt scaling, conformal predictions, and evidential deep 
learning (Fig 4B). In terms of calculated uncertainty metrics, most studies reported using 
variance-based methods (34% of reported metrics) and entropy-based metrics (27%), followed 
by other self-defined metrics (23%), with the smallest number reporting probability based 
metrics (16%) (Fig 4C). Most studies did not explicitly report if they investigated aleatoric or 
epistemic uncertainty (77% of studies) and used a combination of quantitative and qualitative 
experiments for investigating uncertainty (52%).  
 

Lee 2015
Li 2022

Karimi 2019
Chen 2020

Lin 2022Gustafsson 2020

Grewal 2023

Karimi 2019
Chen 2020

A B
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Figure 4. Uncertainty quantification characteristics. (A) Tree map of uncertainty quantification 
applications represented in the studies. (B) Tree map of uncertainty quantification methods 
represented in the studies. (C) Tree map of uncertainty quantification metrics represented in the 
studies. Each item in the tree maps correspond to a reported item (could be multiple per study).  
 

Study Overlap with Previous Reviews  
 

A

B

C
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Five systematic/scoping review papers related to UQ in medicine were selected for the overlap 
comparison. Only six studies investigated in these review papers overlapped with our 56 
extracted manuscripts (Table 2).  
 
Table 2. Study overlap with previous systematic and scoping reviews. Papers contained in 
previous systematic/scoping reviews related to uncertainty quantification in medicine were 
compared with papers extracted for our scoping review. Only final papers that were used for 
data extraction were compared.    

Review Paper  Overlapping 
Citations/Total 
Citations (%) 

Specific Overlapping 
Manuscript(s) 

Zou et al. (2023) [32] 3/56 (5%) Jungo et al. (2018) [44], Jungo et al. 
(2018) [45], Bragman et al. (2018) 
[43] 

Kurz et al. (2022) [33] 0/22 (0%) None 

Lambert et al. (2024) [34]  4/217 (2%) Jungo et al. (2018) [44], Jungo et al. 
(2018) [45], Balagopal et al. (2021) 
[58], Mei et al. (2021) [64] 

Loftus et al. (2022) [31] 0/30 (0%) None 

Seoni et al. (2023) [25] 2/144 (1%) Jungo et al. (2018) [45], Lipkova et 
al. (2019) [50] 

 
 

Discussion  
 
The field of RT is increasingly incorporating AI into its various workflows. Although AI UQ is 
well-established in computer science, its adaptation to medicine and RT is still in its early 
stages. Incorporating UQ in AI models used in RT workflows has the potential to increase 
clinician confidence, helping bridge the translational gap between single institutional model 
development to multi-institutional clinical implementation. Our scoping review is a pioneering 
effort to systematically examine the application of UQ concepts within RT. 
 
We identified several trends in UQ research in RT, likely driven by technical innovations within 
the broader AI research community. Mirroring practices from computer science [38], a 
considerable number of manuscripts were conference proceedings rather than traditional 
publications. Notably, we found a predominant contribution of studies from the European Union 
(EU). Given stringent EU data protection laws — such as The General Data Protection 
Regulation (GDPR) which poses challenges for secondary data use in research [97] — this 
raises considerations for how practitioners of UQ in RT should value data sharing. There exists 
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a known tension between open science principles and protecting patient privacy. Although code 
and data availability have become standard in AI-related research, medical applications lag in 
this regard [98–100]. Our analysis revealed a gradual increase in code and data availability over 
time, reflecting a slowly evolving open science ethos in the RT community [21]. Notably, the 
National Institutes of Health (NIH) new Data Management and Sharing policy, effective January 
2023, mandates broader data sharing for NIH-supported research [101], aligning with these 
open science principles. In light of these findings, we advocate for the publication of code and 
anonymized data in AI UQ research in RT wherever feasible to enhance reproducibility. When 
code or data sharing is not possible, future work should encourage privacy-preserving 
methodologies, like federated learning [102], as viable alternatives to conventional data sharing 
practices. 
 
The extracted manuscripts covered various RT application spaces and disease sites. Auto-
contouring was the most common application, aligning with its prevalence in AI-based RT 
[11,103,104]. Many studies focused on head and neck cancer, likely due to the complexity of 
this disease site, which requires precise delineation of numerous organs at risk (OARs) and 
challenging tumor-related target structures [105]. Most auto-contouring studies investigated 
OARs on CT imaging. Target structures were often generated with imaging modalities beyond 
CT, such as MRI for enhanced soft tissue contrast or PET for metabolic activity incorporation, 
matching physician practice patterns [106]. The variability observed in OARs and target 
structures can be characterized as aleatoric uncertainty driven by physician judgment 
[104,107,108]. Interestingly, Karimi et al. [49] showed that reducing aleatoric uncertainty may 
not be as critical as ensuring large training set sizes, at least in their specific prostate cancer 
target use-case. This finding suggests that, for institutional model training and fine-tuning, 
focusing on expanding dataset size could be more impactful than minimizing underlying contour 
variability (i.e., addressing factors associated with epistemic uncertainty). Of note, it has recently 
been suggested that RT auto-contouring performance is saturating [109], driving the need for 
research into additional research spaces such as UQ. Future research may benefit from 
exploring UQ techniques specifically tailored to address aleatoric uncertainty in auto-contouring 
models, considering the differences in variability between OARs and target structures. 
 
A distinct facet in RT workflows compared to other oncologic research areas is the presence of 
multidimensional and complex dosimetric treatment data. DL-based dose prediction is emerging 
as a promising alternative to traditional knowledge-based planning approaches, offering the 
potential for improved accuracy, reliability, and efficiency in patient-specific plan optimization 
[110]. The uncertainty in DL-based dose prediction models could be critical, as it could 
determine when model-generated plans should be directly accepted, or if manual interventions 
from physicians and physicists are required to improve plan quality [80]. Surprisingly, in our 
review there were relatively few manuscripts directly investigating model UQ in dose prediction 
applications [56,65,72,80,95]. This scarcity is mirrored in outcome prediction research, where 
only a few studies explored dose-related toxicities [42,70,72,78], as opposed to broader 
oncologic outcomes like survival. Naturally, a major challenge in outcome-related research 
stems from the limited availability of training samples. Compared with studies that leverage 
granular inputs (e.g., multiple image slices representing one patient), dose-related toxicity 
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outcomes often can only be represented at the patient level, which may explain the relative 
scarcity of literature.  
 
Consistent with similar medical domains reliant on imaging [111], the majority of studies in our 
review employed supervised learning techniques, which involve training models on labeled data 
to make predictions based on new, unseen data. A minority of studies explored unsupervised 
learning approaches [43,57,75,85,95,96] where models learn patterns and relationships from 
data without explicit labels. In our review, these unsupervised methods were particularly useful 
for image synthesis tasks. Only one study utilized reinforcement learning [78], a technique 
where an agent learns to make decisions based on rewards and punishments. Regardless of 
the ML technique employed, training dataset sizes were generally small, with the three largest 
patient cohorts corresponding to auto-contouring studies (520-1108 patients) [49,51,86]. ML 
models often struggle with small sample sizes, especially when considering complex, 
multidimensional data like medical images, where models must learn intricate generalizable 
spatial relationships. As previously noted, this challenge is intensified when prediction outputs 
are restricted to broad patient-level information, such as toxicity or prognosis, with each patient 
representing a single data point. Notably, tasks that utilize more granular training information, 
like auto-contouring or image synthesis, can effectively utilize the numerous data points within 
each image, allowing these models to achieve reasonable performance despite the limited 
number of patients [109,112,113]. However, given these relatively small patient sample sizes, it 
is likely that intrinsic epistemic uncertainty would be high. Subsequently, carefully designed UQ 
may help identify patients for whom the model's predictions are more reliable. Finally, despite 
the importance of using diverse and heterogeneous data for uncertainty experiments, 
particularly for determining how well models handle new and unknown data scenarios [22], only 
a handful of studies attempted to utilize multiple external test datasets [48,57,88,92]. 
Interestingly, this was in stark contrast to a previous scoping review on AI UQ in a broader 
medical context which identified a predominance of external dataset testing [31].  
  
Ideally, UQ methods should be validated across a broad spectrum of downstream uncertainty 
tasks [22]. However, in our review only the study by Yang et al. [80] explored a comprehensive 
approach. Focusing on RT dose delivery, they evaluated several UQ applications such as active 
learning, calibration, failure detection, and out-of-distribution detection. Most other studies 
focused on singular UQ applications, with failure detection being the most common. In these 
studies, UQ is used as a quality assurance tool, such as flagging contours below a pre-defined 
quality threshold. Interestingly, model calibration, which attempts to ensure that predicted 
probabilities align with observed outcomes, appears somewhat underexplored in the reviewed 
studies, despite its historical importance in uncertainty discussions [27]. This oversight might 
stem from an inherent assumption that some UQ model outputs are already calibrated [28], 
which may not always hold true [29]. A minority of studies also used uncertainty in active 
learning frameworks, where the model selects the most informative data points for labeling 
based on their uncertainty, to improve model training. Ambiguity modeling and out-of-distribution 
detection were vastly underrepresented, with only one study each (Li et al. [71], and Yang et al. 
[80], respectively) investigating these areas.  
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In line with previous review literature [31,33], Monte Carlo dropout was the most frequently used 
UQ method in our scoping review. Monte Carlo dropout has gained widespread acceptance for 
its simplicity and effectiveness as a scalable approach to approximate Bayesian inference. 
Notably, Monte Carlo dropout, and other common methods such as ensembles often yield 
comparable results [114], so the superiority of specific methods is unclear and likely context-
specific. In terms of uncertainty metrics, the majority of the reviewed studies favored variance-
based or entropy-based metrics, aligning with their established prevalence in the literature 
[31,33]. There appears to be a noticeable gap in the adoption of newer, innovative approaches. 
For instance, only one study in our review, conducted by Dohopolski et al. on head and neck 
cancer outcome prediction [70], explored newer methods like evidential deep learning and 
statistically rigorous approaches like conformal prediction. Moreover, while qualitative analyses 
through heatmap visualizations were common in our extracted studies, it has been argued that 
conventional methods (e.g., Monte Carlo dropout, ensembles) fall short in providing spatially-
correlated pixel-wise estimates [115], which may ultimately limit their clinical utility and 
incentivize the development of alternative approaches.  
 
Historically, the AI UQ research community has placed significant emphasis on distinguishing 
between aleatoric and epistemic uncertainty. However, recent literature suggests that the ability 
to differentiate aleatoric from epistemic uncertainty using popular contemporary UQ techniques 
may not be as clear-cut as previously thought [116]. Our review revealed that the majority of 
studies surveyed did not explicitly identify whether their models captured aleatoric or epistemic 
uncertainty. This observation suggests that, at least within the RT community, the distinction 
between these types of uncertainty may not be deemed critical enough to warrant specific 
mention. Moreover, the practical significance of distinguishing between epistemic and aleatoric 
uncertainty may vary depending on the study's objectives; for instance, if the primary goal is to 
quickly flag errors for broader human oversight (e.g., failure detection), a detailed separation of 
these uncertainty types might not be crucial. 
 
Although a principal motivation behind UQ in medical AI is often believed to be the 
enhancement of clinician trust [5], none of the studies we reviewed explicitly investigated the 
influence of UQ estimates on end-user trust or decision making. This is particularly interesting 
given that most studies dealt with failure detection applications which would necessitate a 
secondary review by a clinician. Literature within diagnostic imaging applications has 
demonstrated that the presentation of differential outputs from an AI algorithm can impact user 
performance, confidence, and reliance to varying degrees [117,118]. Examining how UQ 
influences clinician trust and decision-making in RT through targeted human-machine 
interaction experiments could further elucidate the real-world impact of these tools, suggesting a 
vital direction for future research.  
 
To further emphasize the novelty and need of our study, we investigated the intersection 
between the publications we reported on and those already cited across existing related 
systematic and scoping review papers. Importantly, our examination revealed just six instances 
of citation overlap across five distinct review papers, highlighting the originality of our research 
and a significant gap within the current academic discourse.  
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Our study, while striving for a structured and comprehensive overview of existing literature, has 
some limitations. Firstly, the landscape of available studies was largely limited to those indexed 
in the queried databases, although we supplemented our search with hand-selected literature to 
ensure broader coverage. Secondly, the emergent field of AI UQ presents challenges in 
applying traditional study quality assessment guidelines, as tailored guidelines are not yet 
available. However, we have taken inspiration from existing reporting guidelines, such as 
TRIPOD [39] and CLAIM [40], to extract relevant modeling information for our review. 
Furthermore, we have incorporated aspects of the newly proposed ValUES framework which 
aims to provide a systematic approach to validating uncertainty estimation in semantic 
segmentation [22], adapting its principles to enrich our review process. 
 
Finally, an important facet of UQ that we have not considered, but should be the focus of future 
work is related to model bias. Notably, UQ is often part of broader discussions related to AI 
explainability, which is often more directly related to identifying and addressing bias. Although 
explainability and bias in medical AI has garnered significant attention [119], investigation of 
these topics in RT remains limited [17]. Moreover, while a recent small-scale study indicated 
that geographic biases in RT auto-contouring models are minimal [120], the necessary broader 
investigations across various applications have yet to be conducted. The potential for 
perpetuating biases and inequalities escalates when AI models function as “black boxes” with 
obscured decision-making processes [121]. UQ, potentially in combination with other 
explainability methods, could ultimately allow for improved bias detection and mitigation [6].  
 

Conclusions 
 
The escalating use of UQ for RT applications signifies a key shift towards potentially more 
clinically impactful AI tools. Our scoping review uncovered a broad spectrum of RT applications 
and disease sites that have benefited from UQ. However, we observed a concentration of 
efforts in specific areas, such as auto-contouring, while crucial domains like dose and outcome 
prediction were underrepresented. Moreover, although established techniques like Monte Carlo 
dropout and ensembles were frequently used for failure detection applications, the exploration 
of alternative methods, such as conformal predictions, was limited. Notably, the majority of 
studies lacked code and dataset sharing suggesting a need for improved transparency and 
reproducibility in AI UQ research for RT. Additionally, the absence of standardized guidelines for 
implementing and reporting AI UQ in RT highlights a crucial area for future research. 
Addressing these gaps by broadening UQ applications, fostering model transparency, and 
developing comprehensive guidelines could significantly advance UQ in RT research.  
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Appendix A: Additional Figures 
 

 
Figure A1. Illustrative examples of aleatoric and epistemic uncertainty concepts. (A) Left: A 
computed tomography image of an oropharyngeal cancer patient, overlaid with a probability 
map of interobserver agreement, illustrates aleatoric uncertainty in segmentation. Example data 
derived from expert contours from the Contouring Collaborative in Radiation Oncology (doi: 
10.1038/s41597-023-02062-w). Right: A hypothetical tumor contouring model trained using 
oropharyngeal cancer cases would yield high epistemic uncertainty when presented with a 
parotid tumor case as a byproduct of insufficient training data. The combination of aleatoric and 
epistemic uncertainties contributes to the total predictive uncertainty. (B) A scatterplot of 
hypothetical variables x and y demonstrates high aleatoric uncertainty in regions with noisy data 
points and high epistemic uncertainty in regions with sparse data points.  
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Figure A2. Study overview. This scoping review aims to comprehensively evaluate the literature 
on artificial intelligence models designed to quantify model uncertainty, specifically within the 
context of radiotherapy applications such as image acquisition, contouring, dose prediction, and 
outcome prediction, among others. 
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Figure A3. Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram 
illustrating systematic screening of identified studies. Ultimately, 56 studies out of the initially 
identified 8980 were included for the final analysis.  
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Appendix B: Additional information on manuscript screening and 
data extraction  
 

Additional manuscript screening details 
 
Two rounds of screening were performed by all reviewers which took into account all the 
inclusion criteria listed below. The initial screening (first round) was intended as a quick filtering 
process based on titles and abstracts to reduce the number of manuscripts into a workable size 
for eventual full-text screening (second round). Two reviewers (K.A.W. and Z.Y.K.) performed 
the screening process through Covidence which allows for rapid categorization of articles into 
inclusion/exclusion piles. Any disagreements were automatically flagged for additional review. 
Flagged cases underwent further scrutiny via virtual video meetings, where the two initial 
reviewers were joined by an independent, senior third reviewer (M.J.D.) to meticulously evaluate 
the contentious manuscripts. This collaborative review culminated in a final vote to decide 
whether the article merited inclusion. This process was repeated both for initial screening and 
full-text screening.  
 
Population, concept, context (PCC) criteria for study inclusion: 

1. Population -  Human patients undergoing radiotherapy for cancer treatment. The study 
should explicitly mention that human patients that were actively undergoing 
radiotherapy, had plans to undergo radiotherapy, or had already completed radiotherapy 
were the subjects from which data were derived from. Studies using only preclinical 
samples (e.g., cell line, animal model, phantom studies, synthetic data) were excluded 
even if results could eventually be extrapolated to human patients. In rare circumstances 
where human and preclinical data was combined (e.g., mixed human data and phantom 
data), these studies were included. Moreover, in rare circumstances data derived from 
non-cancer patients were included only if directly applicable for radiotherapy specific 
indications (e.g., radioablation treatment of arrhythmia).  

2. Concept -  Utilization of artificial intelligence and uncertainty quantification. The study 
should explicitly mention that the underlying modeling technique is related to artificial 
intelligence or machine learning (e.g., deep learning related or more traditional 
methods), and must provide a method to quantify the uncertainty or confidence of the 
underlying model. Ideally, studies should explicitly list training and testing sample sizes, 
but this was not a strict requirement, particularly for older studies where this stratification 
was not yet standard. Studies only investigating underlying uncertainties of a 
radiotherapy related process (e.g., proton range uncertainty, segmentation interobserver 
variability, etc.) without any indication of a method to quantify predictive model 
uncertainty were not included.  

3. Context - Radiotherapy applications. The study should explicitly mention that 
radiotherapy is the target application domain of the study or belong to a predefined list of 
radiotherapy applications recognized by the authors (image synthesis, image 
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registration, contouring, dose prediction, outcome prediction). Studies in other related 
but distinct medical application domains (e.g., diagnostic radiology, interventional 
radiology, surgical oncology, medical oncology) were excluded unless the study 
investigated multiple applications within the same paper (e.g., diagnostic radiology 
applications AND radiotherapy-related applications).  

Additional criteria for study inclusion: 
1. Full text must be accessible to screeners. Conference abstracts must be linked to a full 

text (e.g., conference proceeding) or were excluded from the search.  
2. Full text must be available in written English, so that it could be appropriately evaluated 

by all screeners.  
 

Additional data extraction details 
 
Two human extractors worked in parallel to manually extract data from the final manuscripts. 
Specific extraction items are detailed below. These items were initially presented as a 
Covidence template that was used in the data extraction process and then refined if needed to 
fit into categorical values. All extractions were cross-checked by both reviewers (K.A.W., Z.Y.K.) 
and a final third reviewer (M.J.D.) when disagreements were found. Extracted data was 
transformed into machine readable format after initial collection based on agreement between 
reviewers using a version-controlled online Google Sheets document. 
 
General Study Characteristics   

1. Manuscript type - If the manuscript is a standard publication (i.e., published in a peer-
reviewed journal), a conference proceeding (could be peer-reviewed or not), or a 
preprint. Articles extracted from preprint servers (e.g., arXiv) would be considered 
conference proceedings if explicitly indicated in the uploaded document (e.g., this paper 
has been accepted to X conference) and/or a corresponding entry was found on the 
conference website.  

2. Publication year - Year of manuscript upload (in case of preprint) or year of publication 
as reported by publisher (in case of standard publication or conference proceeding).  

3. Geographic location of the study authors - Which country the authors were from as 
determined from author affiliation information. If not all authors were from the same 
country, the following hierarchy was used. 1. Country where the majority of authors were 
from, 2. In the unlikely event of a tie, the country of the corresponding author was 
reported.  

4. Code/data availability - If code and/or data were made publicly available. Relevant 
datasets DOIs and GitHub URLs were collected and reported where applicable.  

 
RT Characteristics   

1. Radiotherapy application space - What specific end use the manuscript is developing an 
artificial intelligence model for? Initially was collected with a free text option but was 
condensed into a categorical variable with the following possible values: dose planning, 
image correction, image registration, image synthesis, motion tracking, nodal 
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classification, outcome related, contouring.  
2. Specific data types used - What input data is being used for the artificial intelligence 

models? Initially was collected with a free text option but was condensed into two 
categorical variables with the following possible values:  

a. Image data: CT, MRI, Multimodal, PET/CT, ultrasound, NA (i.e., none).  
b. Additional data: Clinical, dose, dose+clinical, dose+clinical+target+probablity 

map, fiducial, K-space, organ at risk, registration transforms, respiratory trace, 
target, target+clinical, target + organ at risk, NA (i.e., none)  

3. Cancer type of patients in the study - What were the underlying diagnoses of the 
patients used in the study? Initially was collected with a free text option but was 
condensed into a categorical variable with the following possible values: brain, breast, 
cardiac, cervical, esophageal, head and neck, liver, lung, multiple, pancreatic, pelvic, 
prostate.  

 
AI Characteristics  

1. Algorithmic approach - What type of underlying algorithm was used in the study? Initially 
was collected with a free text option but was condensed into a separate free-text 
variable and a categorical variable with the following possible values: 

a. Machine learning type: Which overarching domain of machine learning the 
algorithm is categorized as: supervised, unsupervised, reinforcement, or mixed.  

2. Training/validation/testing sample sizes - Specific numbers of training, validation, and 
testing datapoints used in the study. Data is extracted at most granular level (e.g., some 
algorithms use axial slices or images as input) and at the patient level. Could be NA if 
this information was not reported in the manuscript. We chose to focus on patient level 
data for reported data in our review since it was more clinically relevant and easier to 
compare between studies.  

3. Characteristics of the validation/testing sets - How authors utilized validation and testing 
sets. Best practices often require separate hold-out sets but this may not always be 
feasible given dataset constraints. Initially was collected with a free text option but was 
condensed into two categorical variables with the following possible values: 

a. Validation type: Cross-validation, not specified, separate set. 
b. Testing type: Bootstrap, cross-validation, separate set [external], separate set 

[internal + external], separate set [internal], separate set [multiple external], other.  
 
Uncertainty Quantification Characteristics 

1. Uncertainty application category - What is the general use-case of the uncertainty 
methodology applied? Categories were adapted from existing literature (Kahl et al., [doi: 
10.48550/arXiv.2401.08501], Lambert et al. [doi: 10.48550/arXiv.2210.03736]). Studies 
could investigate multiple applications simultaneously. The following specific categories 
were utilized:  

a. Active learning: Utilization of uncertainty estimates for improving the model 
training process.  

b. Ambiguity modeling: Comparison of model uncertainty estimates to a ground 
truth measure of uncertainty. For example, in segmentation, this could refer to 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2024. ; https://doi.org/10.1101/2024.05.13.24307226doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24307226
http://creativecommons.org/licenses/by/4.0/


 

37 

computing the normalized cross-correlation or the generalized energy distance 
between the pixel-wise model measures and pixel-wise ground truth probability 
measures.  

c. Calibration: Measurement of agreement between model estimated probabilities 
and true underlying data distribution probabilities. Popular methods of measuring 
calibration would include the Expected Calibration Error and the Brier score.  

d. Failure detection: Utilize numerical model uncertainty to determine which cases 
should be flagged for further inspection. For example, in a segmentation 
framework the uncertainty estimate could be correlated to a geometric value 
(e.g., DSC) and subsequently binarized to classify samples below and above an 
expected correlated geometric value. Related to Misclassification Detection 
Protocol and Rejection Protocol in Lambert et al. (doi: 
10.48550/arXiv.2210.03736).  

e. Out-of-distribution detection: Conceptually similar to failure detection in that an 
uncertainty measure is used to flag cases. Typically requires a priori identification 
of in-distribution and out-of-distribution properties for samples (e.g., normal and 
abnormal images). Typically requires multiple external (out-of-distribution) 
datasets to implement.  

2. Type of uncertainty quantification method used - Specific approach to calculate model 
uncertainty. Initially was collected with a free text option but was condensed into a single 
categorical variable. Studies could investigate multiple applications simultaneously. The 
following specific categories were utilized: Monte Carlo Dropout, Ensembles, Direct 
Softmax Output, Gaussian Process, Test-time Augmentation, Conformal Predictions, 
Evidential Deep Learning, Other Bayesian (an explicitly defined Bayesian approach that 
did not fall into a previous category), Other (bespoke approach developed in a specific 
paper that did not fall into a previous category).  

3. Metrics used for UQ experiments - Any numerical indicators used in the computation of 
model uncertainty. Initially was collected with a free text option but was condensed into a 
single categorical variable. Studies could utilize multiple metrics simultaneously. The 
following specific categories were utilized: Entropy-based, Variance-based, Other 
(bespoke approach developed in a specific paper).  

4. Self-described uncertainty type studied - Whether the study explicitly mentioned they 
were investigated epistemic and/or aleatoric uncertainty. Possible values of epistemic, 
aleatoric, both, or unspecified. Only explicit mentions of these terms (or related terms 
homoscedastic uncertainty and heteroscedastic uncertainty) in the manuscript were 
considered, otherwise this variable was labeled as unspecified (i.e., no inference about 
methods was performed on our part).  

5. Utilization of quantitative and/or qualitative methods - Whether a uncertainty was 
presented in a quantitative and/or qualitative manner. Examples of qualitative 
experiments would include visualizing heatmap pixel-wise representations of model 
uncertainty in a segmentation problem.   
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Appendix C: Additional information on database search criteria  
 

Ovid MEDLINE (R) ALL 1946 to November 17, 2023 
# Searches Results 
1 exp Artificial Intelligence/ 183179 
2 ((artificial or machine or deep) adj (learning or intelligence)).ti,ab. 150066 
3 ("neural net*" or "support vector" or "decision tree" or "random forest" or 

"gradient boost*" or bagging or ensemble or radiom*).ti,ab. 
198847 

4 or/1-3 [AI] 370737 
5 Uncertainty/ 18287 
6 (uncertain* or aleatoric or epistemic or "monte carlo*" or dropout or Bayes* 

or "conformal prediction" or "variational inference" or "temperature scaling" 
or platt or entropy).ti,ab. 

400538 

7 or/5-6 [Uncertainty] 404310 
8 4 and 7 [AI + Uncertainty] 24799 
9 exp Radiotherapy/ 208974 
10 exp Radiotherapy Planning, Computer-Assisted/ 25613 
11 exp Radiation Oncology/ 5869 
12 (radiotherap* or "radio-therap*" or irradiat* or radiat* or chemoradi* or 

radiochemo* or "chemo-radi*" or "radio-chemo*" or "intensity modulated" 
or IMRT or EBRT or photon* or proton* or radiosurgery or "radio-surgery" 
or brachytherapy or "brachy-therapy").ti,ab. 

1086055 

13 or/9-12 [Radiotherapy] 1129582 
14 8 and 13 [AI + Uncertainty + Radiotherapy] 1084 

 

Ovid Embase Classic+Embase 1947 to 2023 November 17 
# Searches Results 
1 exp Artificial Intelligence/ 89799 
2 ((artificial or machine or deep) adj (learning or intelligence)).ti,ab. 176472 
3 ("neural net*" or "support vector" or "decision tree" or "random forest" or 

"gradient boost*" or bagging or ensemble or radiom*).ti,ab. 
234393 

4 or/1-3 [AI] 385870 
5 Uncertainty/ 50932 
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6 (uncertain* or aleatoric or epistemic or "monte carlo*" or dropout or Bayes* 
or "conformal prediction" or "variational inference" or "temperature scaling" 
or platt or entropy).ti,ab. 

483767 

7 or/5-6 [Uncertainty] 489765 
8 4 and 7 [AI + Uncertainty] 27219 
9 exp Radiotherapy/ 736137 
10 Radiation Oncology/ 7613 
11 (radiotherap* or "radio-therap*" or irradiat* or radiat* or chemoradi* or 

radiochemo* or "chemo-radi*" or "radio-chemo*" or "intensity modulated" 
or IMRT or EBRT or photon* or proton* or radiosurgery or "radio-surgery" 
or brachytherapy or "brachy-therapy").ti,ab. 

1462005 

12 or/9-11 [Radiotherapy] 1652692 
13 8 and 12 [AI + Uncertainty + Radiotherapy] 1708 

 

  

PubMed (NLM) 
(("artificial intelligence"[MeSH Terms] OR "artificial learning"[Title/Abstract] OR "artificial 
intelligence"[Title/Abstract] OR "machine learning"[Title/Abstract] OR "machine 
intelligence"[Title/Abstract] OR "deep learning"[Title/Abstract] OR "deep 
intelligence"[Title/Abstract] OR "neural net*"[Title/Abstract] OR "support 
vector"[Title/Abstract] OR "decision tree"[Title/Abstract] OR "random forest"[Title/Abstract] 
OR "gradient boost*"[Title/Abstract] OR "bagging"[Title/Abstract] OR 
"ensemble"[Title/Abstract] OR "radiom*"[Title/Abstract]) 
  

AND 
  

("uncertainty"[MeSH Terms] OR "uncertain*"[Title/Abstract] OR "aleatoric"[Title/Abstract] OR 
"epistemic"[Title/Abstract] OR "monte carlo*"[Title/Abstract] OR "dropout"[Title/Abstract] OR 
"bayes*"[Title/Abstract] OR "conformal prediction"[Title/Abstract] OR "variational 
inference"[Title/Abstract] OR "temperature scaling"[Title/Abstract] OR "platt"[Title/Abstract] 
OR "entropy"[Title/Abstract]) 
  

AND 
  

("radiotherapy"[MeSH Terms] OR "radiotherapy planning, computer assisted"[MeSH Terms] 
OR "radiation oncology"[MeSH Terms] OR "radiotherap*"[Title/Abstract] OR "radio 
therap*"[Title/Abstract] OR "irradiat*"[Title/Abstract] OR "radiat*"[Title/Abstract] OR 
"chemoradi*"[Title/Abstract] OR "radiochemo*"[Title/Abstract] OR "chemo 
radi*"[Title/Abstract] OR "radio chemo*"[Title/Abstract] OR "intensity 
modulated"[Title/Abstract] OR "IMRT"[Title/Abstract] OR "EBRT"[Title/Abstract] OR 
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"photon*"[Title/Abstract] OR "proton*"[Title/Abstract] OR "radiosurgery"[Title/Abstract] OR 
"radio-surgery"[Title/Abstract] OR "brachytherapy"[Title/Abstract] OR "brachy-
therapy"[Title/Abstract]))    Results = 1154 
 

Cochrane Library (Wiley) 
ID Search Results 
#1 MeSH descriptor: [Artificial Intelligence] explode all trees 2958 
#2 ("artificial learning" or "artificial intelligence" or "machine learning" or 

"machine intelligence" or "deep learning" or "deep intelligence" or 
"support vector" or "decision tree" or "random forest" or bagging or 
ensemble or radiom*):ti,ab or ((neural NEXT net*) or (gradient NEXT 
boost*)):ti,ab 

7392 

#3 {or #1-#2} 8923 
#4 MeSH descriptor: [Uncertainty] explode all trees 421 
#5 (uncertain* or aleatoric or epistemic or dropout or Bayes* or 

"conformal prediction" or "variational inference" or "temperature 
scaling" or platt or entropy):ti,ab or (monte NEXT carlo*):ti,ab 

28181 

#6 {or #4-#5} 28249 
#7 #3 and #6 609 
#8 MeSH descriptor: [Radiotherapy] explode all trees 10381 
#9 MeSH descriptor: [Radiotherapy Planning, Computer-Assisted] 

explode all trees 
467 

#10 MeSH descriptor: [Radiation Oncology] explode all trees 82 
#11 (radiotherap* or irradiat* or radiat* or chemoradi* or radiochemo* or 

"intensity modulated" or IMRT or EBRT or photon* or proton* or 
radiosurgery or "radio-surgery" or brachytherapy or "brachy-
therapy"):ti,ab or (((radio NEXT therap*) or (radio NEXT chemo*) or 
(chemo NEXT radi*))):ti,ab 

63161 

#12 {or #8-#11} 64059 
#13 #7 and #12 42 

 

Web of Science Core Collection (Clarivate) 
Entitlements: WOS.IC: 1993 to 2023; WOS.CCR: 1985 to 2023; WOS.SCI: 1900 to 2023; 
WOS.AHCI: 1975 to 2023; WOS.BHCI: 2005 to 2023; WOS.BSCI: 2005 to 2023; WOS.ESCI: 
2005 to 2023; WOS.ISTP: 1990 to 2023; WOS.SSCI: 1900 to 2023; WOS.ISSHP: 1990 to 2023 
 

ID Search Results 
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#1 TI=((artificial or machine or deep) NEAR/1 (learning or intelligence)) 
OR AB=((artificial or machine or deep) NEAR/1 (learning or 
intelligence)) 

560769 

#2 TI=("neural net*" OR "neural net*" or "support vector" or "decision 
tree" or "random forest" or "gradient boost*" or bagging or ensemble 
or radiom*) OR AB=("neural net*" or "support vector" or "decision 
tree" or "random forest" or "gradient boost*" or bagging or ensemble 
or radiom*) 

988580 

#3 #2 OR #1 1344163 
#4 TI=(uncertain* or aleatoric or epistemic or "monte carlo*" or dropout 

or Bayes* or "conformal prediction" or "variational inference" or 
"temperature scaling" or platt or entropy) OR AB=(uncertain* or 
aleatoric or epistemic or "monte carlo*" or dropout or Bayes* or 
"conformal prediction" or "variational inference" or "temperature 
scaling" or platt or entropy) 

1533339 

#5 TI=(radiotherap* or "radio-therap*" or irradiat* or radiat* or 
chemoradi* or radiochemo* or "chemo-radi*" or "radio-chemo*" or 
"intensity modulated" or IMRT or EBRT or photon* or proton* or 
radiosurgery or "radio-surgery" or brachytherapy or "brachy-therapy") 
OR AB=(radiotherap* or "radio-therap*" or irradiat* or radiat* or 
chemoradi* or radiochemo* or "chemo-radi*" or "radio-chemo*" or 
"intensity modulated" or IMRT or EBRT or photon* or proton* or 
radiosurgery or "radio-surgery" or brachytherapy or "brachy-therapy") 

2578649 

#6 #3 AND #4 AND #5 4358 
  

 

Web of Science Preprint Citation Index (Clarivate) 
ID Search Results 

#1 TI=((artificial or machine or deep) NEAR/1 (learning or intelligence)) 
OR AB=((artificial or machine or deep) NEAR/1 (learning or 
intelligence)) 

79524 

#2 TI=("neural net*" OR "neural net*" or "support vector" or "decision 
tree" or "random forest" or "gradient boost*" or bagging or ensemble 
or radiom*) OR AB=("neural net*" or "support vector" or "decision 
tree" or "random forest" or "gradient boost*" or bagging or ensemble 
or radiom*) 

99437 

#3 #2 OR #1 153713 
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#4 TI=(uncertain* or aleatoric or epistemic or "monte carlo*" or dropout 
or Bayes* or "conformal prediction" or "variational inference" or 
"temperature scaling" or platt or entropy) OR AB=(uncertain* or 
aleatoric or epistemic or "monte carlo*" or dropout or Bayes* or 
"conformal prediction" or "variational inference" or "temperature 
scaling" or platt or entropy) 

147982 

#5 TI=(radiotherap* or "radio-therap*" or irradiat* or radiat* or 
chemoradi* or radiochemo* or "chemo-radi*" or "radio-chemo*" or 
"intensity modulated" or IMRT or EBRT or photon* or proton* or 
radiosurgery or "radio-surgery" or brachytherapy or "brachy-therapy") 
OR AB=(radiotherap* or "radio-therap*" or irradiat* or radiat* or 
chemoradi* or radiochemo* or "chemo-radi*" or "radio-chemo*" or 
"intensity modulated" or IMRT or EBRT or photon* or proton* or 
radiosurgery or "radio-surgery" or brachytherapy or "brachy-therapy") 

142649 

#6 #3 AND #4 AND #5 428 
  

 

Google Scholar (first 200 results)	
(artificial learning OR machine learning OR deep learning OR artificial intelligence OR machine 
intelligence OR deep intelligence OR neural network OR neural networks OR neural networking 
OR support vector OR support vectors OR decision tree OR decision trees OR random forest OR 
gradient boost OR gradient boosts OR bagging OR ensemble OR radiomic OR radiometric OR 
radiomorhometric) AND (uncertainty OR aleatoric OR epistemic OR "monte carlo*" OR 
dropout OR Bayes OR "conformal prediction" OR "variational inference" OR "temperature 
scaling" OR platt OR entropy) AND (radiotherapy OR irradiation OR radiation OR 
chemoradiation OR radiochemotherapy OR "intensity modulated" OR IMRT OR EBRT OR 
photon* OR proton* OR radiosurgery OR brachytherapy) 
 
 

Key Articles  
To ensure a comprehensive inclusion of relevant articles, the following PubMed IDs were used 
as “key articles” in shaping our initial search queries: “33179605" or "33503599" or "33778184" 
or "34111573" or "36112996" or "36484346" or "36865296" or "37414257" or "37820691".  
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